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Résumé. — Gouëzel et Sarig ont introduit la théorie du renouvellement d’opérateurs pour
démontrer des résultats précis sur la décroissance des corrélations dans certaines classes d’ap-
plications non-uniformément dilatantes. Dans cet article, nous appliquons cette méthode à
des billards plans dispersifs et des applications intermittentes non-markoviennes en plusieurs
dimensions.

1. Introduction

In two seminal papers, Young [You98, You99] obtained results on exponential
and subexponential decay of correlations for nonuniformly hyperbolic dynamical
systems. In the case of subexponential decay, a natural question is to establish that
the decay rates obtained in this way are optimal. The first progress in this direction
was by Sarig [Sar02] who introduced the method of operator renewal theory. This
method was extended and refined by Gouëzel [Gou04] and gives optimal results for
one-dimensional intermittent maps of Pomeau–Manneville type [PM80, Tha80].
A challenge has been to extend the applicability of operator renewal theory to

higher-dimensional examples. Two specific directions have required attention: (i)
planar dispersing billiards, (ii) multidimensional nonMarkovian intermittent maps.
For results in these directions, we mention [HV19, VZ16].
In this paper, we extend the operator renewal theory of Gouëzel and Sarig [Gou04,

Sar02] to provide lower bounds in general situations where the Young tower method
[You99] provides upper bounds. This includes directions (i) and (ii) above. In the
case of lower bounds for dispersing billiards, these are the first results using oper-
ator renewal theory, and the first results by any methods for billiards with decay
rates other than n−1. For multidimensional intermittent maps, we obtain essentially
optimal upper and lower bounds on decay of correlations.
Roughly speaking the result of Gouëzel and Sarig takes the following form. Let f :

M →M be an ergodic measure-preserving transformation defined on a probability
space (M,µ). The correlation function ρv, w(n) is given by

(1.1) ρv, w(n) =
∫
M
v w ◦ fn dµ−

∫
M
v dµ

∫
M
w dµ

for L2 observables v, w : M → R. For definiteness, as in [Gou04, Sar02] we consider
one-dimensional Markovian intermittent maps such as in [LSV99] with f(x) ≈ x1+1/β

for x near zero, where β > 1, and unique absolutely continuous invariant probability
measure µ. Fix η ∈ (0, 1). By [You99], there is a constant C > 0 such that

|ρv, w(n)| 6 C‖v‖Cη |w|∞ n
−(β−1)

for all v ∈ Cη(M), w ∈ L∞(M), n > 1. Now fix a closed subset X ⊂M with 0 6∈ X
and let h : X → Z+ denote the first return time to X. By [Gou04, Sar02], there
exists a constant C > 0 such that

(1.2)

∣∣∣∣∣∣ρv, w(n)−
∑
j >n

µ(h > j)
∫
M
v dµ

∫
M
w dµ

∣∣∣∣∣∣ 6 C‖v‖Cη |w|∞ζβ(n)
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Sharp polynomial bounds on decay of correlations 409

for all v ∈ Cη(M) supported in X, w ∈ L∞(X), n > 1, where

(1.3) ζβ(n) =


n−β β > 2
n−2 log n β = 2
n−2(β−1) 1 < β < 2

.

Since µ(h > n) ∼ cn−β for some c > 0, this shows that the results in [You99]
are sharp. If in addition

∫
v dµ = 0, then ρv, w(n) = O(n−β) for all β > 1. (One

consequence of the main result in this paper is that the latter estimate holds for all
w ∈ L∞(M); this is not shown in previous papers. See Remark 3.3.)
Abstract theorems for nonuniformly expanding and nonuniformly hyperbolic dy-

namical systems are stated in Sections 3 and 7 respectively. In common with the
method of [Gou04, Sar02], we induce on a convenient subset Y ⊂ M with induced
map F : Y → Y that is Gibbs–Markov for nonuniformly expanding maps and Gibbs–
Markov after quotienting along local stable leaves for nonuniformly hyperbolic maps.
A key difference from [Gou04, Sar02] is that F need not be a first return map. As
in [BT18], we are able to control the adverse effects associated with not being a first
return and to obtain results that are essentially the same as those in [Gou04, Sar02].

Remark 1.1. — We note that the setting in [VZ16] is currently restricted to planar
time-reversible systems.

In the remainder of the introduction, we focus on the applications to billiards and
multidimensional intermittent systems.

1.1. Billiard examples

Markarian [Mar04] and Chernov & Zhang [CZ05a] considered a general framework
for analysing decay of correlations for diffeomorphisms with singularities, with special
emphasis on slowly mixing planar dispersing billiards. All known results on upper
bounds for decay of correlations for dispersing billiards fall within this framework.
Within this framework, we obtain lower bounds.
The specific examples are described in more detail in Section 8. Here we summarize

the results. All integrals are with respect to Liouville measure. Upper bounds are for
general dynamically Hölder observables v and w. Lower bounds are for dynamically
defined Hölder observables with nonzero mean supported in a suitable subset X of
phase space.

Bunimovich stadia, semidispersing billiards, billiards with cusps.

In these examples, the correlation decay rate O(n−1) was established by [CM07,
CZ05a, CZ08, Mar04]. By the argument in [BG06, Corollary 1.3] (see also [BCD11,
Corollary 1.1]), the result is essentially optimal in the sense that if v = w and if v
is Hölder and satisfies a nondegeneracy condition, then nρv, w(n) 6→ 0 as n → ∞.
However, for several years it remained an open question to obtain an asymptotic
rate of the type (1.2).
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We prove that for all three types of billiard there is a constant c > 0 such that
ρv, w(n) ∼ cn−1 ∫ v ∫ w. The constant c is given explicitly in terms of the billiard
configuration space. For example, in the case of a Bunimovich stadium with straight
sides of length `,

c = 4 + 3 log 3
4− 3 log 3

`2

4(π + `) .

(Throughout, log means logarithm to base e.)
A similar result for semidispersing billiards and billiards with cusps (but not

stadia) can be found in [VZ16], though it is not clear that the asymptotic ρv, w(n) ∼
const. n−1 is established there.

Billiards with cusps at flat points

Correlation decay rates O(n−(β−1)) with β any prescribed value in (1, 2) were
obtained in [Zha17b]. Here, β corresponds to the flatness at the cusp. We obtain the
asymptotic ρv, w(n) ∼ cn−(β−1) ∫ v ∫ w. Again, the constant c is given explicitly.

Bunimovich flowers

The correlation decay rate ρv, w(n) = O((log n)3n−2) was obtained in [CZ05a].
It is conjectured that the optimal rate is const. n−2. We obtain the lower bound
ρv, w(n)� (log n)−1n−2 ∫ v ∫ w.

Dispersing billiards with vanishing curvature

Correlation decay rates O((log n)βn−(β−1)) with β any prescribed value in (2,∞)
were obtained in [Zha17b] for Hölder observables. Here, β corresponds to the flat-
ness at the points of vanishing curvature. We obtain the lower bound ρv, w(n) �
(log n)−1n−(β−1) ∫ v ∫ w.

1.2. Hu–Vaienti maps

We consider a class of piecewise smooth multidimensional nonuniformly expand-
ing intermittent maps f : M → M , M ⊂ Rk compact, with a neutral fixed
point. The case k = 1 is very well-understood. Upper bounds on decay of corre-
lations were obtained by [Hu04, You99] and the results were shown to be sharp
by [Gou04, Hu04, Sar02]. Extending to multidimensional examples is relatively
straightforward in the Markov case, but the nonMarkov case is very challenging
because the standard symbolically Hölder spaces are unavailable for nonMarkov
maps and there are difficulties using spaces of bounded variation in higher dimen-
sions. Also, as shown in [HV09], such maps often have poor bounded distortion
properties.
Hu & Vaienti [HV09] obtained results on existence of absolutely continuous ergodic

invariant measures (both finite and infinite) for various classes of multidimensional
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nonMarkovian intermittent maps. In a subsequent paper [HV19], first results on
upper and lower bounds on decay of correlations were obtained. As an application
of the results in this paper, we obtain essentially optimal upper and lower bounds.
To fix ideas, we focus on [HV19, Example 5.1] as described in detail in Section 6.4.

The neutral fixed point is taken to be at 0 and f(x) = x(1 + |x|γ + O(|x|γ′)) for x
close to 0 where γ ∈ (0, k) and γ′ > γ. Using results of [AFLV11, HV09], we show
that ρv, w(n) = O(n−((k/γ)−1−ε)) for v Hölder and w ∈ L∞, where ε is arbitrarily
small. This is in marked contrast to [HV19] who obtain results no better than
ρv, w(n) = O(n−((1/γ)−1)) in the multidimensional case k > 2 and only for observables
with support bounded away from 0.
Moreover, our decay rate is essentially optimal. For v Hölder and w ∈ L∞ with

supports bounded away from 0 and nonzero mean, we show that for any ε > 0
(1.4) n−((k/γ)−1+ε) � ρv, w(n)� n−((k/γ)−1−ε).

The remainder of the paper is organized as follows. In Section 2, we recall back-
ground material on inducing, Gibbs–Markov maps, Young towers, and Chernov–
Markarian–Zhang structures. Our main result for nonuniformly expanding maps is
stated in Section 3 and proved in Section 4. In Section 5, we relate tail estimates
for different return times. In Section 6, we apply our results to multidimensional
nonuniformly expanding maps including those mentioned in Subsection 1.2.
In Section 7, we extend our main result to nonuniformly hyperbolic systems,

including solenoidal versions of the maps in Section 6. Finally, in Section 8, we
consider the examples from billiards mentioned in Subsection 1.1.

Notation

We use the “big O” and� notation interchangeably, writing an = O(bn) or an � bn
if there is a constant C > 0 such that an 6 Cbn for all n > 1. Also, we write an ≈ bn
if an � bn � an. As usual, an ∼ bn as n→∞ means that limn→∞ an/bn = 1.
Convolution of sequences an, bn (n > 0) is denoted (a ? b)n = ∑n

j=0 ajbn−j. Often
we use the abuse of notation an ?bn. If a0 is undefined (as for example an = n−2 log n)
then we redefine a0 = 1 without mentioning it. With these conventions we have the
standard facts n−p ? n−q = O(n−q) and n−p ? n−q log n = O(n−q log n) for all p > 1,
q ∈ (0, p].

2. Preliminaries

In this section, we recall background material on (one-sided) Chernov–Markarian–
Zhang structures.

2.1. Gibbs–Markov maps

Let (Y, µY ) be a probability space with an at most countable measurable parti-
tion α, and let F : Y → Y be an ergodic measure-preserving transformation. For
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θ ∈ (0, 1), define the separation time s(y, y′) to be the least integer n > 0 such that
F ny and F ny′ lie in distinct partition elements in α. It is assumed that the partition
α separates trajectories, so s(y, y′) =∞ if and only if y = y′; then θs is a metric.
Let ξ = dµY

dµY ◦F
: Y → R. We say that F is a (full-branch) Gibbs–Markov map if

• F |a : a→ Y is a measurable bijection for each a ∈ α, and
• There are constants C > 0, θ ∈ (0, 1) such that | log ξ(y)−log ξ(y′)| 6 Cθs(y, y

′)

for all y, y′ ∈ a, a ∈ α.
A consequence is that there is a constant C > 0 such that
(2.1) ξ(y) 6 CµY (a) and |ξ(y)− ξ(y′)| 6 CµY (a)θs(y, y′),
for all y, y′ ∈ a, a ∈ α.

2.2. Return maps

Suppose that (M,µ) is a probability space and that f : M → M is an ergodic
measure-preserving transformation. Fix a measurable subset X ⊂M with µ(X) > 0
and h : X → Z+ integrable such that fh(x)x ∈ X for all x ∈ X. Then h is called a
return time and fh : X → X is called a return map.
If h is the first return time to X under f (i.e. h(x) = inf{n > 1 : fnx ∈ X}),

then fh : X → X is called the first return map and µX = (µ|X)/µ(X) is an ergodic
fh-invariant probability measure on X.

2.3. Young towers

Let F : Y → Y be a full-branch Gibbs–Markov map on (Y, µY ) with partition α
and let ϕ : Y → Z+ be an integrable function constant on partition elements. We
define the (one-sided) Young tower ∆ = Y ϕ and tower map f∆ : ∆→ ∆ as follows:

∆ = {(y, `) ∈ Y × Z : 0 6 ` 6 ϕ(y)− 1} , f∆(y, `) =

(y, `+ 1) ` 6 ϕ(y)− 2
(Fy, 0) ` = ϕ(y)− 1

.

Let ϕ̄ =
∫
Y ϕdµY . Then µ∆ = (µY × counting)/ϕ̄ is an ergodic f∆-invariant prob-

ability measure on ∆, and it is mixing if and only if gcd{ϕ(a) : a ∈ α} = 1.
The tower has exponential tails if µY (ϕ > n) = O(e−cn) for some c > 0, polyno-
mial tails if µY (ϕ > n) = O(n−β) for some β > 1, and superpolynomial tails if
µY (ϕ > n) = O(n−β) for all β > 1.
Now suppose that f : M →M is an ergodic measure-preserving transformation on

a probability space (M,µ), and that Y ⊂M is measurable with µ(Y ) > 0. Suppose
that F : Y → Y is a full-branch Gibbs–Markov map with respect to a probability
measure µY on Y , and that ϕ : Y → Z+ is a return time, constant on partition
elements, such that F = fϕ. Form the tower ∆ = Y ϕ and tower map f∆ : ∆→ ∆.
The map πM : ∆→ M , πM(y, `) = f `y defines a semiconjugacy between f∆ and f .
We require moreover that (πM)∗µ∆ = µ. Then we say that f is modelled by a Young
tower.
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2.4. Chernov–Markarian–Zhang structure

Suppose that (M,µ) is a probability space and let f : M →M be an ergodic and
mixing measure-preserving transformation. Roughly speaking, the map f admits
a Chernov–Markarian–Zhang structure if there is an integrable first return time
h : X → Z+ such that the first return map fX = fh : X → X is modelled by a
Young tower Y σ. The full map f : M → M is also modelled by a Young tower
Y ϕ. We denote these towers by ∆ = Y ϕ and ∆rapid = Y σ since in the applications
that we have in mind either the tower ∆rapid is exponential or for any q > 1 the
subset Y ⊂ X can be chosen such that fX is modelled by a Young tower Y σ with
µY (σ > n) = O(n−q). In the latter case, we say that fX is modelled by Young towers
with superpolynomial tails.
In more detail, suppose Y ⊂ X ⊂M are Borel sets with µ(Y ) > 0. Define the first

return time h : X → Z+ and first return map fX = fh : X → X.
We assume that fX : X → X is modelled by a Young tower ∆rapid = Y σ with return

time σ : Y → Z+ and return map F = fσX : Y → Y . In particular, F = fσX : Y → Y
is a full-branch Gibbs–Markov map with ergodic invariant probability measure µY
and partition α such that σ is constant on partition elements. We require in addition
that h is constant on f `Xa for all a ∈ α, 0 6 ` 6 σ(a)− 1.
Define the induced return time

(2.2) ϕ = hσ : Y → Z+, ϕ(y) =
σ(y)−1∑
`=0

h(f `y).

Then ϕ is integrable with respect to µY and constant on partition elements. In
particular, f : M → M is modelled by a Young tower ∆ = Y ϕ with the same
Gibbs–Markov map F = fσX = fϕ.
We say that f : M → M satisfying these assumptions possesses a Chernov–

Markarian–Zhang structure.
Remark 2.1. — The method of choosing a first return map modelled by a Young

tower with exponential tails arises in various contexts in the literature, see for
example [BLvS03, BT18] in the noninvertible context. However, the method plays a
special role in the context of billiards [CZ05a, Mar04], see Remark 7.1 below.
Remark 2.2. — It is part of our set up that µ is mixing, but in general the tower

map f∆ : ∆→ ∆ is mixing only up to a finite cycle d > 1 where d is often unknown.
As in [Che99, Theorem 2.1, Proposition 10.1], the a priori knowledge that µ is mixing
ensures that for many purposes the value of d is irrelevant (in fact it suffices that µ
is ergodic for all powers of f).

2.5. Dynamically Hölder observables

Suppose that f : M → M possesses a Chernov–Markarian–Zhang structure as
above. Fix θ ∈ (0, 1). For v : M → R, define

(2.3) ‖v‖H = |v|∞ + |v|H, |v|H = sup
y, y′ ∈Y, y 6= y′

sup
06 `6ϕ(y)−1

|v(f ` y)− v(f ` y′)|
θs(y, y′)

.
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We say that v is dynamically Hölder if ‖v‖H < ∞ and denote by H(M) the space
of such observables.
Of particular interest are observables supported in X. We identify L∞(X) with
{w ∈ L∞(M) : w|M\X ≡ 0}. Also, we write H(X) = {v ∈ H(M) : supp v ⊂ X}.
It is standard that Hölder observables are dynamically Hölder for the classes of

dynamical systems of interest in this paper, as we now recall. Given η ∈ (0, 1] and a
metric d on M , define

|v|Cη = sup
x, x′ ∈M,x 6=x′

|v(x)− v(x′)|/d(x, x′)η.

Let Cη(M) be the space of bounded observables v : M → R for which |v|Cη <∞.
Proposition 2.3. — Let η ∈ (0, 1]. Suppose that there exist K > 0, θ0 ∈ (0, 1)

such that d(f `y, f `y′) 6 Kθ
s(y, y′)
0 for all y, y′ ∈ Y , 0 6 ` 6 ϕ(y)− 1.

Then Cη(M) ⊂ H(M) where we may choose any θ ∈ [θη0 , 1).
Proof. — Let v ∈ Cη(M), y, y′ ∈ Y , 0 6 ` < ϕ(y)− 1. Then∣∣∣v (f `y)− v (f `y′)∣∣∣ 6 |v|Cηd (f `y, f `y′)η 6 Kη|v|Cηθ

s(y, y′).

Hence |v|H 6 Kη|v|Cη and it follows that v ∈ H(M). �

3. Statement of the main result

In this section, we state our main abstract result for maps f : M → M with a
Chernov–Markarian–Zhang structure. Let Y ⊂ X ⊂ M denote the corresponding
return map sets and recall that ϕ = hσ : Y → Z+ is the induced return time.
Throughout, we suppose that µY (ϕ > n) = O(n−β′) for some β′ > 1. (As discussed in
Section 5, in our main examples any β′ < β is permitted where µX(h > n) = O(n−β),
and often we can take β′ = β. However, h and β play no role in this section.)
Define the correlation function ρv, w(n) as in (1.1). It follows from Young [You99]

that ρv, w(n) = O(‖v‖H|w|∞ n−(β′−1)) for all v ∈ H(M), w ∈ L∞(M), n > 1. We can
now state our main theorem. Let
(3.1) σn =

∫
Y
σ1{ϕ>n}dµY , γn = n−β

′
? σn.

Define ζβ′ as in (1.3).
Theorem 3.1. — Let f : M →M be a map with a Chernov–Markarian–Zhang

structure, and suppose that µY (ϕ > n) = O(n−β′) for some β′ > 1. Then there is a
constant C > 0 such that for all n > 1,∣∣∣∣∣∣ρv, w(n)− ϕ̄−1 ∑

j >n

µY (ϕ > j)
∫
M
v dµ

∫
M
w dµ

∣∣∣∣∣∣(a)

6 C‖v‖H|w|∞ (γn + ζβ′(n) for all v ∈ H(X), w ∈ L∞(X))

|ρv, w(n)| 6 C‖v‖H|w|∞γn for all v ∈ H(X) with
∫
M
v dµ = 0, w ∈ L∞(M).(b)

Clearly n−β′ 6 σn 6 γn. The sequences are readily estimated from above:
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Proposition 3.2. —
• If σ is bounded, then γn = O(n−β′).
• If σ has exponential tails, then γn = O(n−β′ log n).
• Let ε > 0. If µY (σ > n) = O(n−q) with q sufficiently large (depending on ε),
then γn = O(n−(β′−ε)).

Proof. — Suppose that σ has exponential tails, and fix K > 0. Then

σn =
∫
Y
σ1{ϕ>n}µY 6 KµY (ϕ > n) +

∫
Y

1{σ>K}σ dµY � Kn−β
′ +O

(
e−cK

)
,

for some c > 0. Choosing K = (β′/c) log n, we obtain σn = O(n−β′ log n). Also
n−β

′
? n−β

′ log n = O(n−β′ log n).
The other cases are similar and hence omitted. �

Remark 3.3. — In particular, if σ is bounded, then we are back in the situation
of [Gou04, Sar02] and our estimates reduce to theirs. Note that we have the slight
improvement in Theorem 3.1(b) that w is an arbitrary L∞ function, not necessarily
supported in X. Such a result does not seem to have been noted before.
When σ is unbounded, [Gou04, Sar02] does not apply directly since the estimates

required for applying operator renewal theory are problematic on X, while the
dynamics on Y is not given by a first return map, so it is necessary to incorporate
arguments from [BT18].
Remark 3.4. — As in [BT18], we can incorporate observables supported on the

whole of M that decay sufficiently quickly off X. Let σ̃ : Y → R. Suppose that
v, w : M → R are such that

ϕ−1∑
`=0

∣∣∣v ◦ f `∣∣∣ 6 σ̃,
ϕ−1∑
`=0

∣∣∣w ◦ f `∣∣∣ 6 σ̃ on Y.

Then Theorem 3.1 holds with σn defined using σ̃ instead of σ.
In contrast to [BT18], we do not require that the Hölder constants of v decay

off X.

4. Proof of the main theorem

In this section we prove Theorem 3.1. We continue to suppose that f : M → M
possesses a Chernov–Markarian–Zhang structure and that µY (ϕ > n) = O(n−β′)
for some β′ > 1. In Subsection 4.1, we state an analogous result, Theorem 4.2, for
observables defined on ∆ and deduce Theorem 3.1 as a consequence. In Subsection 4.2,
we recall some results from operator renewal theory for the Gibbs–Markov map on
Y . In Subsection 4.3, we prove Theorem 4.2.

4.1. Tower reformulation

Recall that M is modelled by a Young tower ∆ = Y ϕ and that F = fϕ : Y → Y
is a full-branch Gibbs–Markov map. Let d = gcd{ϕ(a) : a ∈ α}. The tower map
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f∆ : ∆ → ∆ is mixing if and only if d = 1. To deal with the cases d = 1 and
d > 2 uniformly, we set Φ = d−1ϕ. Replace ∆ by ∆ = Y Φ and redefine f∆ : ∆→ ∆
accordingly. Also, define µ∆ = (µY × counting)/Φ̄. Then f∆ is mixing.
Define

πM : ∆→M, πM(y, `) = fd`y.

Then πM is a semiconjugacy between f∆ and g = fd, and (πM)∗µ∆ is an ergodic g-
invariant probability measure on M . It is an easy consequence of the definitions that
(πM)∗µ∆ is absolutely continuous with respect to the original measure µ. Moreover,
µ is mixing for f by assumption and so is also ergodic for g. Hence πM is a measure-
preserving semiconjugacy between (∆, f∆, µ∆) and (M, g, µ).
Observables v : M → R supported in X lift to observables ṽ = v ◦ πM : ∆ → R

supported in π−1
M (X) ⊂ ∆. More generally, we consider observables v supported in

Xd = X ∪ f−1X ∪ · · · ∪ f−(d−1)X. Such observables lift to observables ṽ : ∆ → R
supported in X̂ = π−1

M (Xd) ⊂ ∆.

Proposition 4.1. — ∑Φ(y)−1
`=0 1

X̂
(y, `) 6 σ(y) for y ∈ Y .

Proof. — Let y ∈ Y . Set hj(y) = ∑j−1
i=0 h(f iXx). Since h : X → Z+ is the first

return time to X under the map f : M →M we have that f `y ∈ X for some ` > 0
precisely when ` = hj(y) for some j > 0. Since ϕ(y) = hσ(y)(y), there are precisely
σ(y) returns of y to X under f by time ϕ(y). Hence

ϕ(y)−1∑
`=0

1{f` y ∈X} = σ(y) for y ∈ Y .

Finally,
Φ(y)−1∑
`=0

1
X̂

(y, `) =
Φ(y)−1∑
`=0

1{f` d y ∈Xd} 6
Φ(y)−1∑
`=0

d−1∑
i=0

1{f` d+i y ∈X} =
ϕ(y)−1∑
`=0

1{f` y ∈X},

and the result follows. �

Fix θ ∈ (0, 1) and define

(4.1) ‖ṽ‖θ = |ṽ|∞ + |ṽ|θ, |ṽ|θ = sup
y, y′ ∈ Y, y 6=y′

sup
06 `6Φ(y)−1

|ṽ(y, `)− ṽ(y′, `)|
θs(y, y′)

.

Let Fθ(X̂) denote the space of observables ṽ supported in X̂ with ‖ṽ‖θ <∞.
Given ṽ, w̃ ∈ L∞(∆), we define

ρ∗ṽ, w̃(n) =
∫

∆
ṽ w̃ ◦ fn∆ dµ∆.

Theorem 4.2. — There is a constant C > 0 such that for all n > 1,
∣∣∣∣∣∣ρ∗ṽ, w̃(n)−

1 + Φ̄−1 ∑
j>n

µY (Φ > j)
∫

∆
ṽ dµ∆

∫
∆
w̃ dµ∆

∣∣∣∣∣∣(a)

6 C‖ṽ‖θ|w̃|∞ (γnd + ζβ′(n)) for all ṽ ∈ Fθ(X̂), w̃ ∈ L∞(X̂),∣∣∣ρ∗ṽ, w̃(n)
∣∣∣ 6 C‖ṽ‖θ|w̃|∞γnd for all ṽ ∈ Fθ(X̂) with

∫
∆
ṽ dµ∆ = 0, w̃ ∈ L∞(∆).(b)
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We conclude this subsection by showing that Theorem 3.1 is a direct consequence
of Theorem 4.2.
Proof of Theorem 3.1. — Recall that g = fd. Write n = md− r for m > 1, 0 6

r 6 d−1. Using the measure-preserving semiconjugacy πM : ∆→M , πM(y, `) = g`y,
we can write

(4.2)
ρv, w(n) =

∫
M
v ◦ f r w ◦ gm dµ−

∫
M
v dµ

∫
M
w dµ

= ρ∗
ṽ◦fr, w̃(m)−

∫
∆
ṽ dµ∆

∫
∆
w̃ dµ∆.

Suppose as in Theorem 3.1(a) that v ∈ H(X) and w ∈ L∞(X). Then supp ṽ ◦ f r ⊂
π−1
M f−rX ⊂ π−1

M Xd = X̂ and supp w̃ ⊂ π−1
M X ⊂ Xd. Moreover,∣∣∣∣ṽ ◦ f r∣∣∣∣

θ
= sup

y, y′ ∈Y, y 6= y′
sup

06 `6Φ(y)−1

∣∣∣v(fd`+ry)− v(fd`+ry′)
∣∣∣ /θs(y, y′)

6 sup
y, y′ ∈Y, y 6=y′

sup
06 `6ϕ(y)−1

∣∣∣v (f `y)− v (f `y′)∣∣∣ /θs(y, y′) = |v|H.

Hence it follows from (4.2) and Theorem 4.2(a) that∣∣∣∣∣∣ρv, w(n)− Φ̄−1 ∑
j >m

µY (Φ > j)
∫
M
v dµ

∫
M
w dµ

∣∣∣∣∣∣
=

∣∣∣∣∣∣ρ∗ṽ◦fr, w̃(m)−
1 + Φ̄−1 ∑

j >m

µY (Φ > j)
∫

∆
ṽ dµ∆

∫
∆
w̃ dµ∆

∣∣∣∣∣∣
�
∥∥∥∥ṽ ◦ f r∥∥∥∥

θ
|w̃|∞ (γmd + ζβ′(m)) 6 ‖v‖H|w|∞ (γmd + ζβ′(m)) .

Now γmd = γn+r 6 γn and ζβ′(m)� ζβ′(n). Moreover,

Φ̄−1 ∑
j >m

µY (Φ > j) = ϕ̄−1d
∑

j > (n+r)/d
µY (ϕ > jd)

= ϕ̄−1d
∑

j > [n/d]
µY (ϕ > jd) +O(n−β′).

By monotonicity of µY (ϕ > k),
jd+d−1∑
k=jd

µY (ϕ > k) 6 dµY (ϕ > jd) 6
jd−1∑

k=jd−d
µY (ϕ > k).

Summing over j yields∑
k> ([n/d]+1)d

µY (ϕ > k) 6 d
∑

j > [n/d]
µY (ϕ > jd) 6

∑
k> [n/d]d

µY (ϕ > k),

and hence d∑j > [n/d] µY (ϕ > jd) = ∑
k>n µY (ϕ > k) +O(n−β′). This completes the

proof of Theorem 3.1(a).
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Similarly, in the context of Theorem 3.1(b),

|ρv, w(n)| =
∣∣∣ρ∗
ṽ◦fr, w̃(m)

∣∣∣� ∥∥∥∥ṽ ◦ f r∥∥∥∥
θ
|w̃|∞γmd 6 ‖v‖H|w|∞γn

by Theorem 4.2(b). �

4.2. Operator renewal theory on Y

Set D = {z ∈ C : |z| < 1} and D = {z ∈ C : |z| 6 1}. Let R : L1(Y )→ L1(Y ) and
L : L1(∆) → L1(∆) denote the transfer operators for F : Y → Y and f∆ : ∆ → ∆
respectively. Define the renewal operators R(n), T (n) : L1(Y )→ L1(Y ),

R(n)v = R
(
1{Φ=n}v

)
, n > 1, T (n)v = 1YLn(1Y v), n > 0,

and the corresponding Fourier series R̂(z), T̂ (z) : L1(Y )→ L1(Y ), for z ∈ D,

R̂(z) =
∞∑
n=1

R(n)zn, T̂ (z) =
∞∑
n=0

T (n)zn.

A calculation shows that
R̂(z)v = R(zΦv) for z ∈ D and T̂ = (I − R̂)−1 on D.

Also, for z ∈ D, we define
B̂(z) : L1(Y )→ L1(Y ), B̂(z) = (z − 1)T̂ (z),

with Fourier coefficients B(n), n > 0.
Given v : Y → R, define |v|θ = supy 6=y′ |v(y)−v(y′)|/θs(y, y′) and ‖v‖θ = |v|∞+ |v|θ.

Let Fθ(Y ) be the Banach space of observables v with ‖v‖θ <∞. Since F : Y → Y
is a Gibbs–Markov map and Φ : Y → Z+ is constant on partition elements, the
operators R, R(n), T (n), R̂(z) and T̂ (z) are bounded operators on Fθ(Y ). Define
Pv = Φ̄−1 ∫

Y v dµY .
Define ζβ′ as in the introduction. Since F is mixing and gcd{Φ(a) : a ∈ α} = 1, it

follows from [Gou04] that on Fθ(Y ):

Lemma 4.3. —
(a) T (n) = b(n)P + H(n) where b(n) = 1 + Φ̄−1∑

j>n µY (Φ > j) and ‖H(n)‖θ
= O(ζβ′(n)).

(b) There is a sequence b̃(n) > 0 such that T (n) = b̃(n)P + H̃(n) where ‖H̃(n)‖θ
= O(n−β′).

(c) ‖B(n)‖θ = O(n−β′).

4.3. Proof of Theorem 4.2

Let ṽ, w̃ ∈ L∞(∆). Define V (n), W (n) : Y → R,
V (n)(y) = 1{Φ(y)>n}ṽ(y,Φ(y)− n), n > 1, W (n)(y) = 1{Φ (y)>n}w̃(y, n), n > 0,
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as well as
J0(n) =

∫
∆

1{n+`<Φ (y)}ṽ(y, `)w̃(y, n+ `) dµ∆.

The following formula is a discrete time analogue of a formula in [Pol85]. (The proof
is in the Appendix.)

Proposition 4.4. — ρ∗
ṽ, w̃

(n) = J0(n) + Φ̄−1 ∫
Y (T (n) ? RV (n)) ? W (n) dµY for

all ṽ, w̃ ∈ L∞(∆), n > 1. (1)

Proposition 4.5. — |V (n)|1 6 |ṽ|∞ µY (Φ > n) and |W (n)|1 6 |w̃|∞ µY (Φ > n)
for all ṽ, w̃ ∈ L∞(∆), n > 1. Moreover, there is a constant C > 0 such that
‖RV (n)‖θ 6 C‖ṽ‖θ µY (Φ > n) for all ṽ ∈ Fθ(∆), n > 1.

Proof. — The estimates for |V (n)|1 and |W (n)|1 are immediate. Let y, y′ ∈ a,
a ∈ α. Then |V (n)(y)| 6 1{Φ (a)>n}|ṽ|∞ and

|V (n)(y)− V (n)(y′)| = 1{Φ (a)>n} |ṽ(y,Φ(a)− n)− ṽ(y′,Φ(a)− n)|
6 1{Φ (a)>n}|ṽ|θ θs(y, y

′).

Given y ∈ Y , set ya = F−1(y) ∩ a. Then (RV (n))(y) = ∑
aξ(ya)V (n)(ya) so

|RV (n)|∞ �
∑
aµY (a)|ṽ|∞ 1{Φ (a)>n} = |ṽ|∞µY (Φ > n),

by (2.1). Also, for y, y′ ∈ Y ,

|(RV (n))(y)− (RV (n))(y′)|
6
∑
a {ξ(ya) |V (n)(ya)− V (n)(y′a)|+ |ξ(ya)− ξ(y′a)| |V (n)(y′a)|}

� θs(y, y
′)‖ṽ‖θ

∑
aµY (a)1{Φ (a)>n}

= θs(y, y
′)‖ṽ‖θ µY (Φ > n).

Hence |RV (n)|θ � ‖ṽ‖θ µY (Φ > n) and the estimate for ‖RV (n)‖θ follows. �

Corollary 4.6. — Let H(n), H̃(n) : Fθ(Y ) → Fθ(Y ) be as in Lemma 4.3.
There is a constant C > 0 such that∣∣∣∣∫

Y
(H(n) ? RV (n)) ? W (n) dµY

∣∣∣∣ 6 C‖ṽ‖θ|w̃|∞ ζβ′(n),(a) ∣∣∣∣∫
Y

(
H̃(n) ? RV (n)

)
? W (n) dµY

∣∣∣∣ 6 C‖ṽ‖θ|w̃|∞ n−β
′
,(b)

for all ṽ ∈ Fθ(∆), w̃ ∈ L∞(∆), n > 1.

Proof. — By Proposition 4.5 and the estimate for H(n) in Lemma 4.3(a), the first
integral is estimated by
|H(n) ? RV (n)|∞ ? |W (n)|1 6 ‖H(n)‖θ ? ‖RV (n)‖θ ? |W (n)|1

� ζβ′(n) ? ‖ṽ‖θ n−β
′
? |w̃|∞ n−β

′ � ‖ṽ‖θ|w̃|∞ ζβ′(n).
The second integral is estimated in the same way using Lemma 4.3(b). �

(1)Extending the convention mentioned in the introduction, T (n) ? RV (n) =
∑n

j=0 T (j)RV (n− j).
Similarly, (T (n) ? RV (n)) ? W (n) =

∑n
j=0 G(j)W (n− j) where G(n) = T (n) ? RV (n).
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For n > 0, define

A1(n)(y) = 1{Φ(y)>n}

Φ(y)−n−1∑
`=0

ṽ(y, `), A2(n)(y) =
Φ(y)−1∑
`=0

1{n< `} w̃ (y, `).

Lemma 4.7. —
(a) |J0(n)| 6 Φ̄−1|ṽ|∞|w̃|∞ σnd for all ṽ ∈ L∞(X̂), w̃ ∈ L∞(∆), n > 1.
(b) |A1(n)|1 6 |ṽ|∞ σnd for all ṽ ∈ L∞(X̂), n > 1.
(c) |A2(n)|1 6 |w̃|∞ σnd for all w̃ ∈ L∞(X̂), n > 1.

Proof. — Since ṽ is supported in X̂,

|J0(n)| 6 |ṽ|∞|w̃|∞
∫

∆
1{n<Φ (y)}1X̂(y, `) dµ∆

= Φ̄−1|ṽ|∞|w̃|∞
∫
Y

1{ϕ (y)>nd}

Φ(y)−1∑
`=0

1
X̂

(y, `) dµY

6 Φ̄−1|ṽ|∞|w̃|∞
∫
Y

1{ϕ>nd}σ dµY = Φ̄−1|ṽ|∞|w̃|∞σnd,

by Proposition 4.1.
Next,

|A1(n)(y)| 6 1{Φ (y)>n}

Φ(y)−1∑
`=0
|ṽ(y, `)|

and it again follows that∫
Y
|A1(n)|dµY 6 |ṽ|∞

∫
Y

1{Φ>n}σ dµY = |ṽ|∞ σnd.

Similarly for A2(n). �

The Fourier series for V (n), W (n) are given by

V̂ (z)(y) =
Φ(y)−1∑
`=0

zΦ(y)−`ṽ(y, `), Ŵ (z)(y) =
Φ(y)−1∑
`=0

z`w̃(y, `), z ∈ D.

Proposition 4.8. — Â1(z) = (z − 1)−1(V̂ (z) − V̂ (1)), and Â2(z) = (z − 1)−1

(Ŵ (z)− Ŵ (1)) for z ∈ D.

Proof. — We have

Â1(z)(y) =
∞∑
n=0

znA1(n)(y) =
Φ(y)−1∑
n=0

zn
Φ(y)−n−1∑

`=0
ṽ(y, `) =

Φ(y)−1∑
`=0

Φ(y)−`−1∑
n=0

zn

 ṽ(y, `)

= (z − 1)−1
Φ(y)−1∑
`=0

(
zΦ(y)−` − 1

)
ṽ(y, `) = (z − 1)−1

(
V̂ (z)(y)− V̂ (1)(y)

)
.

The calculation for A2 is similar. �
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Proof of Theorem 4.2. — By Lemma 4.3(a) and Proposition 4.4,

ρ∗ṽ, w̃(n) = J0(n) + E(n) + Φ̄−1
∫
Y

(H(n) ? RV (n)) ? W (n) dµY ,

where
E(n) = Φ̄−1

∫
Y

(b(n)P ? RV (n)) ? W (n) dµY ,

b(n) = 1 + Φ̄−1 ∑
j >n

µY (Φ > j).

By Corollary 4.6(a) and Lemma 4.7(a),
(4.3) ρ∗ṽ, w̃(n) = E(n) +O (‖ṽ‖θ|w̃|∞ (σnd + ζβ′(n))) .
Now, E(n) = b(n) ? PV (n) ? PW (n) so

Ê(z) = b̂(z)PV̂ (z)PŴ (z)

= b̂(z)
{
PV̂ (1)PŴ (1)+ PV̂ (1)P

(
Ŵ (z)− Ŵ (1)

)
+ P

(
V̂ (z)− V̂ (1)

)
PŴ (z)

}
= b̂(z)PV̂ (1)PŴ (1) + (z − 1)b̂(z)

{
PV̂ (1)PÂ2(z) + PÂ1(z)PŴ (z)

}
.

Moreover, (z − 1)b̂(z) = −b(1)z +∑∞
n=2(b(n− 1)− b(n))zn with Fourier coefficients

that are O(µY (Φ > n)). Hence it follows from Proposition 4.5 and Lemma 4.7 that

E(n) = b(n)PV̂ (1)PŴ (1) +O
(
|ṽ|∞|w̃|∞ n−β

′
? σnd

)
,

and we obtain
ρ∗ṽ, w̃(n) = b(n)PV̂ (1)PŴ (1) +O

(
‖ṽ‖θ|w̃|∞ (γnd + ζβ′(n))

)
.

Also,

PV̂ (1) = Φ̄−1
∫
Y
V̂ (1) dµY = Φ̄−1

∫
Y

Φ(y)−1∑
`=0

ṽ(y, `) dµY (y) =
∫

∆
ṽ dµ∆,

and similarly PŴ (1) =
∫
∆ w̃ dµ∆. This completes the proof of Theorem 4.2(a).

The proof of Theorem 4.2(b) proceeds in much the same way but with b(n) and
H(n) replaced by b̃(n) and H̃(n) from Lemma 4.3(b). Using Corollary 4.6(b) instead
of Corollary 4.6(a), we obtain

ρ∗ṽ, w̃(n) = Ẽ(n) +O(‖ṽ‖θ|w̃|∞ σnd),

where Ẽ(n) = b̃(n)?PV (n)?PW (n). Calculating as in part (a) and using PV̂ (1) = 0,̂̃
E(z) = (z − 1)̂̃b(z)PÂ1(z)PŴ (z).

By Lemma 4.3(b), (z − 1)̂̃b(z)P = B̂(z) − (z − 1)̂̃H(z) and hence has Fourier
coefficients h(n) that satisfy |h(n)| = O(n−β′) by Lemma 4.3(b, c). It follows that

Ẽ(n) = h(n) ? PA1(n) ? PW (n) = O (|ṽ|∞|w̃|∞γnd) ,
yielding the desired estimate in part (b). Note also that the terms involving A2(n)
are no longer present. The estimate for A2(n) in Lemma 4.7(c) was the only one that
required w̃ to be supported in X̂, so Theorem 4.2(b) holds for all w̃ ∈ L∞(∆). �
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5. Tail estimates

In applications, we are often given information about the first return time h : X
→ Z+. To apply Theorem 3.1, it is necessary to translate this into information about
the tails µY (ϕ > n) of the induced return time ϕ : Y → Z+.
We begin with a rough estimate of this type.

Proposition 5.1. — Fix β, ε > 0.
Suppose that f : M → M possesses a Chernov–Markarian–Zhang structure and

that ∆rapid = Y σ has exponential tails.
(a) If µX(h > n) = O(n−β), then µY (ϕ > n) = O((log n)βn−β).
(b) If µX(h > n) > cn−β for some c > 0, then there exists c′ > 0 such that

µY (ϕ > n) > c′(log n)−1n−β.
Now suppose that ∆rapid has polynomial tails with µY (σ > n) = O(n−q) for q

sufficiently large (depending on β and ε).
(c) If µX(h > n) = O(n−β), then µY (ϕ > n) = O(n−(β−ε)).
(d) If µX(h > n) > cn−β for some c > 0, then there exists c′ > 0 such that

µY (ϕ > n) > c′n−(β+ε).

Proof.
(a) This is proved in [CZ05a, Mar04].
(b) Let h̃ = h ◦ πX : ∆rapid → Z+ where ∆rapid = Y σ and πX : ∆rapid → X is the

semiconjugacy πX(y, `) = f `Xy. Then for any K > 0,

σ̄µX(h > n) = σ̄µ∆rapid(h̃ > n)

=
∫
Y

σ(y)−1∑
`=0

1{h̃(y, `)>n} dµY (y) 6
∫
Y
σ1{ϕ>n} dµY

=
∫
Y
σ1{σ6K log n}1{ϕ>n} dµY +

∫
Y
σ1{σ>K log n}1{ϕ>n} dµY

6 (K log n)µY (ϕ > n) + |σ|2 (µY (σ > K log n))1/2 .

We have µY (σ > n) = O(e−an) for some a > 0. Fixing K sufficiently large,

(log n)µY (ϕ > n)� µX(h > n) +O
(
n−Kd/2

)
� n−β,

so µY (ϕ > n)� (log n)−1n−β.
(c, d) These arguments are similar and hence omitted. �

Next, we consider a sharper estimate following [MV20]. First we collect some
special cases of existing results about limit laws. Assume that fX : X → X is
modelled by a Young tower ∆rapid = Y σ with σ ∈ L2(Y ). In particular, F : Y → Y
is Gibbs–Markov. Let σ̄ =

∫
Y σ dµY .

Lemma 5.2. — Let ψ : X → R be integrable with
∫
X ψ dµX = 0, and define

ψσ : Y → R, ψσ(y) = ∑σ(y)−1
`=0 ψ(f `Xy). Let G denote a nonconstant random variable.

Let bn = n1/β, 1 < β < 2, or bn = (n log n)1/2. (In the latter case, set β = 2.)
(a) b−1

n

∑n−1
j=0 ψ ◦ f

j
X →d G if and only if b−1

n

∑n−1
j=0 ψσ ◦ F j →d σ̄

1/βG.
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(b) Suppose that ψσ is constant on elements of the partition α for the Gibbs–
Markov map F . If b−1

n

∑n−1
j=0 ψσ ◦ F j →d σ̄

1/βG, then µY (|ψσ| > n) ∼ σ̄c0n
−β

where c0 > 0 is a constant given explicitly in terms of G.

Proof.
(a) Since F is Gibbs–Markov, the condition σ ∈ L2 ensures that n−1/2(σn − nσ̄)

converges in distribution (to a possibly degenerate normal distribution) and hence
that b−1

n (σn−nσ̄) converges in probability to zero. The result now follows from [MV20,
Theorem A.1]. (See [Gou07, Sar06] for related results.)
(b) Again using that F is Gibbs–Markov, this follows from [Gou10, Theorem 1.5].

�

Corollary 5.3. — Let G, bn, β and c0 be as in Lemma 5.2. Suppose thatn−1∑
j=0

h ◦ f jX − n
∫
X
h dµX


bn

→d G.

Then µY (ϕ > n) ∼ σ̄c0n
−β.

Proof. — Since ϕ = hσ, it follows from Lemma 5.2(a) thatn−1∑
j=0

ϕ ◦ F j − n
∫
Y
ϕdµY


bn

→d σ̄
1/βG.

By Lemma 5.2(b), µY (ϕ > n) ∼ σ̄c0n
−β. �

6. Piecewise smooth multidimensional nonMarkovian
nonuniformly expanding maps

In this section, we show how to combine the methods in this paper with a result
of Alves et al. [AFLV11] to treat a large class of multidimensional examples. In
particular, we obtain essentially optimal upper and lower bounds, as well as strong
statistical properties, for Hu–Vaienti maps [HV09].

6.1. Existence of Chernov–Markarian–Zhang structures in arbitrary
dimensions

Let M ⊂ Rk be compact. We consider local diffeomorphisms f : M → M with
finitely many branches. That is, there are disjoint open subsets U1, . . . , UK ⊂ M
with M = ⋃K

i=1 U i, and there exists η ∈ (0, 1) and for i = 1, . . . , K there exist
U ′i ⊂ Rk open with Ui ⊂ U ′i such that f |Ui extends to a C1+η-diffeomorphism from
U ′i onto its range.
Next we specify a compact first return set X ⊂M with intX = X. (We could take

X to be the closure of one of the Ui but this need not be the case.) For simplicity,
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we suppose that the boundaries of U1, . . . , UK and X are piecewise smooth (with
finitely many pieces). Let S0 ⊂ M denote the singularity set S0 = ∂X ∪ ⋃Ki=1 ∂Ui
for f .
Now define the first return time h : X → Z+ and first return map fX

= fh : X \ S → X \ S with singularity set

S =
{
x ∈ X : f jx ∈ S0 for some j = 0, . . . , h(x)− 1

}
∪ {h =∞}.

A result of Alves et al. [AFLV11] guarantees under very mild conditions that fX
is modelled by Young towers with superpolynomial tails if and only if fX has su-
perpolynomial decay of correlations. We verify these conditions for a large class of
nonuniformly expanding maps.
Define Xm = {x ∈ X \ S : h(x) = m}. Let ‖ ‖ denote the Euclidean norm on Rk

and on k × k matrices. We suppose that there are constants λ ∈ (0, 1), δ > 0 and
C, q > 1 such that

(i) Leb(x ∈ X : dist(x,S) 6 ε)� ε for all ε ∈ (0, 1).
(ii) ‖(DfX(x))−1‖ 6 min{λ,Cm−δ} and ‖DfX(x)‖ 6 Cmq for all x ∈ Xm,

m > 1.
(iii) ‖(D(f i)(f jx))−1‖ 6 Cmq for all x ∈ Xm, m > 1, and i, j > 0 with i+ j 6 m.
(iv) ‖f jx− f jy‖ 6 C‖x− y‖δmq for all x, y ∈ Xm with dist(x, y) < dist(x,S)/2,

m > 1, 0 6 j < m.

Remark 6.1. — If f is noncontracting (‖Df(x)v‖ > ‖v‖ for all x ∈ M , v ∈ Rd),
then (iii) is automatic with Cmq replaced by 1 and (iv) is automatic by (ii) with
δ = 1.

Lemma 6.2. — Suppose that f : M → M is a nonuniformly expanding map
satisfying conditions (i)–(iv). Let µ be an absolutely continuous mixing f -invariant
probability measure on M and define µX = µ(X)−1µ|X . Suppose further that

(v) dµX/dLeb ∈ Lr(X) for some r > 1,
(vi) For all Cη observables v : X → R, all w ∈ L∞(X), and all p > 0, there is a

constant C > 0 such that∣∣∣∣∫
X
v w ◦ fnX dµX −

∫
X
v dµX

∫
X
w dµX

∣∣∣∣ 6 Cn−p for all n > 1 and,

(vii) ∑m(logm)µX(Xm) <∞.
Then f possesses a Chernov–Markarian–Zhang structure and the map fX : X → X

is modelled by Young towers with superpolynomial tails.

Proof. — To prove that fX is modelled by Young towers with superpolynomial
tails, we apply [AFLV11, Theorem C]. Since there are some small inaccuracies in
the statement there, we refer to [AM19b, Theorem A.1] for a corrected version. It
suffices to verify that µX is an expanding measure and to verify conditions (C0)–(C3)
in [AM19b, Appendix A].
By condition (ii), log ‖(DfX)−1‖ 6 log λ < 0 and

(6.1)
∥∥∥DfX(x)−1v

∥∥∥ > C−1m−q for all x ∈ Xm, v ∈ TxX with ‖v‖ = 1,
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so | log ‖DfX(x)−1‖ | 6 logC + q logm on Xm. By (vii), log ‖(DfX)−1‖ is integrable
with respect to µX and

∫
X log ‖(DfX)−1‖ dµX 6 log λ < 0. This is the definition for

µX to be an expanding measure.
Assumption (i) is precisely condition (C0).
By (ii) and definition of S,

(6.2) dist(x,S) 6 Cm−δ diamM for all x ∈ Xm,m > 1.

By (6.2) and (ii),

dist(x,S)� λ−1 6 ‖DfX(x)v‖ � Cmq � dist(x,S)−q/δ,

for x ∈ Xm, v ∈ TxX with ‖v‖ = 1, verifying (C1).
For conditions (C2) and (C3), we consider a pair of points x, y ∈ M \ S with

dist(x, y) < dist(x,S)/2. In particular, x, y ∈ Xm for some m > 1 and f jx, f jy lie
in common open sets Ui(j) for each 0 6 j 6 m− 1.
On Xm, we have

log |detDfX | = log |detD(fm)| =
m−1∑
j=0

log |det(Df)| ◦ f j,

so for x, y ∈ Xm with d(x, y) < d(x,S)/2,

∣∣∣ log |detDfX(x)| − log |detDfX(y)|
∣∣∣

6
m−1∑
j=0

∣∣∣∣ log
∣∣∣det(Df)(f jx)

∣∣∣− log
∣∣∣det(Df)(f jy)

∣∣∣ ∣∣∣∣
�

m−1∑
j=0

∥∥∥f jx− f jy∥∥∥η � ‖x− y‖δηm1+qη � ‖x− y‖δη dist(x,S)−(1+qη)/δ,

by (6.2) and (iv). This verifies (C3). Also,

∣∣∣∣ log
∥∥∥DfX(x)−1

∥∥∥− log
∥∥∥DfX(y)−1

∥∥∥ ∣∣∣∣
6
∥∥∥DfX(x)−1 −DfX(y)−1

∥∥∥ / ∥∥∥DfX(x)−1
∥∥∥

� mq
∥∥∥DfX(x)−1 −DfX(y)−1

∥∥∥
by (6.1). On Xm we have (DfX)−1 = (D(fm))−1 = Am−1 · · ·A0 where Aj(x)
= (Df)(f jx)−1. Hence,
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∥∥∥DfX(x)−1 −DfX(y)−1
∥∥∥ = ‖Am−1(x) · · ·A0(x)− Am−1(y) · · ·A0(y)‖

6
m−1∑
i=0
‖Am−1(x) · · ·Ai+1(x)‖ ‖Ai(x)− Ai(y)‖ ‖Ai−1(y) · · ·A0(y)‖

6
m−1∑
i=0

∥∥∥∥(Dfm−i−1
) (
f i+1x

)−1
∥∥∥∥ ‖Ai(x)− Ai(y)‖

∥∥∥(Df i)(y)−1
∥∥∥

6 m2q
m−1∑
i=0
‖Ai(x)− Ai(y)‖ ,

by (iii). By (iv),

‖Ai(x)− Ai(y)‖ =
∥∥∥Df(f ix)−1 −Df(f iy)−1

∥∥∥� ∥∥∥f ix− f iy∥∥∥η � ‖x− y‖ηδmηq.

Hence by (ii),∣∣∣ log
∥∥∥DfX(x)−1

∥∥∥− log
∥∥∥DfX(y)−1

∥∥∥ ∣∣∣� m3q+ηq+1‖x− y‖ηδ.

�
∥∥∥DfX(x)−1

∥∥∥−(3q+ηq+1)/δ
‖x− y‖ηδ.

This verifies condition (C2).
Hence we conclude from [AM19b, Theorem A.1] that for any q > 1 the map

fX : X → X is modelled by a Young tower ∆rapid = Y σ with µY (σ > n) = O(n−q).
Finally, we note that the construction in [AFLV11] uses [ALP05, Main Theorem 1]

where it is made explicit that Y together with its partition elements a ∈ α are
diffeomorphic to open balls in Rk with the property that fσX maps each a diffeo-
morphically onto Y . In particular, the connected set f `Xa lies in one of the subsets
Xm for each 0 6 ` < σ(a) − 1, so h is constant on f `Xa. Hence f possesses a
Chernov–Markarian–Zhang structure. �

Remark 6.3. — In the situation of Lemma 6.2, suppose in addition that con-
dition (vi) is improved to stretched exponential decay of correlations and that
dµX/dLeb is bounded below. Then [AFLV11, Theorem C(2)] yields Young towers
∆rapid with stretched exponential tails. In particular, if the rate of decay of corre-
lations is exponential and dµX/dLeb is bounded below, then for every γ ∈ (0, 1

9),
there exists Y ⊂ X and c > 0 such that fX : X → X is modelled by a Young tower
Y σ with µY (σ > n) = O(e−cnγ ).
A standard argument (see for example [HV09, Theorem A and p. 1210]) shows

that dµX/dLeb is bounded below whenever f is noncontracting and topologically
exact.

6.2. Upper bounds and limit laws

Although the emphasis in this paper is on lower bounds, we obtain essentially
optimal upper bounds and many strong statistical properties as a consequence of
Lemma 6.2.
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Suppose that in the situation of Lemma 6.2, µX(h > n) = O(n−β) for some β > 1.
Then µY (ϕ > n) = O(n−(β−ε)) by Proposition 5.1(c) where ε > 0 is arbitrarily small.
Hence by [You99], we have the upper bound

ρv, w(n) = O
(
‖v‖H|w|∞ n−(β−1−ε)

)
for all v ∈ H(M), w ∈ L∞(M), n > 1.

By [DM15, GM14, MN08], large deviation estimates and moment bounds fol-
low from this upper bound for all β > 1. For β > 2, we obtain the following
properties. The central limit theorem (CLT) and weak invariance principle (WIP)
follow from [MN05]. For error rates (Berry–Esseen estimates) in the CLT, and the
local CLT, see [Gou05]. The almost sure invariance principle with rates follows
by [CDKM19, CM15, Kor18].
Homogenization (convergence of fast-slow systems to a stochastic differential

equation) when the fast dynamics is one of these maps f : M → M follows
from [CFK+19, GM13, KM16]. Convergence rates in the WIP and homogenization
are obtained in [AM19a].

6.3. Lower bounds

We continue to suppose that we are in the situation of Lemma 6.2 and that
µX(h > n) = O(n−β) for some β > 1. Let ε > 0. Again µY (ϕ > n) = O(n−(β−ε)) and
also γn = O(n−(β−ε)) by Proposition 3.2. Hence it follows from Theorem 3.1(a) that

ρv, w(n) = ϕ̄−1d
∑

j >n/d

µY (ϕ > jd)
∫
M
v dµ

∫
M
w dµ+O

(
n−(s−ε)

)
for all v ∈ H(X), w ∈ L∞(X), where s = min{2(β − 1), β}. By Theorem 3.1(b),
ρv, w(n) = O(n−(β−ε)) for all v ∈ H(X) with

∫
M v dµ = 0 and all w ∈ L∞(M).

If moreover, µX(h > n) ≈ n−β, then by Proposition 5.1(c, d),
n−(β−1+ε) � ρv, w(n)� n−(β−1−ε),

for all v ∈ H(X), w ∈ L∞(X) with nonzero mean.

6.4. Application to Hu–Vaienti maps

We continue to consider local diffeomorphisms f : M → M , where M ⊂ Rk

is compact, with finitely many branches as in Subsection 6.1. We now specialize
to intermittent maps with a neutral fixed point at 0 as described in Section 1.2.
These maps are piecewise C1+η for some η ∈ (0, 1) with finitely many branches,
noncontracting everywhere (so ‖Df(x)v‖ > ‖v‖ for all x ∈ Rk, v ∈ Rk), and
expanding everywhere except at 0 (so ‖Df(x)v‖ > ‖v‖ for all v ∈ Rk if and only if
x 6= 0).
The existence of absolutely continuous invariant probability measures for one-

dimensional intermittent maps was studied by [Tha80] when the maps are Markov
and by [Zwe98] in the nonMarkov case. In [HV09], a Banach space of quasi-Hölder
observables studied by [Kel85, Sau00] was used to establish existence of σ-finite
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absolutely continuous ergodic f -invariant measures µ on M for multidimensional
nonMarkov nonuniformly expanding maps. The cases µ(M) <∞ and µ(M) =∞ are
considered equally in [HV09]; here we focus on the case of finite measures. The results
in [HV09] require a delicate analysis taking into account poor distortion properties of
multidimensional nonuniformly expanding maps. In [HV19], the quasi-Hölder space
was used further to analyze upper and lower bounds on decay of correlations. Here
we show how to combine [HV09] and Lemma 6.2 to obtain the essentially optimal
results mentioned in Section 1.2.
To fix ideas, we focus on [HV19, Example 5.1], setting

f(x) = x
(
1 + |x|γ +O

(
|x|γ′

))
for x close to 0 where γ ∈ (0, k) and γ′ > γ. Recall that the domains of the
branches are denoted U1, . . . , UK and have piecewise smooth boundaries; we as-
sume that 0 ∈ intU1 and f−10 ∩ ⋃ ∂Uj = ∅. This means that [HV09, Theo-
rem A(Assumptions 1 and 2)] are satisfied. Also, we assume that f : M → M
is topologically exact. Our final assumption is a growth of complexity condition,
[HV09, Theorem A(Assumption 3)], which is too technical to reproduce here. As
pointed out in [HV19, Remark 5.2] it follows from [Sau00, Lemma 2.1] that we can
arrange for Assumption 3 to be satisfied by choosing f to be sufficiently expanding
outside of a suitable neighborhood of 0.
Choose an open ball R with 0 ∈ R ⊂ U1 such that R̄ ⊂ fR and fR ⊂ U1. Set

X = M \R.

Proposition 6.4. — There is a unique absolutely continuous invariant proba-
bility measure µX on X. The assumptions of Lemma 6.2 are satisfied and µX(h >
n) ≈ n−β where β = k/γ.

Proof. — The singular set ∂S is a countable union of piecewise smooth subman-
ifolds limiting on finitely many piecewise smooth submanifolds, so condition (i) is
satisfied.
Since the first return set X is bounded away from 0, it is immediate from non-

contractivity on M and uniform expansion on X that ‖(DfX)−1‖ 6 λ < 1. The
remaining estimates in (ii) are established in [HV09, HV19]. (A big advantage here
is that δ can be taken arbitrarily small and q arbitrarily large, so the fine details
in [HV09, HV19] such as unbounded distortion are not an issue.) Since f is noncon-
tracting, conditions (iii) and (iv) hold by Remark 6.1.
A key step in [HV09] is to establish quasicompactness of the transfer operator

for the first return map fX : X → X. [HV09, Theorem A(Assumptions 1–3)] are
mentioned explicitly above. As noted in [HV19, Example 5.1], Assumption 4 is
automatic. Hence [HV09, Theorem A] guarantees the existence of an absolutely
continuous invariant probability measure µX on X. The density is quasi-Hölder and
hence lies in L∞(X) verifying condition (v) of Lemma 6.2. By Remark 6.3, the
density is also bounded below and hence µX is unique.
Moreover, [HV09, Theorem A] establishes quasicompactness in the quasi-Hölder

space and hence µX is mixing up to a finite cycle. Since the support of a nonvan-
ishing quasi-Hölder function has nonempty interior [Sau00, Lemma 3.1], it follows
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from topological exactness that µX is mixing. Condition (vi) is now an immediate
consequence of quasicompactness.
By [HV09], each Xm is a finite union of approximately spherical shells bounded by

hypersurfaces Sm and Sm+1 where Sm is approximately a sphere of radius ≈ m−1/γ.
It follows that µX(Xm)� Leb(Xm)� m−k/γ so condition (vii) is satisfied.
By Remark 6.3, topological exactness ensures that µX(h > n) ≈ Leb(h > n).

Moreover, {h > n} = ⋃
m>nXm is a finite union of balls of radius ≈ n−1/γ so

µX(h > n) ≈ n−β. �

Hence for γ ∈ (0, k), we can apply the results in Subsections 6.2 and 6.3 to
obtain the upper and lower bounds in (1.4), as well as the limit laws mentioned in
Section 6.2.

7. Two-sided version of the main result

In this section, we extend Theorem 3.1 to invertible maps. A two-sided analogue of
the Chernov–Markarian–Zhang structure is described in Subsection 7.1. The main
result of this section, Theorem 7.4, is stated in Subsection 7.2 and reformulated for
towers in Subsection 7.3. In Subsection 7.4, we show how to approximate two-sided
observables by one-sided observables. In Subsection 7.5, we complete the proofs.

7.1. Preliminaries

We describe a two-sided (invertible) analogue of the structures discussed in Sec-
tion 2. Throughout, f : M → M , fX : X → X, f∆ : ∆ → ∆ and F : Y → Y
are all two-sided versions of the maps from Section 2, and the one-sided versions
are denoted F̄ : Ȳ → Ȳ and so on. We continue to write ϕ̄ =

∫
Y ϕdµY but as will

become clear this does not cause any confusion.

Two-sided Gibbs–Markov maps

Let (Y, d) be a bounded metric space with Borel probability measure µY and let
F : Y → Y be an ergodic measure-preserving transformation. Let F̄ : Ȳ → Ȳ be a
full-branch Gibbs–Markov map with partition α and ergodic invariant probability
measure µ̄Y .
We suppose that there is a measure-preserving semiconjugacy π̄ : Y → Ȳ , so

π̄ ◦ F = F̄ ◦ π̄ and π̄∗µY = µ̄Y . The separation time on Ȳ lifts to a separation time
on Y given by s(y, y′) = s(π̄y, π̄y′) for y, y′ ∈ Y . Suppose that there exist constants
C > 0, θ ∈ (0, 1) such that

(7.1) d (F ny, F ny′) 6 C
(
θn + θs(y, y

′)−n
)

for all y, y′ ∈ Y, n > 1.

Then we call F : Y → Y a two-sided Gibbs–Markov map.
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Two-sided Young towers

Let F : Y → Y be a two-sided Gibbs–Markov map on (Y, µY ) and let ϕ : Y → Z+

be an integrable function that is constant on π̄−1a for each a ∈ α. In particular, such
a return time ϕ is well-defined on Ȳ . Define the one-sided Young tower ∆̄ = Ȳ ϕ and
tower map f̄∆ : ∆̄ → ∆̄ as in Section 2. Using F : Y → Y instead of F̄ : Ȳ → Ȳ ,
we also define the two-sided Young tower ∆ = Y ϕ and tower map f∆ : ∆ → ∆.
We obtain ergodic invariant probability measures µ∆ = (µY × counting)/ϕ̄ and
µ̄∆ = (µ̄Y × counting)/ϕ̄ on ∆ and ∆̄.
The projection π̄ : Y → Ȳ extends to π̄ : ∆ → ∆̄ with π̄(y, `) = (π̄y, `). This

defines a measure-preserving semiconjugacy between f∆ and f̄∆.
Now suppose that f : M →M is an ergodic measure-preserving transformation on

a probability space (M,µ), and that Y ⊂M is measurable with µ(Y ) > 0. Suppose
that F : Y → Y is a two-sided Gibbs–Markov map with respect to a probability
µY on Y , and that ϕ : Y → Z+ is a return time as above. Form the tower ∆ = Y ϕ

and tower map f∆ : ∆ → ∆. The map πM : ∆ → M , πM(y, `) = f `y defines a
semiconjugacy between f∆ and f . We require moreover that (πM)∗µ∆ = µ. Then we
say that f is modelled by a two-sided Young tower.

Two-sided Chernov–Markarian–Zhang structure

Let (M,d) be a bounded metric space with Borel probability measure µ and let
f : M →M be an ergodic and mixing measure-preserving transformation. Suppose
that Y ⊂ X ⊂ M are Borel sets with µ(Y ) > 0. Define the first return time
h : X → Z+ and first return map fX = fh : X → X.
We require that fX : X → X is modelled by a two-sided Young tower ∆rapid = Y σ

with return time σ : Y → Z+ and return map F = fσX : Y → Y . Here, F = fσX : Y →
Y is a two-sided Gibbs–Markov map with ergodic invariant probability measure µY
and partition α such that σ is constant on partition elements. We require in addition
that h is constant on f `X π̄−1a for all a ∈ α, 0 6 ` 6 σ(a)− 1.
Define the induced return time ϕ = hσ : Y → Z+ as in (2.2). Then ϕ is an

integrable return time (constant on π̄−1a for a ∈ α). In particular, f : M → M is
modelled by a Young tower ∆ = Y ϕ with the same two-sided Gibbs–Markov map
F = fσX = fϕ.
We say that f : M → M satisfying these assumptions possesses a two-sided

Chernov–Markarian–Zhang structure.
Remark 7.1. — Young [You98] introduced Young towers with exponential tails

as a general method for dealing with diffeomorphisms with singularities; the initial
landmark application was to prove exponential decay of correlations for planar finite
horizon dispersing billiards. Chernov [Che99] simplified the construction of exponen-
tial Young towers and used this to prove exponential decay of correlations for planar
dispersing billiards with infinite horizon. Then Young [You99] studied examples with
subexponential decay of correlations using Young towers with subexponential tails.
Markarian [Mar04], noting that Chernov’s simplification no longer applies in the
subexponential case, devised the method outlined in this section: namely to construct
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a first return map for which Chernov [Che99] applies. This was used to prove the de-
cay of correlations bound O(1/n) for Bunimovich stadia. The method was extended
and simplified by Chernov & Zhang [CZ05a] who applied it to a large class of billiard
examples. Subsequent applications of the method include [CM07, CZ05b, Zha17b].
Remark 7.2. — We have omitted much of the structure often associated with

Young towers, mentioning only those properties required in the sequel. For instance,
we have not made any explicit mention of a product structure, though we make use
of condition (7.1) which is a consequence. Similarly, we have not made explicit the
quotienting procedure (along local stable leaves) that passes from F to F̄ .

Two-sided dynamically Hölder observables

Suppose that f : M →M admits a two-sided Chernov–Markarian–Zhang structure
as above. Fix θ ∈ (0, 1). For v : M → R, define

‖v‖H = |v|∞ + |v|H, |v|H = sup
y, y′ ∈ Y, y 6= y′

sup
06 `<ϕ(y)

|v(f `y)− v(f `y′)|
d(y, y′) + θs(y, y′)

.

We say that v is dynamically Hölder if ‖v‖H < ∞ and denote by H(M) the space
of such observables. Write H(X) = {v ∈ H(M) : supp v ⊂ X}.
Again, it is standard that Hölder observables are dynamically Hölder for the classes

of dynamical systems of interest in this paper:
Proposition 7.3. — Let η ∈ (0, 1] and let d0 be a bounded metric on M . Let

Cη(M) be the space of observables that are η-Hölder with respect to d0. Suppose
that there exist K > 0, γ0 ∈ (0, 1) such that

d0
(
f `y, f `y′

)
6 K

(
d0(y, y′) + γ

s(y, y′)
0

)
for all y, y′ ∈ Y, 0 6 ` 6 ϕ(y)− 1 .

Then Cη(M) ⊂ H(M) where we may choose any θ ∈ [γη0 , 1) and d = dη
′

0 for any
η′ ∈ (0, η].
Proof. — Let v ∈ Cη(M), y, y′ ∈ Y , 0 6 ` < ϕ(y)− 1. Then∣∣∣v (f `y)− v (f `y′)∣∣∣ 6 |v|Cηd0

(
f `y, f `y′

)η
6 Kη|v|Cη

(
d0(y, y′)η + γ

ηs(y,y′)
0

)
� |v|Cη

(
d(y, y′) + θs(y, y

′)
)
.

Hence |v|H � |v|Cη and it follows that v ∈ H(M). �

7.2. Statement of the main result

As in Section 3, we provide an abstract result for maps f : M → M with a
Chernov–Markarian–Zhang structure under the assumption that µY (ϕ > n) =
O(n−β′) for some β′ > 1. In this situation it follows from Young [You99] that
ρv, w(n) = O(n−(β′−1)) for dynamically Hölder observables. (The result in [You99]
is formulated for one-sided systems; see [KKM19, Theorem 2.10] or [MT14, Appen-
dix B] for the two-sided case.) We obtain a lower bound for dynamically Hölder
observables supported in X.
Define σn, γn as in (3.1) and ζβ′ as in (1.3).
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Theorem 7.4. — Let f : M →M be a map with a two-sided Chernov–Marka-
rian–Zhang structure, and suppose that µY (ϕ > n) = O(n−β′) for some β′ > 1. Then
there is a constant C > 0 such that for all n > 1,∣∣∣∣∣∣ρv,w(n)− ϕ̄−1 ∑

j>n

µY (ϕ > j)
∫
M
v dµ

∫
M
w dµ

∣∣∣∣∣∣(a)

6 C‖v‖H‖w‖H(γ[n/3] + ζβ′(n)) for all v, w ∈ H(X),

|ρv, w(n)| 6 C‖v‖H‖w‖Hγ[n/3] for all v, w ∈ H(X) with
∫
M
v dµ = 0.(b)

Remark 7.5. — The classical Smale–Williams solenoid construction can be adap-
ted (see for example [AP08, Section 5] and [MV16, Example 4.2]) to construct inter-
mittent maps that are the invertible analogue of the Hu–Vaienti maps in Section 6.4.
(The constructions in [AP08, MV16] are written down for one-dimensional maps but
apply equally to multidimensional maps.) The resulting solenoidal intermittent maps
fall within the two-sided Chernov–Markarian–Zhang framework and have stable and
unstable directions of any specified dimension. Our results yield essentially optimal
upper and lower bounds on decay of correlations for these examples. Again, the lower
bounds are realized by Hölder observables that are supported away from the neutral
fixed point.

7.3. Tower reformulation

Let d = gcd{ϕ(a) : a ∈ α}. As in Section 4.1, we replace the tower ∆ = Y ϕ

by a mixing tower ∆ = Y Φ where Φ = d−1ϕ. Again we have a measure-preserving
semiconjugacy πM(y, `) = g`y between (∆, f∆, µ∆) and (M, g, µ) where g = fd. We
consider observables v : M → R supported on Xd = X ∪ · · · ∪ f−(d−1)X and the
corresponding lifted observables ṽ = v ◦ πM : ∆→ R supported in X̂ = π−1

M X.
Fix θ ∈ (0, 1) and define

(7.2) ‖ṽ‖θ = |ṽ|∞ + |ṽ|θ, |ṽ|θ = sup
y, y′ ∈Y, y 6= y′

sup
06 `6Φ(y)−1

|ṽ(y, `)− ṽ(y′, `)|
d(y, y′) + θs(y, y′)

.

Let Fθ(X̂) denote the space of observables ṽ supported in X̂ with ‖ṽ‖θ <∞.
Given ṽ, w̃ ∈ L∞(∆), define

ρ∗ṽ, w̃(n) =
∫

∆
ṽ w̃ ◦ fn∆ dµ∆.

The counterpart of Theorem 4.2 is:
Theorem 7.6. — There is a constant C > 0 such that for all n > 1,

∣∣∣∣∣∣ρ∗ṽ, w̃(n)−
1 + Φ̄−1 ∑

j>n

µY (Φ > j)
∫

∆
ṽ dµ∆

∫
∆
w̃ dµ∆

∣∣∣∣∣∣(a)

6 C‖ṽ‖θ‖w̃‖θ
(
γ[n/2]d + ζβ′(n)

)
for all ṽ, w̃ ∈ Fθ(X̂),∣∣∣ρ∗ṽ, w̃(n)

∣∣∣ 6 C‖ṽ‖θ‖w̃‖θ γ[n/2]d for all ṽ, w̃ ∈ Fθ(X̂) with
∫

∆
ṽ dµ∆ = 0.(b)
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Theorem 7.4 is a direct consequence of Theorem 7.6 in exactly the same way that
Theorem 3.1 was a direct consequence of Theorem 4.2. Hence we omit the details
except to mention that we make use of the estimate γ[n/(2d)]d � γ[n/3].
The key steps in the proof of Theorem 7.6 are contained in the following result.

Lemma 7.7. — There is a constant C > 0 such that for all n > 1:
(a) |ρ∗1

X̂
, w̃

(n)| 6 C‖w̃‖θ(σ[n/2]d + ζβ′(n)) for all w̃ ∈ Fθ(X̂) with
∫

∆ w̃ dµ∆ = 0,

(b) |ρ∗
ṽ, w̃

(n)| 6 C‖ṽ‖θ‖w̃‖θ γ[n/2]d for all ṽ, w̃ ∈ Fθ(X̂) with
∫

∆ ṽ dµ∆ = 0.

The proof of Lemma 7.7 takes up most of the remainder of this section. Assuming
this result, we can complete the proof of Theorem 7.6.
Proof of Theorem 7.6. — Let a = µ∆(X̂)−1 ∫

∆ ṽ dµ∆, b = µ∆(X̂)−1 ∫
∆ w̃ dµ∆ and

define v0 = ṽ − a1
X̂

and w0 = w̃ − b1
X̂
. Then

∫
∆ v0 dµ∆ =

∫
∆ w0 dµ∆ = 0 and

ρ∗ṽ, w̃ = ρ∗a1
X̂
, b1

X̂
+ ρ∗a1

X̂
, w0 + ρ∗v0, w̃

.

Note that

ρa1
X̂
, b1∗

X̂
(n) =

∫
∆
a1

X̂
b1
X̂
◦ fn∆ dµ∆ =

∫
∆̄
a1Z̄ b1Z̄ ◦ f̄n∆ dµ̄∆

so by Theorem 4.2(a),∣∣∣∣∣∣ρ∗a1
X̂
, b1

X̂
(n)−

1 + Φ̄−1 ∑
j >n

µY (Φ > j)
∫

∆
ṽ dµ∆

∫
∆
w̃ dµ∆

∣∣∣∣∣∣
� |ṽ|∞|w̃|∞ (γnd + ζβ′(n)) .

By Lemma 7.7, ∣∣∣∣ρ∗a1
X̂
, w0(n)

∣∣∣∣� |ṽ|∞‖w̃‖θ (σ[n/2]d + ζβ′(n)
)

and ∣∣∣ρ∗v0, w̃
(n)

∣∣∣� ‖ṽ‖θ‖w̃‖θγ[n/2]d.

Part (a) follows from these combined estimates.
If in addition,

∫
∆ ṽ dµ∆ = 0, then ρ∗

ṽ, w̃
(n) = ρ∗

v0, w̃
(n) yielding part (b). �

Proposition 7.8. — Let p, p′ ∈ ∆ with π̄p = π̄p′. Then p ∈ X̂ if and only if
p′ ∈ X̂.

Proof. — Write p = (y, `), p′ = (y′, `) where π̄y = π̄y′ and ` ∈ {0, . . . , Φ(y)− 1}.
Since h is the first return time under f to X, we have g`y ∈ Xd if and only if

`d 6
k−1∑
j=0

h
(
f jXy

)
< (`+ 1)d for some k = 0, . . . , σ(a)− 1.

Now use that h is constant on f jX π̄−1(π̄y). �
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By Proposition 7.8, we can write X̂ = π̄−1Z̄ where Z̄ = π̄X̂ ⊂ ∆̄. By Proposi-
tion 4.1,

(7.3)
Φ(ȳ)−1∑
`=0

1Z̄(ȳ, `) 6 σ(ȳ) for all ȳ ∈ Ȳ .

7.4. Approximation by one-sided observables

In this subsection, we show how to approximate two-sided observables by one-
sided observables, broadly following the method used in [MT14, Appendix B] which
was in turn based on a private communication by Gouëzel. Using this we prove
Lemma 7.7(b).
Extend the separation time s on Y to ∆ by setting s((y, `), (y′, `′)) = s(y, y′) when

` = `′ and 0 otherwise. Let ψn = ∑n−1
j=0 1Y ◦ f j∆ be the number of entries to Y . For

ṽ ∈ L∞(∆), we approximate ṽ ◦ fn∆ by
ṽn : ∆→ R, ṽn(p) = inf {ṽ ◦ fn∆(q) : s(p, q) > 2ψn(p)} , n > 1.

Let L : L1(∆̄)→ L1(∆̄) denote the transfer operator for f̄∆.
Proposition 7.9. — The function ṽn lies in L∞(∆) and projects down to an

observable v̄n ∈ L∞(∆̄). Moreover, there exists C > 0 such that for all ṽ ∈ H(∆),
n > 1,

(a) |v̄n|∞ = |ṽn|∞ 6 |ṽ|∞.
(b) If supp ṽ ⊂ X̂, then supp ṽn ⊂ f−n∆ X̂ and suppLnv̄n ⊂ Z̄.
(c) |ṽ ◦ fn∆ − ṽn| 6 C|ṽ|θ θψn .
(d) |(Lnv̄n)(p̄1)− (Lnv̄n)(p̄2)| 6 C‖ṽ‖θ θs(p̄1, p̄2) for all p̄1, p̄2 ∈ ∆̄.
Proof. — If s(p, p′) > 2ψn(p), then ṽn(p) = ṽn(p′). It follows that ṽn is piecewise

constant on a measurable partition of ∆, and hence is measurable, and that v̄n is
well-defined. Parts (a) and (b) are immediate.
Let p = (y, `) ∈ ∆. Then

|ṽ ◦ fn∆(p)− ṽn(p)| = |ṽ ◦ fn∆(p)− ṽ ◦ fn∆(q)|
where q = (z, `) is such that s(p, q) > 2ψn(p). Now, fn∆p = (Fψn(p)y, `1) where
`1 = `+ n− Φψn(p)(p) and similarly fn∆q = (Fψn(p)z, `1). (Here, Ψk = ∑k−1

j=0 Ψ ◦ F j.)
By definition of |ṽ|θ and (7.1),

|ṽ ◦ fn∆(p)− ṽn(p)| =
∣∣∣ṽ (Fψn(p)y, `1

)
− ṽ

(
Fψn(p)z, `1

)∣∣∣
6 |ṽ|θ

(
d
(
Fψn(p)y, Fψn(p)z

)
+ θs(Fψn(p)y, Fψn(p)z)

)
� |ṽ|θ

(
θψn(p) + θs(y,z)−ψn(p)

)
� |ṽ|θθψn(p).

This proves part (c).
To prove (d), recall that (Lnv̄n)(p̄) = ∑

f̄n∆q̄=p̄
ξn(q̄)v̄n(q̄) where ξ is the weight

function. Write
(Lnv̄n)(p̄1)− (Lnv̄n)(p̄2) = I1 + I2
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where
I1 =

∑
f̄n∆ q̄1=p̄1

(ξn(q̄1)− ξn(q̄2)) v̄n(q̄2), I2 =
∑

f̄n∆ q̄1=p̄1

ξn(q̄1) (v̄n(q̄1)− v̄n(q̄2)) .

As usual, we pair up preimages so that
(7.4) s(q̄1, q̄2) = ψn(q̄1) + s(p̄1, p̄2).
A standard argument shows that |ξn(q̄1)− ξn(q̄2)| � ξn(q̄1)θs(p̄1, p̄2). Hence,

|I1| � |ṽ|∞ θs(p̄1, p̄2).

Next, choose qj ∈ ∆ that project to q̄j and write
v̄n(q̄1)− v̄n(q̄2) = ṽ ◦ fn∆(q̂1)− ṽ ◦ fn∆(q̂2),

where q̂1, q̂2 ∈ ∆ satisfy
(7.5) s(q̂j, qj) > 2ψn(q̄j) = 2ψn(q̂j).
As in part (c),
(7.6) |ṽ ◦ fn∆(q̂1)− ṽ ◦ fn∆(q̂2)| � |ṽ|θ

(
θψn(q̂1) + θs(q̂1, q̂2)−ψn(q̂1)

)
.

Since v̄n(q̄1) = v̄n(q̄2) if s(q1, q2) > 2ψn(q̄1), we may suppose without loss that
s(q1, q2) 6 2ψn(q̄1) = 2ψn(q̂1).

Then it follows from (7.4) that
(7.7) ψn(q̂1) > s(q1, q2)− ψn(q̄1) = s(p̄1, p̄2).
By (7.4), (7.5) and (7.7),
s(q̂1, q̂2) > min {s(q1, q2), s(q̂1, q1), s(q̂2, q2)} > min {ψn(q̄1) + s(p̄1, p̄2), 2ψn(q̄1)}

> ψn(q̄1) + s(p̄1, p̄2).

Substituting this and (7.7) into (7.6), |v̄n(q̄1)− v̄n(q̄2)| � |ṽ|θθs(p̄1, p̄2). Hence
|I2| � |ṽ|θ θs(p̄1, p̄2)

completing the proof of Proposition 7.9. �
We continue to suppose that µY (ϕ > n) = O(n−β′) for some β′ > 1 with σn defined

as in (3.1). Define the operators R(n) : L∞(Ȳ )→ L∞(Ȳ ),
R(n)u = Ln

(
1{Φ=n}u

)
= R

(
1{Φ=n}u

)
, n > 1.

Using (2.1), a standard calculation [Gou04, Sar02] yields:

Proposition 7.10. — There exists C > 0 such that
|R(n)|L∞(Ȳ ) 6 CµY (Φ = n)

and
|(R(n)1Ȳ ) (y)− (R(n)1Ȳ )(y′)| 6 CµY (Φ = n)θs(y, y′)

for all y, y′ ∈ Ȳ , n > 1.

Lemma 7.11. — There exists C > 0 such that |
∫

∆̄ θ
ψn1Z̄ ◦ f̄n∆ dµ̄∆| 6 Cσnd and

|
∫
∆̄ 1Ȳ θψn dµ̄∆| 6 Cn−β

′ for all n > 1.
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Proof. — Define Lθ : L1(∆̄) → L1(∆̄) by Lθu = L(θ1Y u). Then Lnθu = Ln(θψnu)
and ∣∣∣θψn 1Z̄ ◦ fn∆

∣∣∣
1

=
∫

∆̄
Lnθψn 1Z̄ dµ̄∆ =

∫
∆̄

1Z̄Lnθ1 dµ̄∆.

Similarly, |1Y θψn|1 =
∫
∆̄ L

n
θ1Ȳ dµ̄∆. Hence it suffices to show that |1Z̄Lnθ1|1 � σnd

and |Lnθ1Ȳ |1 � n−β
′ .

In analogy with Section 4.2, we define the renewal operators Rθ(n), Tθ(n) : L∞(Ȳ )
→ L∞(Ȳ ),

Rθ(n)u = Lnθ
(
1{Φ=n}u

)
= θR(n)u, n > 1, Tθ(n)u = 1YLnθ (1Y u), n > 0,

and the corresponding Fourier series R̂θ(z), T̂θ(z) : L∞(Ȳ )→ L∞(Ȳ ), for z ∈ D,

R̂θ(z) = θ
∞∑
n=1

R(n)zn, T̂θ(z) =
∞∑
n=0

Tθ(n)zn.

Again, T̂θ = (I − R̂θ)−1 on D. Moreover, the spectral radius of R̂θ(z) on L∞(Ȳ ) is at
most θ for z ∈ D, so I − R̂θ(z) is invertible as an operator on L∞(Ȳ ) for all z ∈ D.
By Proposition 7.10, |R(n)|L∞(Ȳ ) � n−β

′ . It follows from [Gou05, Theorem A.3] that
|Tθ(n)|L∞(Ȳ ) � n−β

′ .
Next, as in [Gou05, Equation (11)], we have the decomposition(2)

Lnθ = C(n) +Dθ(n), Dθ(n) = A(n) ? Tθ(n) ? Bθ(n),
where
A(n) : L∞(Ȳ )→ L1(∆̄), Bθ(n) : L∞(∆̄)→ L∞(Ȳ ), C(n) : L∞(∆̄)→ L1(∆̄),

are given by

(A(n)u)(y, `) =

u(y) ` = n

0 else
, (C(n)u)(y, `) =

u(y, `− n) ` > n

0 else
,

and
(Bθ(n)u)(y) = θ

∑
a∈α

ξ(ya) 1{Φ(a)>n} u(ya, Φ(a)− n).

Here ξ satisfies (2.1). Hence∫
∆̄
|A(n)u| dµ̄∆ 6 |u|∞µ̄∆ {(y, n) : y ∈ Y } = Φ̄−1|u|∞µY (Φ > n),

and
|Bθ(n)u|∞ � |u|∞

∑
a∈α

µY (a)1{Φ(a)>n} = |u|∞ µY (Φ > n).

In other words,
|A(n)|L∞(Ȳ )7→L1(∆̄) 6 µY (Φ > n), |Bθ(n)|L∞(∆̄) 7→L∞(Ȳ ) � µY (Φ > n).

(2)The notation here, which is chosen to mimic that in [Gou05], is local to the proof of this Lemma
and should not be confused with similar notation elsewhere in the paper.
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Combining this with the estimate for Tθ(n) we obtain |Dθ(n)1|1 � n−β
′ . In particular,

|1Z̄Dθ(n)1|1 � n−β
′ and |Dθ(n)1Ȳ |1 � n−β

′
.

Finally,
|(C(n)u)(y, `)| = 1{`>n}|u(y, `− n)| 6 1{Φ(y)>n}|u|∞,

so

|1Z̄C(n)1|1 6 Φ̄−1
∫
Ȳ

1{Φ(y)>n}

Φ(y)−1∑
`=0

1Z̄(y, `) dµ̄Y 6 Φ̄−1
∫
Ȳ

1{Φ>n}σ dµ̄Y = Φ̄−1σnd

by (7.3). Also C(n)1Ȳ ≡ 0. This completes the proof of Lemma 7.11. �

Corollary 7.12. — There exists C > 0 such that
|ṽ ◦ fn∆ − ṽn|1 6 C|ṽ|θσnd for all ṽ ∈ Fθ(X̂), n > 1.

Proof. — Note that θψn is well-defined on ∆̄. By Proposition 7.9(b, c),∫
∆
|ṽ ◦ fn∆ − ṽn| dµ∆ � |ṽ|θ

∫
∆
θψn 1

X̂
◦ fn∆ dµ∆ = |ṽ|θ

∫
∆̄
θψn 1Z̄ ◦ f̄n∆ dµ̄∆.

Hence the result follows from Lemma 7.11. �

Proof of Lemma 7.7(b). — For k > 1, let ak = µ∆(X̂)−1 ∫
∆ ṽk dµ∆. Write

ρ∗
ṽ,w̃

(n) =
∫

∆ ṽ ◦ fk∆ w̃ ◦ fk+n
∆ dµ∆ = I1(k, n) + I2(k, n) + I3(k, n) + I4(k, n), where

I1(k, n) =
∫

∆

(
ṽ ◦ fk∆ − ṽk

)
w̃ ◦ fk+n

∆ dµ∆,

I2(k, n) =
∫

∆
ṽk
(
w̃ ◦ fk∆ − w̃k

)
◦ fn∆ dµ∆,

I3(k, n) = µ∆(X̂)−1
∫

∆
ṽk dµ∆

∫
∆

1
X̂
◦ fk w̃k ◦ fn∆ dµ∆,

I4(k, n) =
∫

∆

(
ṽk − ak1X̂ ◦ f

k
∆

)
w̃k ◦ fn∆ dµ∆.

By assumption,
∫

∆ ṽ dµ∆ = 0. Hence
∫

∆ ṽk dµ∆ =
∫

∆(ṽk − ṽ ◦ fk∆) dµ∆. By Corol-
lary 7.12,
|I1(k, n)| � |ṽ|θ|w̃|∞σkd, |I2(k, n)| � |ṽ|∞|w̃|θσkd, |I3(k, n)| � |ṽ|θ|w̃|∞σkd.
Now,

(7.8) I4(k, n) =
∫

∆̄

(
v̄k − ak1Z̄ ◦ f̄k∆

)
w̄k ◦ f̄n∆ dµ̄∆ =

∫
∆̄
uk w̄k ◦ f̄n−k∆ dµ̄∆

where
uk = Lk

(
v̄k − ak1Z̄ ◦ f̄k∆

)
= Lkv̄k − ak1Z̄ .

Note that I4 is defined on ∆̄ and uk is supported in Z̄ (by Proposition 7.9(b)) with∫
∆̄ uk dµ̄∆ = 0. Hence in the notation of Section 4.1, I4(k, n) = ρ∗uk, w̄k(n − k), and
by Theorem 4.2(b),

|I4(k, n)| � ‖uk‖θ|w̄k|∞γ(n−k)d.

By Proposition 7.9(a), |uk|∞ 6 2|ṽ|∞ and |w̄k|∞ 6 |w̃|∞. The same argument as in
the proof of Proposition 7.8 shows that 1Z̄(y, `) = 1Z̄(y′, `) whenever s(y, y′) > 1
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(so y, y′ lie in the same partition element). Hence |1Z̄ |θ 6 2. By Proposition 7.9(d),
|uk|θ 6 |Lkv̄k|θ + |ak||1Z̄ |θ � ‖ṽ‖θ. Hence |I4(k, n)| � ‖ṽ‖θ|w̃|∞γ(n−k)d.
The combined estimates for I1, I2, I3, I4 give |ρ∗

ṽ, w̃
(n)| � ‖ṽ‖θ‖w̃‖θ(σkd + γ(n−k)d).

Taking k = [n/2] yields the desired result. �

7.5. Completion of the proof of Theorem 7.4

It remains to prove Lemma 7.7(a). There is the complication that approximation
of observables w̃ supported on X̂ leads to one-sided observables w̃n that are not
supported on X̂. Hence Theorem 4.2(a) is not directly applicable. The main new
idea for dealing with this is the following:

Lemma 7.13. — There is a constant C > 0 such that∣∣∣∣∣∣
∫
Ȳ

Φ(y)−1∑
`=0

1{`>n}w̄k(y, `) dµ̄Y

∣∣∣∣∣∣ 6 C‖w̃‖θ
(
σkd + n−β

′
kβ
′
ζβ′(k)

)

for all w̃ ∈ Fθ(X̂) with
∫
∆ w̃ dµ∆ = 0, n > k > 1.

Proof. — Write
∫
Ȳ

∑Φ(y)−1
`=0 1{`>n}w̄k(y, `) dµ̄Y = B1 +B2 where

B1 =
∫
Y

Φ−1∑
`=0

1{`>n}
(
w̃k − w̃ ◦ fk∆

)
(·, `) dµY ,

B2 =
∫
Y

Φ−1∑
`=0

1{`>n}w̃ ◦ fk∆(·, `) dµY .

By Corollary 7.12,

|B1| 6 Φ̄
∫

∆

∣∣∣w̃k − w̃ ◦ fk∆∣∣∣ dµ∆ � |w̃|θ σkd.

Write B2 = B′2 +B′′2 where

B′2 =
∫
Y

1{Φ>n}

Φ−k−1∑
`=0

1{`>n}w̃ ◦ fk∆(·, `) dµY ,

B′′2 =
∫
Y

1{Φ>n}

Φ−1∑
`=Φ−k

1{`>n}w̃ ◦ fk∆(·, `) dµY .

Since w̃ = w̃1
X̂

and using (7.3),

|B′2| 6 |w̃|∞
∫
Ȳ

Φ−1∑
`=0

1{`>k+n}1Z̄(·, `) dµ̄Y 6 |w̃|∞
∫
Ȳ

1{Φ>k}

Φ−1∑
`=0

1Z̄(·, `) dµ̄Y

6 |w̃|∞
∫
Ȳ

1{Φ>k}σ dµ̄Y = |w̃|∞σkd.
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Next,

B′′2 =
∫
Y

1{Φ>n}

Φ−1∑
`=Φ−k

1{`>n}w̃ ◦ f `+k∆ (·, 0) dµY

=
∫
Y

1{Φ>n}

Φ+k−1∑
j=Φ

1{j>k+n}w̃ ◦ f j∆(·, 0) dµY

=
∫
Y

1{Φ>n}

k−1∑
j=0

1{j >k+n−Φ}w̃ ◦ f j∆(F ·, 0) dµY = E1 + E2

where

E1 =
∫
Y

k−1∑
j=0

1{Φ>k+n−j}
(
w̃ ◦ f j∆ − w̃j

)
(F ·, 0) dµY ,

E2 =
∫
Y

k−1∑
j=0

1{Φ>k+n−j}w̃j(F ·, 0) dµY .

By Proposition 7.9(c),

|E1| � |w̃|θ
k−1∑
j=0

∫
Y

1{Φ>n}θ
ψj◦F dµY = |w̃|θ

k−1∑
j=0

∫
Ȳ

Ψn θ
ψj dµ̄Y ,

where Ψn = R1{Φ>n}. By Proposition 7.10 and Lemma 7.11,∫
Ȳ

Ψn θ
ψj dµ̄Y 6 |Ψn|∞

∫
∆̄

1Ȳ θψj dµ̄∆ � µY (Φ > n)j−β′ .

Hence |E1| � |w̃|θµY (Φ > n).
It remains to deal with E2. Now∫
Y

1{Φ>k+n−j}w̃j(F ·, 0) dµY =
∫
Ȳ

1{Φ>k+n−j}w̄j(F̄ ·, 0) dµ̄Y =
∫
Ȳ

Ψk+n−jw̄j(·, 0) dµ̄Y .

Define ūn : ∆̄→ R, un : ∆→ R,

ūn(y, `) =

Ψn(y) ` = 0
0 ` > 0

, un = ūn ◦ π̄.

Then ∫
Ȳ

Ψk+n−jw̄j(·, 0) dµ̄Y = Φ̄
∫

∆̄
ūk+n−jw̄j dµ̄∆ = Φ̄

∫
∆
uk+n−jw̃j dµ∆

= Φ̄ (G1(j, k + n) +G2(j, k + n))

where

G1(j, n) =
∫

∆
un−j

(
w̃j − w̃ ◦ f j∆

)
dµ∆, G2(j, n) =

∫
∆
un−jw̃ ◦ f j∆ dµ∆.

Applying Proposition 7.10 once more,

|Ψn|L∞(Ȳ ) � µY (Φ > n) and |Ψn(y)−Ψn(y′)| � µY (Φ > n)θs(y, y′)
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for all y, y′ ∈ Ȳ , n > 1. Hence |un|∞ � µY (Φ > n) and |un(y, `) − un(y′, `)|
� µY (Φ > n)θs(y, y′) for all y, y′ ∈ Y , 0 6 ` < Φ(y). That is, in the notation of
Appendix B, ‖un‖θ � µY (Φ > n).
It follows that

|G1(j, n)| 6 |un−j|∞|1Y
(
w̃j − w̃ ◦ f j∆

)
|1 � |w̃|θ j−β

′(n− j)−β′ .
Since w̃ has mean zero, we can apply Theorem B.1 to obtain

|G2(j, n)| � ‖un−j‖θ‖w̃‖θ j−(β′−1) � ‖w̃‖θ j−(β′−1)(n− j)−β′ .
We conclude that

|(G1 +G2)(j, k + n)| � ‖w̃‖θ j−(β′−1)(k + n− j)−β′ � ‖w̃‖θ j−(β′−1)n−β
′

for all j < k, and hence

|E2(k, n)| � ‖w̃‖θ n−β
′
k−1∑
j=0

j−(β′−1) � ‖w̃‖θ n−β
′
kβ
′
ζβ′(k)

completing the proof of Lemma 7.13. �

Proof of Lemma 7.7(a). — Let k > 1 and write ρ∗1
X̂
, w̃

(n) = I2(k, n) + I4(k, n),
where

I2(k, n) =
∫

∆
1
X̂

(
w̃ ◦ fk∆ − w̃k

)
◦ fn−k∆ dµ∆,

I4(k, n) =
∫

∆
1
X̂
w̃k ◦ fn−k∆ dµ∆ =

∫
∆̄

1Z̄ w̄k ◦ f̄n−k∆ dµ̄∆.

By Corollary 7.12, |I2(k, n)| � |w̃|θ σkd.
Note that I4(k, n) is defined on ∆̄ and in the notation of Section 4.1, I4(k, n)

= ρ∗1Z̄ , w̄k(n−k). Hence we can proceed almost as in the proof of Theorem 4.2(a), with
ṽ and w̃ replaced by 1Z̄ and w̄k respectively. Letm = n−k. Following Proposition 4.4,
we write
(7.9) I4(k, n) = J0, k(m) + Φ̄−1

∫
Ȳ

(
T (m) ? RV (m)

)
? W k(m) dµ̄Y ,

where
V (m)(y) = 1{Φ(y)>m}1Z̄(y,Φ(y)−m), W k(m)(y) = 1{Φ(y)>m}w̄k(y,m),

and
J0, k(m) =

∫
∆̄

1{m+`<Φ(y)}1Z̄(y, `)w̄k(y,m+ `) dµ̄∆.

Also, define

A1(m)(y) = 1{Φ(y)>m}

Φ(y)−m−1∑
`=0

1Z̄(y, `), A2, k(m)(y) =
Φ(y)−1∑
`=0

1{m<`}w̄k(y, `).

By Proposition 7.9(a), |w̄k|∞ 6 |w̃|∞. Proceeding exactly as in Section 4.3, we
obtain the estimates∣∣∣V (m)

∣∣∣
1
6 µY (Φ > m),

∣∣∣W k(m)
∣∣∣
1
6 |w̃|∞µY (Φ > m),∣∣∣J0, k(m)

∣∣∣ 6 Φ̄−1|w̃|∞ σmd,
∣∣∣A1(m)

∣∣∣
1
6 σmd.
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Moreover, V (m)(y) = V (m)(y′) for y, y′ ∈ a, a ∈ α. Hence following the proof of
Proposition 4.5, RV (m) ∈ Fθ(Ȳ ) with ‖RV (m)‖θ � µY (Φ > m).
By assumption,

∫
∆ w̃ dµ∆ = 0. Hence by Lemma 7.13, |PA2, k(m)| � ‖w̃‖θ(σkd +

m−β
′
kβ
′
ζβ′(k)).

We have now estimated all the expressions arising in the proof of Theorem 4.2(a).
Continuing as in that proof, we obtain (cf. (4.3))

|I4(k, n)| � Ek(m) + ‖w̃‖θ (σmd + ζβ′(m))
where Ek(m) = b(m) ? PV (m) ? PWk(m) and
Êk(z) = b̂(z)PV̂ (1)PŴk(1) + (z − 1)b̂(z)

{
PV̂ (z)PÂ2, k(z) + PÂ1(z)PŴk(1)

}
.

Recall that the Fourier coefficients of (z − 1)b̂(z) are O(m−β′). Also,

PŴk(1) =
∫

∆
w̃k dµ∆ =

∫
∆

(
w̃k − w̃ ◦ fk∆

)
dµ∆ � |w̃|θ σkd

by Corollary 7.12. Hence
|Ek(m)| � ‖w̃‖θ

(
b(m)σkd +m−β

′
?
{
m−β

′
?
(
σkd +m−β

′
kβ
′
ζβ′(k)

)
+ σmdσkd

})
� ‖w̃‖θ

(
σkd +m−β

′
kβ
′
ζβ′(k)

)
.

Hence
|I4(k, n)| � ‖w̃‖θ

(
σkd + σ(n−k)d + (n− k)−β′kβ′ζβ′(k) + ζβ′(n− k)

)
.

Combining this with the estimate for I2(k, n) and taking k = [n/2] yields the desired
result. �

8. Billiard examples

In this section, we provide details and proofs for the examples considered in
Section 1.1. For background material on billiards, we refer to [CM06]. The billiard
domain, denoted by Q, is a compact connected subset of R2 or T2 with piecewise
smooth boundary and the billiard flow is defined on Q× S1. Fix a point q ∈ Q and
a unit vector v ∈ S1. Then q moves in straight lines with unit speed in direction v
until reflecting (angle of reflection equalling the angle of incidence) off the boundary
∂Q. This defines a volume-preserving flow. A natural Poincaré section is given by
M = ∂Q× [−π/2, π/2] corresponding to collisions with ∂Q (with outgoing velocities
in [−π/2, π/2]). The Poincaré map f : M → M is called the collision map or the
billiard map. It preserves a probability measure µ, equivalent to Lebesgue, called
Liouville measure.
Part of the framework in [CZ05a, Mar04] is that the billiard map f : M →

M has a (two-sided) Chernov–Markarian–Zhang structure as defined in Section 7.
In particular, f has a suitably chosen first return map fX = fh : X → X modelled
by a Young tower ∆rapid = Y ϕ with exponential tails. Roughly speaking, X is chosen
to be a subset of phase space bounded away from the regions where hyperbolicity is
expected to break down, e.g. for billiards with cusps, X excludes a neighborhood of
each cusp. Since the specific choice of X involves notation which is not required for
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understanding the results, we mainly point the reader to the original references for
the precise definitions. (An exception is Example 8.3 below, where no extra notation
is needed.)

Example 8.1 (Bunimovich stadia [Bun79]). — These are convex billiard domains
Q ⊂ R2 where ∂Q is a simple closed curve consisting of two parallel line segments
and two semicircles. By [Mar04], the billiard map f : M → M falls within the
Chernov–Markarian–Zhang framework with µX(h > n) = O(n−2). By [CZ08, Theo-
rem 1.1], µY (ϕ > n) = O(n−2) and hence ρv, w(n) = O(n−1) for dynamically Hölder
observables.
Here, we improve the estimate on µY (ϕ > n) and use this to obtain lower bounds

on decay of correlations.

Proposition 8.2. — For Bunimovich stadia, there exists c > 0 such that
ϕ̄−1µY (ϕ > n) ∼ cn−2 and ρv, w(n) ∼ cn−1 ∫

M v dµ
∫
M w dµ for all v, w ∈ H(X)

with nonzero mean.
In addition ρv, w(n) = O(n−2 log n) for all v ∈ H(X) with

∫
v dµ = 0 and all

w ∈ H(X).

Proof. — In the proof of [BG06, Theorem 1.1] (see in particular [BG06, p. 504,
line 11]) it is shown for h : X → Z+ (denoted there by ϕ+) that

(n log n)−1/2

n−1∑
j=0

h ◦ f jX − n
∫
X
h dµX


converges to a nondegenerate normal distribution. Hence the first statement follows
from Corollary 5.3 and the second statement from Theorem 7.4(a).
Finally, γn = O(n−2 log n) by Proposition 3.2, so the final statement follows from

Theorem 7.4(b). �

Example 8.3 (Semidispersing billiards). — The billiard domain is given by
Q = R \ ⋃Sk where R is a rectangle and there are finitely many disjoint convex
scatterers Sk ⊂ R with C3 boundaries of nonvanishing curvature.
By [CZ05a, Theorem 1], the billiard map f : M → M falls within the Chernov–

Markarian–Zhang framework with X = ⋃
∂Sk × [−π/2, π/2] and µX(h > n) =

O(n−2). By [CZ08, Theorem 1.1], µY (ϕ > n) = O(n−2) and hence ρv, w(n) = O(n−1)
for dynamically Hölder observables.

Proposition 8.4. — The conclusions of Proposition 8.2 hold for semidispersing
billiards.

Proof. — Note that h is precisely the free flight time considered in [Ble92, SV07].
By [SV07, Theorem 1],

(n log n)−1/2

n−1∑
j=0

h ◦ f jX − n
∫
X
h dµX


converges to a nondegenerate normal distribution. Now proceed as in the proof of
Proposition 8.2. �
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Example 8.5 (Billiards with cusps). — These are billiard domains Q ⊂ R2 where
∂Q is a simple closed curve consisting of finitely many convex inwards C3 curves
with nonvanishing curvature such that the interior angles at corner points are zero.
By [CM07, Theorem 1.1], the billiard map f : M →M falls within the Chernov–

Markarian–Zhang framework with µX(h > n) = O(n−2). By [CZ08, Theorem 1.1],
µY (ϕ > n) = O(n−2) and hence ρv, w(n) = O(n−1) for dynamically Hölder observ-
ables.

Proposition 8.6. — The conclusions of Proposition 8.2 hold for billiards with
cusps.

Proof. — By [BCD11, Theorem 4 and Equation (2.5)], (n log n)−1/2(∑n−1
j=0 h ◦ f

j
X

− n
∫
X h dµX) converges to a nondegenerate normal distribution. Now proceed as in

the proof of Proposition 8.2. �

Example 8.7 (Billiards with cusps at flat points [Zha17a]). — These are billiard
domains Q ⊂ R2 where ∂Q is a simple closed curve consisting of finitely many convex
inwards C3 curves such that the interior angles at one of the corner points is zero.
Moreover the curves have nonvanishing curvature except at this corner point where
∂Q has the form ±xb for some b > 2.
By [Zha17a], the billiard map f : M → M falls within the Chernov–Markarian–

Zhang framework with µX(h > n) = O(n−β) where β = b/(b− 1) ∈ (1, 2). Moreover,
by [Zha17a], µY (ϕ > n) = O(n−β) and hence ρv, w(n) = O(n−(β−1)) for dynamically
Hölder observables.

Proposition 8.8. — For billiards with cusps at flat points, there exists c > 0
such that µY (ϕ > n) ∼ cn−β and ρv, w(n) ∼ ϕ̄−1(β − 1)−1cn−(β−1) ∫

M v dµ
∫
M w dµ

for all v, w ∈ H(X) with nonzero mean.
In addition ρv, w(n) = O(n−β log n) for all v ∈ H(X) with

∫
v dµ = 0 and all

w ∈ H(X).

Proof. — By [JZ18, Theorem 3.1], n−1/β(∑n−1
j=0 h ◦ f

j
X − n

∫
X h dµX) converges to

a nondegenerate β-stable law. Hence the first statement follows from Corollary 5.3
and the second statement from Theorem 7.4(a).
Finally, γn = O(n−β log n) by Proposition 3.2, so the final statement follows from

Theorem 7.4(b). �

Explicit formulas for asymptotic constants

In all the billiard examples considered above, the constant c can be made completely
explicit. For brevity, we restrict to the case of the stadium in Example 8.1. Let ` be
the length of the parallel line segments in ∂Q. The argument in [BG06, p. 504, line
11] shows that

(c0n log n)−1/2

n−1∑
j=0

h ◦ f jX − n
∫
X
h dµX

→d N(0, 1) where c0 = 4 + 3 log 3
4− 3 log 3

`2

8 .
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Since ϕ = hσ, it follows from Lemma 5.2(a) that

B−1
n

n−1∑
j=0

ϕ ◦ F j − n
∫
Y
ϕdµY

→d N(0, 1)

where Bn = (c1n log n)1/2 and c1 = σ̄c0. Define L(x) = 2c1 log x. Then nL(Bn) ∼ B2
n

and L(x) = 2
∫ x

1 c1u
−1du. Applying [Gou10, Theorem 1.5], we obtain µY (ϕ > n) ∼

c1n
−2.

Next, ϕ̄ = σ̄
∫
X h dµX = σ̄/µ(X) and µ(X) = 2/(π + `) by [BG06, Equation (6)].

Hence
ϕ̄−1µY (ϕ > n) ∼ 2c0

π + `
n−2 = 4 + 3 log 3

4− 3 log 3
`2

4(π + `) n
−2.

By Theorem 7.4(a),

ρv, w(n) ∼ 4 + 3 log 3
4− 3 log 3

`2

4(π + `) n
−1
∫
M
v dµ

∫
M
w dµ

for v, w ∈ H(X) with nonzero mean.

Example 8.9 (Bunimovich flowers [Bun73]). — These are billiard domains Q ⊂ R2

where ∂Q is a simple closed piecewise C3 curve consisting of at least one arc with
nonvanishing curvature that is convex inwards and at least one convex outwards
circular arc that is strictly smaller than a semicircle. All corner points have nonzero
angle, and each convex outwards arc continues to a circle contained in Q. (The
conditions can be further relaxed to allow line segments in ∂Q, see [CZ05a].)
By [CZ05a, Theorem 2], the billiard map f : M → M falls within the Chernov–

Markarian–Zhang framework with µX(h > n) = O(n−3). Hence µY (ϕ > n)
= O((log n)3n−3) leading as in [You99] to the upper bound on decay of correla-
tions ρv, w(n) = O((log n)3n−2) for dynamically Hölder observables.
It is also easily verified that µX(h > n) ≈ n−3. Only the more delicate upper bound

is explicit in [CZ05a], but the lower bound is much simpler. It suffices to estimate the
contribution from sliding along a single convex outwards circular arc S ⊂ ∂Q. Let
(r, φ) denote coordinates on S × [−π/2, π/2] where r ∈ [0, r0] is arclength along S.
Then µX is given by dµX = cosφ dφ dr. The set X is chosen to exclude points that
make at least two successive collisions with S. Hence {h > n} includes all points
(r, φ) with r close to the beginning of S and φ close to π/2. Since S is circular, the
angles at successive collisions remain close to this initial value of φ so it is clear that
{h > n} contains a set of the form

En =
{

(r, φ) : 0 6 r 6
a

n
,
π

2 −
b

n
6 φ 6

π

2

}
,

where a and b are constants independent of n. Hence

µX(h > n) >
∫ r0

0

∫ π/2

−π/2
1En cosφ dφ dr ∼ 1

2ab
2n−3.

By Proposition 5.1, it follows that µY (ϕ > n) � (log n)−1n−3. By Theorem 7.4,
ρv, w(n)� (log n)−1n−2 ∫

M v dµ
∫
M w dµ for all v, w ∈ H(X), n > 1.

ANNALES HENRI LEBESGUE



Sharp polynomial bounds on decay of correlations 445

Example 8.10 (Dispersing billiards with vanishing curvature [CZ05b]). — These
are planar periodic dispersing billiards Q = T2 \ ⋃Sk where there are finitely many
disjoint strictly convex scatterers Sk with C3 boundaries of nonvanishing curvature,
except that the curvature vanishes at two points. Moreover, there is a periodic
orbit that runs between these two points and the boundary nearby has the form
±(1 + |x|b) for some b > 2. By [CZ05b, Theorem 1], the billiard map f : M → M
falls within the Chernov–Markarian–Zhang framework with µX(h > n) = O(n−β)
where β−1 = (b+2)/(b−2) ∈ (1,∞). Hence µY (ϕ > n) = O((log n)βn−β) leading as
in [You99] to the upper bound on decay of correlations ρv, w(n) = O((log n)βn−(β−1))
for dynamically Hölder observables.
Moreover µX(h > n) � cn−β by [CZ05b, Proposition 2]. By Proposition 5.1, it

follows that µY (ϕ > n)� (log n)−1n−β. By Theorem 7.4, ρv, w(n)� (log n)−1n(β−1)∫
M v dµ

∫
M w dµ for all v, w ∈ H(X), n > 1.

Appendix A. Formula for the correlation function

In this appendix, we prove Proposition 4.4. One method would be to check equality
of coefficients directly, but we choose to convert all sequences into Fourier series.
Recall that V (n)(y) = 1{Φ>n}ṽ(y,Φ(y)−n),W (n)(y) = 1{Φ>n}w̃(y, n), with Fourier
series

V̂ (z)(y) =
Φ(y)−1∑
`=0

zΦ(y)−`ṽ(y, `), Ŵ (z)(y) =
Φ(y)−1∑
`=0

z`w̃(y, `).

Define Φk = ∑k−1
j=0 Φ ◦ F j. Arguing as in [Mel18, Section 6.2] (with discrete time

instead of continuous time), write

ρ∗ṽ, w̃(n) =
∫

∆
1{n+`<Φ(y)}ṽ(y, `) w̃ ◦ fn∆(y, `) dµ∆

+
∞∑
k=1

∫
∆

1{Φk(y)6n+`<Φk+1(y)}ṽ(y, `) w̃ ◦ fn∆(y, `) dµ∆ =
∞∑
k=0

Jk(n),

where J0(n) was defined in Section 4.3 and

Jk(n) =
∫

∆
1{Φk(y)6 `+n<Φk+1(y)}ṽ(y, `)w̃

(
F ky, `+ n− Φk(y)

)
dµ∆, k > 1.

For k > 1,

Ĵk(z) =
∞∑
n=0

znJk(n)

= Φ̄−1
∫
Y

Φ(y)−1∑
`=0

Φk+1(y)−`−1∑
n=Φk(y)−`

znṽ(y, `)w̃
(
F ky, `+ n− Φk(y)

)
dµY .
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Making the substitution `′ = `+ n− Φk(y),

Ĵk(z) = Φ̄−1
∫
Y

Φ(y)−1∑
`=0

z−`ṽ(y, `)

Φ(Fky)−1∑

`′=0
z`
′
w̃
(
F ky, `′

) zΦk(y) dµY

= Φ̄−1
∫
Y
zΦkvz Ŵ (z) ◦ F k dµY ,

where vz(y) = ∑Φ(y)−1
`=0 z−`ṽ(y, `). Note that zΦvz = V̂ (z). Hence

Rk
(
zΦkvz

)
= Rk−1R

(
zΦk−1◦F zΦvz

)
= Rk−1

(
zΦk−1R

(
zΦvz

))
= R̂(z)k−1RV̂ (z),

and so

Ĵk(z) = Φ̄−1
∫
Y
Rk

(
zΦkvz

)
· Ŵ (z) dµY = Φ̄−1

∫
Y
R̂(z)k−1RV̂ (z) · Ŵ (z) dµY .

Hence,

ρ̂∗ṽ, w̃(z) =
∞∑
k=0

Ĵk(z) = Ĵ0(z) + Φ̄−1
∞∑
k=1

∫
Y
R̂(z)k−1RV̂ (z) · Ŵ (z) dµY

= Ĵ0(z) + Φ̄−1
∫
Y
T̂ (z)RV̂ (z) · Ŵ (z) dµY .

This completes the proof of Proposition 4.4.

Appendix B. Upper bounds on Young towers

In this appendix, we recall a standard result giving an upper bound on decay of
correlations for two-sided Young towers. We could not find the result stated in the
form we require in the literature; hence we provide the details.
Let f∆ : ∆ → ∆ be a mixing two-sided Young tower with µ∆(Φ > n) = O(n−β′)

where β′ > 1. As in Section 7.1, ∆ = Y Φ is a tower over a two-sided Gibbs–Markov
map defined on a bounded metric space (Y, d). Fix θ ∈ (0, 1) and define Fθ(∆) to be
the space of observables ṽ : ∆→ R with ‖ṽ‖θ <∞ where ‖ṽ‖θ is defined as in (7.2).
Note that if v : M → R lies in H(M), then ṽ = v ◦ πM ∈ Fθ(∆) and ‖ṽ‖θ = ‖v‖H.
However, here we consider observables on ∆ that need not be lifts of observables
on M and the underlying metric space (M,d) plays no role.

Theorem B.1. — There exists a constant C > 0 such that∣∣∣∣∫
∆
ṽ w̃ ◦ fn∆ dµ∆ −

∫
∆
ṽ dµ∆

∫
∆
w̃ dµ∆

∣∣∣∣ 6 C‖ṽ‖θ‖w̃‖θ n−(β′−1)

for all ṽ, w̃ ∈ Fθ(∆), n > 1.

First, we mention some prerequisites. Define Fθ(∆̄) to consist of observables v̄ :
∆̄ → R with ‖v̄‖θ < ∞ where ‖v̄‖θ is defined as in (4.1). Note that if v̄ ∈ Fθ(∆̄),
then ṽ = v̄ ◦ π̄ ∈ Fθ(∆) and ‖ṽ‖θ = ‖v̄‖θ.
For ṽ ∈ Fθ(∆), define ṽn : ∆→ R and v̄n : ∆̄→ R as in Section 7.4.
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Proposition B.2. — There exists C > 0 such that for all ṽ ∈ Fθ(θ), n > 1,
(a) |ṽ ◦ fn∆ − ṽn|1 6 C|ṽ|θ n−(β′−1),
(b) ‖Lnv̄n‖θ 6 C‖ṽ‖θ.

Proof. —
(a) Arguing as in the proof of Proposition 7.9, |ṽ ◦ fn∆− ṽn| � |ṽ|θ θψn . Proceeding

as in the proof of Lemma 7.11, we can write∫
∆̄
θψn dµ̄∆ =

∫
∆̄
Lnθψn dµ̄∆ =

∫
∆̄
Lnθ1 dµ̄∆

and Lnθ = C(n)+D(n) where |D(n)1|1 � n−β
′ . Also, |C(n)1|1 6 Φ̄−1 ∫

Ȳ 1{Φ>n}Φ dµ̄Y
� n−(β′−1). Hence

|ṽ ◦ fn∆ − ṽn|1 � |ṽ|θ|θψn|1 � |ṽ|θ n−(β′−1).

(b) The same calculations as in Proposition 7.9(d), show that |Lnv̄n|∞ 6 |ṽ|∞ and
|(Lnv̄n)(p̄1)− (Lnv̄n)(p̄2)| � ‖ṽ‖θ θs(p̄1, p̄2) for p̄1, p̄2 ∈ ∆̄, n > 1. �

Proof of Theorem B.1. — First, recall that there is a constant C > 0 such that

(B.1)
∣∣∣∣ ∫

∆̄
v̄ w̄ ◦ f̄n∆ dµ̄∆ −

∫
∆̄
v̄ dµ̄∆

∫
∆̄
w̄ dµ̄∆

∣∣∣∣ 6 C‖v̄‖θ|w̄|∞ n−(β′−1)

for all v̄ ∈ Fθ(∆̄), w̄ ∈ L∞(∆̄), n > 1. (This follows from [You99, Theorem 3], the
specific dependence on ‖v̄‖θ, |w̄|∞ being a standard consequence of the uniform
boundedness principle. Alternatively, see [KKM19, Section 2.2].)
Suppose without loss of generality that

∫
∆ w̃ dµ∆ = 0. Write∫

∆
ṽ w̃ ◦ f 2n

∆ dµ∆ =
∫

∆
ṽ ◦ fn w̃ ◦ f 3n

∆ dµ∆ = I1(n) + I2(n) + I3(n)

where

I1(n) =
∫

∆
(ṽ ◦ fn∆ − ṽn) w̃ ◦ f 3n

∆ dµ∆, I2(n) =
∫

∆
ṽn (w̃ ◦ fn∆ − w̃n) ◦ f 2n

∆ dµ∆

I3(n) =
∫

∆
ṽn w̃n ◦ f 2n

∆ dµ∆ =
∫

∆̄
v̄n w̄n ◦ f̄ 2n

∆ dµ̄∆ =
∫

∆̄
Lnv̄n w̄n ◦ f̄n∆ dµ̄∆.

By Proposition B.2(a),

|I1(n)| � |ṽ|θ|w̃|∞ n−(β′−1), |I2(n)| � |ṽ|∞|w̃|θ n−(β′−1).

By (B.1),

|I3(n)| �
∣∣∣∣∫

∆̄
Lnv̄n dµ̄∆

∣∣∣∣ ∣∣∣∣∫
∆̄
w̄n dµ̄∆

∣∣∣∣+ ‖Lnv̄n‖θ |w̄n|∞ n−(β′−1).

Since w̃ has mean zero, it follows from Proposition B.2(a) that |
∫

∆̄ w̄n dµ̄∆|
= |

∫
∆(w̃n − w̃ ◦ fn∆) dµ∆| � |w̃|θ n−(β′−1) Hence using Proposition B.2(b),

|I3(n)| � ‖ṽ‖θ‖w̃‖θ n−(β′−1),

and the result follows. �
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