
Annales Henri Lebesgue
4 (2021) 503-535

SIMON RICHE
GEORDIE WILLIAMSON

A SIMPLE CHARACTER FORMULA
UNE FORMULE DE CARACTÈRES SIMPLES

Dedicated to Jens Carsten Jantzen,
on the occasion of his 70 th birthday.

Abstract. — In this paper we prove a character formula expressing the classes of simple
representations in the principal block of a simply-connected semisimple algebraic group G in
terms of baby Verma modules, under the assumption that the characteristic of the base field
is bigger than 2h − 1, where h is the Coxeter number of G. This provides a replacement for
Lusztig’s conjecture, valid under a reasonable assumption on the characteristic.
Résumé. — Dans cet article nous démontrons une formule de caractères exprimant les

classes des représentations simples dans le bloc principal d’un groupe algébrique semi-simple
G en termes des modules de Verma bébé, sous l’hypothèse que la caractéristique du corps de
base est supérieure à 2h−1, où h est le nombre de Coxeter de G. Ceci fournit un remplacement
de la conjecture de Lusztig, valable sous une hypothèse raisonnable sur la caractéristique.

1. Introduction

1.1. Simple modules for reductive groups

Let G denote a connected reductive algebraic group over an algebraically closed
field k of characteristic p > 0, with simply connected derived subgroup. We fix a
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maximal torus and Borel subgroup T ⊂ B ⊂ G. Then for every dominant weight λ
we have a Weyl module ∆(λ) and its simple quotient L(λ), both of highest weight λ.
We obtain in this way a classification of the simple algebraic G-modules. A central
problem in the field is to compute the characters of these simple modules.
Steinberg’s tensor product theorem reduces this question to the case of p-restric-

ted highest weights. For a p-restricted dominant weight λ it is known that L(λ)
stays simple upon restriction to G1, the first Frobenius kernel of G. Moreover, all
simple G1-modules occur in this way. Thus, understanding the simple G-modules is
equivalent to understanding the simple G1-modules.
Instead of working with G1-modules, it is technically more convenient to work with

G1T -modules. Simple G1T -modules stay simple upon restriction to G1, and thus
we can instead try to answer our question in terms of G1T -modules. Via Brauer–
Humphreys reciprocity, this question can be rephrased in terms of indecomposable
projective G1T -modules (see Section 1.2 below for details).
In 1980 Lusztig [Lus80a] proposed a conjecture for these characters if p is not too

small (in the guise of “Jantzen’s generic decomposition patterns”). His conjecture is
in terms of the canonical basis in the periodic module for the affine Hecke algebra.
This formula is known to hold for large p, see [AJS94, Fie12, KL93a, KL93b, KL94a,
KL94b, KT95, KT96, Lus94]; however it is also known to fail for “medium sized” p,
see [Wil17]. In fact, at this point it is not known precisely when this formula holds.
Our goal in this paper is to define the p-canonical basis in the periodic module

and prove that the p-analogue of Lusztig’s conjecture is true, as long as p > 2h −
1 where h is the Coxeter number of G. Thus we obtain a character formula for
simple G-modules in terms of p-Kazhdan–Lusztig polynomials. Our proof builds on
a character formula for tilting G-modules, proved in a joint work with P. Achar and
S. Makisumi [AMRW19].(1)

At present, p-canonical bases are very difficult to compute; for this reason our
formula is certainly not the final answer to this problem. However it gives a good
conceptual understanding of where the difficulties lie, and provides a way to compute
characters or multiplicities which is much more efficient than classical techniques
in representation theory. For instance, unpublished intensive efforts of Jantzen were
not sufficient to completely answer the question of describing simple characters in
types B3, C3 and A4. Preliminary results of Jensen–Scheinmann indicate that our
formula will allow one to solve these cases, and maybe the case of some bigger
groups with the help of a computer. (For example, Jensen and Scheinmann obtain a
missing multiplicity in Jantzen’s work for A4 in a few lines using our results.) We
also believe these results will help answer the important question of when exactly
Lusztig’s character formula holds.
Remark 1.1. —
(1) A conjecture of Donkin [Don93] would imply that our formula is valid for

p > h; see Remark 1.6 below for more details.
(2) It has been known for a long time that, in theory, knowing the characters

of tilting modules is enough to determine the characters of simple modules
(1)One year after the first version of the present paper was made available, a different proof of this
formula was obtained by the authors in [RW20].
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(see e.g. [RW18, Section 1.8] for details, and [Sob20] for more recent advances
on this question). However, obtaining a concrete character formula for simples
out of a given character formula for tilting modules is a different story, which
is the main topic of the present paper (taking as input the character formula
from [AMRW19]).

1.2. Representation theory of G1T

We continue with the notation of Section 1.1, and let X := X∗(T ) be the character
lattice of T . Let also B+ be the Borel subgroup of G opposite to B with respect to
T .
If as above G1T , resp. B+

1 T , denotes the preimage of the Frobenius twist Ṫ of T
under the Frobenius morphism of G, resp. B+, then for each λ ∈ X we have a G1T -
module Ẑ(λ) (called the baby Verma module attached to λ) obtained by coinducing
to G1T the 1-dimensional representation of B+

1 T defined by λ (see Section 5.2 below
for details). The module Ẑ(λ) has a unique simple quotient L̂(λ), and the assignment
λ 7→ L̂(λ) induces a bijection between X and the set of isomorphism classes of simple
G1T -modules. For any λ, µ ∈ X we have

L̂(λ+ pµ) ∼= L̂(λ)⊗ kṪ (µ)
(where we identify the weight lattice of Ṫ with X in such a way that the pullback
under the Frobenius morphism T → Ṫ corresponds to ν 7→ pν, and kṪ (µ) is viewed
as a G1T -module via the Frobenius morphism G1T → Ṫ ), and for λ dominant and
p-restricted L̂(λ) is the restriction to G1T of the simple G-module L(λ) considered in
Section 1.1. In this way, understanding the simple G-modules, the simple G1-modules
or the simple G1T are equivalent problems.

1.3. Characters of G1T -modules and alcoves

Assume now that p > h.
Let ∆ ⊂ X be the root system of (G, T ). Let Wf and W = Wf n Z∆ denote

the finite and affine Weyl groups, and denote their subsets of simple reflections
(determined by B) by Sf and S respectively. The affine Weyl group acts naturally
on X ⊗Z R, giving rise to the set of alcoves A . Let Afund denote the fundamental
alcove; then the map x 7→ x(Afund) gives a bijection
(1.1) W

∼−→ A .

We will also consider the “dot-action” of W on X, defined by
(xtλ) ·p µ = x (µ+ pλ+ ρ)− ρ

for x ∈ Wf , λ ∈ Z∆ and µ ∈ X, where ρ is the halfsum of the positive roots. Let
Rep0(G1T ) denote the principal block of the category of algebraic finite-dimensional
G1T -modules, i.e. the Serre subcategory generated by the simple modules L̂(λ) with
λ ∈ W ·p 0. By construction the highest weights of simple and baby Verma modules
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belonging to this block are labelled by the affine Weyl group, and hence (via (1.1)) by
alcoves. Given an alcove A, let us denote the corresponding simple and baby Verma
modules by L̂A and ẐA. We denote the projective cover (equivalently, injective hull)
of L̂A by Q̂A.
Each Q̂A admits a baby Verma flag (that is, a finite filtration whose successive

subquotients are isomorphic to baby Verma modules). We write (Q̂A : ẐB) for the
number of times the baby Verma module ẐB occurs in such a filtration. (This number
is known to be independent of the chosen filtration.) For an alcove A ∈ A , consider
the element

qA :=
∑

B ∈A

(
Q̂A : ẐB

)
B ∈ Z [A ] .

By Brauer–Humphreys reciprocity [Hum71], it is known that
(
Q̂A : ẐB

)
=
[
ẐB : L̂A

]

for any pair of alcoves (A,B). As the characters of the baby Verma modules are
known (and easy!), knowledge of the elements qA for all alcoves A therefore implies
knowledge of the characters of the simple G1T -modules in the principal block, and
hence of all simple G1T -modules by Jantzen’s translation principle.

1.4. Statement

Let H denote the Hecke algebra of the Coxeter system (W,S) (an algebra over the
ring Z[v±1], with standard basis (Hw : w ∈ W )), and let P denote its periodic (right)
module. (We follow the notational conventions of [Soe97].) As a Z[v±1]-module, P
is free with basis given by alcoves:

P =
⊕

A∈A

Z
[
v±1

]
A.

In [Lus80a], Lusztig has defined a canonical basis for P; following the conventions
of [Soe97, Theorem 4.3] we will denote this family of elements by {PA : A ∈ A }.
(Note that this terminology might be misleading: {PA : A ∈ A } is not a Z[v±1]-basis
of P , but of a certain submodule.)
Lusztig conjectured (see the last three paragraphs of the introduction to [Lus80a])

that the canonical basis determines the characters of indecomposable projective
modules, as follows:

qA = (P Â)v 7→ 1.

(Here, given R = ∑
pAA ∈ P, Rv 7→ 1 = ∑

pA(1)A ∈ Z[A ] denotes its specialisation
at v = 1, and A 7→ Â is a simple operation on alcoves, whose definition is recalled
in Section 2.) See also [Fie10, Section 3] for the relation with Lusztig’s original
conjecture [Lus80b] for characters of the modules L(λ).
In this paper, we define the p-canonical basis {pPA : A ∈ A } in the periodic

module P , and we prove that it can be used to compute the elements qA, as follows.
Theorem 1.2. — Assume p > 2h− 1. Then for any alcove A we have

qA = (pP Â)v 7→ 1 .
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1.5. Spherical and antispherical modules

Theorem 1.2 will be obtained as a consequence of a relation between the p-
canonical bases in two other H-modules, namely the (twisted) spherical and the
antispherical modules. We will denote by (Hw : w ∈ W ) the Kazhdan–Lusztig ba-
sis of H, see [Soe97, Theorem 2.1], and by (pHw : w ∈ W ) its p-canonical basis
(see [JW17, RW18]).
The antispherical moduleMasph is defined as

Masph = sgn⊗Hf H
where Hf is the Hecke algebra of (Wf , Sf) (which is a subalgebra in H in a natural
way), and sgn is the right Hf-module defined as Z[v±1] with Hs acting as multiplica-
tion by −v for s ∈ Sf . This module has a standard basis (Nw : w ∈ fW ) parametrized
by the subset fW ⊂ W consisting of elements w which are minimal in Wfw, where
Nw := 1⊗Hw. It also has a Kazhdan–Lusztig basis (Nw : w ∈ fW ) and a p-canonical
basis (pNw : w ∈ fW ), where

Nw = 1⊗Hw,
pNw = 1⊗ pHw.

The subset A + of A corresponding to fW under the bijection (1.1) consists of
the alcoves contained in the dominant Weyl chamber C +; hence we will rather
parametrize these bases by A + and denote them (NA : A ∈ A +), (NA : A ∈ A +)
and (pNA : A ∈ A +).
On the other hand, for λ ∈ X we denote by λ the unique element in Afund∩ (W ·λ),

and let Wλ ⊂ W denote its isotropy group. This is a standard parabolic subgroup
of W isomorphic to Wf ; we denote by Sλ := S ∩Wλ its subset of simple reflections,
and by Hλ ⊂ H the associated Hecke algebra. Let trivλ denote the “trivial” right
Hλ-module (defined as Z[v±1], with Hs acting as multiplication by v−1 for s ∈ Sλ),
and set

Msph
λ

:= trivλ ⊗Hλ H.
ThenMsph

λ
has a standard basis

(
Mλ

w := 1⊗Hw : w ∈ λW
)

parametrized by the subset λW ⊂ W consisting of elements w which are minimal in
Wλw.
If wλ is the longest element in Wλ, then the map 1 ⊗ h 7→ Hw

λ
· h provides an

embedding

(1.2) ζλ :Msph
λ

↪→ H.

For any w ∈ λW , the element Hw
λ
w, resp. pHw

λ
w, belongs to the image of ζλ, and if

we denote by Mλ
w, resp. pMλ

w, its preimage inMsph
λ

, then
(
Mλ

w : w ∈ λW
)

and
(
pMλ

w : w ∈ λW
)

are bases ofMsph
λ

, called the Kazhdan–Lusztig and the p-canonical basis respectively.
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Recall that the set A also admits a natural right action of W ; through the
identification (1.1) this action corresponds to the right multiplication of W on itself,
and will be denoted (A, x) 7→ A·x. Then the assignment w 7→ (λ+Afund)·w identifies
λW with the subset A +

λ ⊂ A consisting of alcoves contained in λ+ C +. In this way
the bases of Msph

λ
considered above can be labelled by A +

λ , and will be denoted
(Mλ

A : A ∈ A +
λ ) and (pMλ

A : A ∈ A +
λ ). (Note that this labelling depends on λ, not

only on λ.)

Remark 1.3. — The bases (Nw : w ∈ fW ) and (Mλ
w : w ∈ λW ) coincide with the

bases considered in [Soe97, Theorem 3.1] (for the parabolic subgroups Wf and Wλ

respectively), see [Soe97, Proof of Proposition 3.4]. In case λ = λ = 0, we will write
Msph forMsph

0 , Mw for M0
w, Mw for M0

w, and pMw for pM0
w.

1.6. Outline of the proof of Theorem 1.2

Let λ ∈ X be such that λ+x(Afund) belongs to C + for all x ∈ Wf . It is easily seen
that the assignment 1⊗ h 7→ Nλ+Afund · h induces an H-module morphism

ϕλ :Msph
λ
→Masph.

Now we assume (for simplicity) that G is semisimple, and specialize to the case
λ = ρ. The key step in our approach to Theorem 1.2 is the following claim.

Theorem 1.4. — Assume that p is good for G. Then for any A ∈ A +
ρ we have

ϕρ(pMρ
A) = pNA.

Remark 1.5. —
(1) In the body of the paper, we find it more convenient to work with the extended

affine Hecke algebra and its spherical/antispherical modules. This allows us
to remove some of the twistings above.

(2) Our proof of Theorem 1.4 also applies to the Kazhdan–Lusztig bases, and
shows that for any A ∈ A +

ρ we have ϕρ(Mρ
A) = NA. This fact could have

been stated many years ago (since it does not involve the p-canonical bases in
any way), but seems to be new. A direct combinatorial proof of this formula
(explained to us by Wolfgang Soergel) is provided in Section 6.

Theorem 1.4 is obtained as a “combinatorial trace” of a statement of categori-
cal nature. Namely, the modules Msph

ρ and Masph can be “categorified” via some
categories of parity complexes (in the sense of [JMW14]) on the affine flag variety
of the Langlands dual group G∨: Msph

ρ corresponds to (twisted) spherical parity
complexes, whileMasph corresponds to Iwahori–Whittaker (2) parity complexes. The
morphism ϕρ can also be categorified by a functor Φρ, given by convolution with a

(2)This construction is a “finite-dimensional” and geometric counterpart for the classical (and very
useful!) Whittaker constructions in representation theory of p-adic groups; see in particular [BBM04,
BGM+19, BY13].

ANNALES HENRI LEBESGUE



A simple character formula 509

certain object. We then prove that this functor is full (but not faithful); in partic-
ular, as both categories involved are Krull-Schmidt, it must send indecomposable
objects to indecomposable objects, and Theorem 1.4 follows. This fullness result is
deduced from a similar result in the case where the affine flag variety is replaced by
the affine Grassmannian of G∨ (in which case the corresponding functor is even an
equivalence of categories) proved recently by the first author with R. Bezrukavnikov,
D. Gaitsgory, I. Mirković and L. Rider, see [BGM+19].
Once Theorem 1.4 is proved, we deduce Theorem 1.2 from the fact that the p-

canonical basis ofMasph encodes the characters of indecomposable tilting G-modules
(as proved in joint work with P. Achar and S. Makisumi [AMRW19]) and a result of
Jantzen [Jan80] (in the interpretation of Donkin [Don93]) saying that if the highest
weight of an indecomposable tilting module is of the form (p − 1)ρ + µ with µ
dominant and p-restricted, then this tilting module is indecomposable as a G1T -
module. It is well known (and easy to check) that these modules are projective
over G1T ; this therefore provides a useful relation between indecomposable tilting
modules for G and indecomposable projective modules for G1T , which allows us to
deduce Theorem 1.2 from Theorem 1.4 and the results of [AMRW19].

Remark 1.6. — A conjecture by Donkin states that Jantzen’s result recalled above
should be true in any characteristic, which would imply that Theorem 1.2 holds as
soon as p > h. Very recent work of Bendel–Nakano–Pillen–Sobaje [BNPS20] shows
that this conjecture is not true in full generality. It is currently not known whether
the condition that p > h is sufficient to ensure that this conjecture holds (which
would be sufficient for our purposes).

1.7. Computational complexity

Let us return briefly to our earlier claim that our formula is potentially useful
in practice. In all known algorithms to compute a p-canonical basis element pHw,
pNw, pMw etc. the computational complexity is exponential in the length of w. For a
character formula involving these data to be computable in practice, it must therefore
only involve elements whose length is small (or at least as small as possible). In the
following, we compare the lengths involved in the computation based directly on the
approach of Andersen [And98] (see also [Sob20]) and our formula.
We use G = Sp4 as a running example.(3) Here are the first few dominant alcoves:

A simple character formula 7

Once Theorem 1.4 is proved, we deduce Theorem 1.2 from the fact that the p-
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By Steinberg’s tensor product theorem, it is enough to know the characters of the
simple modules corresponding to the shaded alcoves.
As we explained above, Brauer–Humphreys reciprocity combined with a result

of Donkin (assuming p > 2h − 2) allows us to rephrase this question in terms of
the characters of indecomposable tilting modules indexed by the following shaded

(3)This choice is made only so that we can draw pictures. The case of G = Sp4 can easily be settled
by classical techniques, e.g. the Jantzen sum formula.
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By Steinberg’s tensor product theorem, it is enough to know the characters of the
simple modules corresponding to the shaded alcoves.
As we explained above, Brauer–Humphreys reciprocity combined with a result

of Donkin (assuming p > 2h − 2) allows us to rephrase this question in terms of
the characters of indecomposable tilting modules indexed by the following shaded
alcoves:

8 S. RICHE & G. WILLIAMSON

alcoves:

A

D

The main theorem of [AMRW] (see also [RW2]) asserts that the character of the
indecomposable tilting module attached to an alcove A ∈ A + is calculated by the
element pNw for w ∈ W such that w(Afund) = A.
This looks innocent enough in this example, however for a general group the

smallest and largest alcoves in this set (marked A and D above) correspond to
elements of fW of lengths

(1.3) 2〈ρ∨, ρ〉 =
∑

α∈∆+
ht(α) and 4〈ρ∨, ρ〉 − `(wf) = 2


 ∑

α∈∆+
ht(α)


− `(wf).

(Here ∆+ ⊂ ∆ denotes the subset of positive roots, ht denotes height, ρ∨ denotes
the halfsum of the positive coroots and wf denotes the longest element of Wf . This
formula is easily deduced from standard formulas for the length function in affine
Weyl groups, see [IM, Proposition 1.23].) These numbers grow fast in the rank of
the group, and soon exceed current computational capability.
The main technical result of this paper (Theorem 1.4) says that the span of the

p-canonical basis elements indexed by the following shaded alcoves

in the anti-spherical moduleMasph yield a submodule isomorphic to the (twisted)
spherical moduleMsph

ρ , and moreover that this inclusion preserves the p-canonical
basis. In other words, for the tilting characters that concern us above, it is enough
to calculate the p-canonical basis elements for the following shaded alcoves in the
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basis. In other words, for the tilting characters that concern us above, it is enough
to calculate the p-canonical basis elements for the following shaded alcoves in the
(twisted) spherical module:

A simple character formula 9

(twisted) spherical module:

This is computationally a much simpler prospect, because the elements involved are
shorter; the elements we have to consider range from length 0 to

(1.4) 2〈ρ∨, ρ〉 − `(wf) =

 ∑

α∈∆+
ht(α)


− `(wf).

(That is, we have improved (1.3) by a constant factor of 2〈ρ∨, ρ〉.)
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2. The periodic module
2.1. Extended affine Weyl group

As in §1.2 we consider a connected reductive algebraic group G with simply-
connected derived subgroup over an algebraically closed field k of characteristic
p > 0, with a fixed choice of maximal torus and Borel subgroup T ⊂ B ⊂ G. We
set X := X∗(T ), and denote by ∆ ⊂ X the root system of (G, T ), by ∆+ ⊂ ∆ the
positive system consisting of the opposites of the T -weights in the Lie algebra of
B, by Σ ⊂ ∆ the corresponding subset of simple roots, by Wf and W = Wf n Z∆
the Weyl group and the affine Weyl group, and finally by Sf and S their subsets of
simple roots, see e.g. [J2, Chap. 6]. (Here, “f” stands for “finite.”)
By a result of Iwahori–Matsumoto [IM], the length function associated with the

Coxeter system (W,S) satisfies
(2.1) `(w · tλ) =

∑

α∈∆+

w(α)∈∆+

|〈λ, α∨〉|+
∑

α∈∆+

w(α)∈−∆+

|1 + 〈λ, α∨〉|

for w ∈ Wf and λ ∈ Z∆. (Here, to avoid confusion, the image of λ ∈ Z∆ in W is
denoted tλ.) We will also consider the extended affine Weyl group

Wext := Wf n X.

TOME 1 (-1)

This is computationally a much simpler prospect, because the elements involved
are shorter; the elements we have to consider range from length 0 to

(1.4) 2〈ρ∨, ρ〉 − `(wf) =

 ∑

α∈∆+
ht(α)


− `(wf).

(That is, we have improved (1.3) by a constant factor of 2〈ρ∨, ρ〉.)
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2. The periodic module
2.1. Extended affine Weyl group

As in Section 1.2 we consider a connected reductive algebraic group G with simply-
connected derived subgroup over an algebraically closed field k of characteristic
p > 0, with a fixed choice of maximal torus and Borel subgroup T ⊂ B ⊂ G. We
set X := X∗(T ), and denote by ∆ ⊂ X the root system of (G, T ), by ∆+ ⊂ ∆ the
positive system consisting of the opposites of the T -weights in the Lie algebra of
B, by Σ ⊂ ∆ the corresponding subset of simple roots, by Wf and W = Wf n Z∆
the Weyl group and the affine Weyl group, and finally by Sf and S their subsets of
simple roots, see e.g. [Jan03, Chapter 6]. (Here, “f” stands for “finite.”)
By a result of Iwahori–Matsumoto [IM65], the length function associated with the

Coxeter system (W,S) satisfies
(2.1) `(w · tλ) =

∑

α∈∆+

w(α)∈∆+

|〈λ, α∨〉|+
∑

α∈∆+

w(α)∈−∆+

|1 + 〈λ, α∨〉|
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for w ∈ Wf and λ ∈ Z∆. (Here, to avoid confusion, the image of λ ∈ Z∆ in W is
denoted tλ.) We will also consider the extended affine Weyl group

Wext := Wf n X.
The formula (2.1) defines a function ` : Wext → Z, and we set Ω := {w ∈ Wext |
`(w) = 0}. Then it is known that Ω is a subgroup of Wext, and that multiplication
induces a group isomorphism

Ω nW
∼−→ Wext.

More precisely, conjugation by any element of Ω defines a Coxeter group automor-
phism of W ; in other words it stabilizes S (hence preserves lengths). It is known
also that the composition
(2.2) Ω ↪→ Wext = W n X� X� X/Z∆
is a group isomorphism. (In particular, Ω is abelian.)
We consider the action of W and Wext on V := R ⊗Z X as in [Soe97, Section 4],

and denote by A the set of alcoves in V (i.e. the connected components of the
complement of the union of the reflection hyperplanes associated with the action of
W ) and by Afund ∈ A the fundamental alcove, defined as

Afund =
{
v ∈ V

∣∣∣ ∀ α ∈ ∆+, 0 < 〈v, α∨〉 < 1
}
.

The action of Wext on V preserves alcoves, hence induces an action on A . Moreover
the assignment w 7→ wAfund induces a bijection W

∼−→ A , see (1.1). If we denote
by A + ⊂ A the subset of alcoves contained in the dominant chamber (denoted C
in [Soe97]), then this bijection restricts to a bijection
(2.3) fW

∼−→ A +

where fW is as in Section 1.5.

Remark 2.1. — The subset Ω ⊂ Wext can be characterized as consisting of the
elements w ∈ Wext such that w(Afund) = Afund. For any λ ∈ X, the subset λ+Afund
is an alcove, so that there exists xλ ∈ W such that xλ(Afund) = λ+ Afund, see (1.1).
Then ωλ = (xλ)−1 ·tλ belongs to Ω, and has image λ+Z∆ under (2.2). This procedure
realizes the isomorphism inverse to (2.2). It also allows us to associate to any λ ∈ X
a Coxeter group automorphism τλ of W , given by conjugation by ωλ in Wext. With
this notation, the subset Sλ of Section 1.5 is given by Sλ = τλ(Sf).

2.2. More about alcoves

Using again the identification (1.1) we may transport the Bruhat order on W to
obtain a partial order on A , which we also denote by 6. We define the generic order
on A by

A 4 B if A+mγ 6 B +mγ for all strictly dominant γ and m� 0.
Equivalently, the generic order is uniquely determined by the fact that it agrees with
the Bruhat order on A + and is invariant under translation by X.
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For any µ ∈ X we will consider the following subsets of V :

Π̌µ := {v ∈ V | 〈µ, α∨〉 − 1 < 〈v, α∨〉 6 〈µ, α∨〉 for all α ∈ Σ} ,
Π̂µ := {v ∈ V | 〈µ, α∨〉 6 〈v, α∨〉 < 〈µ, α∨〉+ 1 for all α ∈ Σ} .

Note that for µ, ν ∈ X we have

(2.4) Π̌µ = Π̌ν ⇔ Π̂µ = Π̂ν ⇔ (∀ α ∈ ∆, 〈µ− ν, α∨〉 = 0) .

The set Π̂0 is often called the “fundamental box.” (It is denoted Π in [Soe97, Sec-
tion 4].) The notation is intended to suggest that Π̌µ (resp. Π̂µ) is “the fundamental
box below (resp. above) µ.”
Given any alcove A ∈ A there exists µ ∈ X such that A ⊂ Π̌µ. The stabiliser of µ

in W is then tµWft−µ. We define

Â := (tµwft−µ) (A),

where wf is the longest element in Wf . From (2.4) we see that Â does not depend on
the choice of µ, that Â ⊂ Π̂µ, and that A 7→ Â is a bijection A

∼−→ A . We denote
its inverse by A 7→ Ǎ. (These operations agree with the maps denoted similarly
in [Soe97], see [Soe97, Comments before Lemma 4.21].)

2.3. The periodic module and its canonical basis

The periodic module P is the right H-module (where, as in Section 1, H is the
Hecke algebra of the Coxeter system (W,S)) defined as follows. As a Z[v±1]-module,
P is free with basis the set of alcoves:

P :=
⊕

A∈A

Z[v±1]A.

The structure of a right H-module on P is characterized by the following formulas
for s ∈ S:

(2.5) A ·Hs =



As+ vA if A 4 As;
As+ v−1A if As 4 A,

see [Soe97, Lemma 4.1]. (Here, Hs = Hs + v).
The action of X on A by translations extends to an action of X on P: namely,

given R = ∑
pAA ∈ P, set R + µ := ∑

pA(µ + A). This action does not commute
with the H-action; it rather satisfies the following relation for all h ∈ H:
(2.6) (R · h) + µ = (R + µ) · τµ(h),
where we still denote by τµ the automorphism of H defined by τµ(Hw) = Hτµ(w).
As in Section 1.4 we denote by {PA : A ∈ A } the canonical basis of P . Then for

any µ ∈ X we have
PA+µ = PA + µ(2.7)
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(see [Soe97, Comments before Proposition 4.18]) and

(2.8) PAfund+µ =
∑

x∈Wf

v`(x) ·
(
x(Afund) + µ

)

(see [Soe97, Proof of Proposition 4.16]).
We now recall a crucial observation of Lusztig. Recall the embedding ζµ :Msph

µ →
H from (1.2). By [Lus80a, Theorem 5.2] we then have the following formula, where
we set πf := v−`(wf)∑

x∈Wf v
`(x).

Lemma 2.2. — Let A ∈ A , let µ ∈ X be such that A ⊂ Π̂µ, and let w ∈ W be
the unique element such that (µ+ Afund) · w = A. Then we have

PA = 1
πf
PAfund+µ · ζµ(Mµ

w).

Remark 2.3. — The formula in Lemma 2.2 is compatible with (2.7) in view
of (2.6).

2.4. The p-canonical basis of the periodic module

The usual procedure to define a p-canonical basis of an H-module (see [AR19,
JW17, RW18]) is to start with a categorification of this module in terms of a
C-linear category (in practice, either via some diagrammatic category or some cate-
gory of parity complexes) such that the classes of indecomposable objects correspond
to the Kazhdan–Lusztig basis, and then to replace (in some appropriate way) the
coefficients C by a field of characteristic p. In the case of the periodic module, the
known categorifications involve semi-infinite geometry, and are beyond the authors’
present understanding of the subject. So we will use a different strategy to define this
basis: we will start with the formula of Lemma 2.2, and replace there the canonical
basis ofMsph

µ by the p-canonical version. We expect that any reasonable categori-
fication of P with characteristic-p coefficients should provide the same basis as the
one constructed here.
Namely, for A ∈ A , we choose µ ∈ X such that A ⊂ Π̂µ, and let w ∈ W be the

unique element such that (µ+ Afund) · w = A. Then we set

pPA := 1
πf
PAfund+µ · ζµ

(
pMµ

w

)
.

The following properties are easy to check (using in particular (2.6) and the fact
that τµ = τν if Π̂µ = Π̂ν , as follows from (2.4)):

(1) for any h ∈Msph
µ the element PAfund+µ · ζµ(h) belongs to πf · P , so that pPA

belongs to P ;
(2) the element pPA does not depend on the choice of µ;
(3) for any ν ∈ X we have

(2.9) pPA+ν = pPA + ν.
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It can also be shown (although this is less obvious, and will not be proved here) that
for any alcove A we have

pPA ∈
∑

B ∈A

Z> 0
[
v±1

]
· PB.

3. The extended affine Hecke algebra and its spherical and
antispherical modules

3.1. The spherical and antispherical modules

We continue with the notation of Section 2, and fix a weight ς ∈ X such that
〈ς, α∨〉 = 1 for any α ∈ Σ. (Such a weight exists thanks to our assumption on the
derived subgroup of G. However, it might not be unique.)
As mentioned in Remark 1.5, to avoid difficulties related to the twists τλ, it will

be more convenient to work with the Hecke algebra Hext associated with the “quasi-
Coxeter” groupWext (see Section 2.1), i.e. the Z[v±1]-algebra with a “standard” basis
consisting of elements (Hw : w ∈ Wext), with multiplication characterized by the
following relations:

(1) (Hs + v) · (Hs − v−1) = 0 for s ∈ S;
(2) Hx ·Hy = Hxy if x, y ∈ Wext and `(xy) = `(x) + `(y).
The algebra Hext contains H as a subalgebra (spanned by the elements Hw with

w ∈ W ). Inducing from Hf to Hext the modules considered in Section 1.5, we obtain
the right Hext-modules

Msph
ext := triv0 ⊗Hf Hext and Masph

ext := sgn⊗Hf Hext,

which are called the spherical and antispherical module respectively.
We denote by fWext ⊂ Wext the subset consisting of elements w which are of

minimal length in the coset Wfw (in other words, of the form wω with w ∈ fW and
ω ∈ Ω). Then for w ∈ fWext we set

Mw := 1⊗Hw ∈Msph
ext , Nw := 1⊗Hw ∈Masph

ext .

The collections (Mw : w ∈ fWext) and (Nw : w ∈ fWext) are Z[v±1]-bases ofMsph and
Masph respectively (called again the standard bases). Of course there are natural
embeddings Msph ↪→ Msph

ext and Masph ↪→ Masph
ext , such that the elements denoted

Mw, resp. Nw, in Section 1.5 (see Remark 1.3) correspond to the elements denoted
similarly here.

Remark 3.1. — Let λ ∈ X, and consider the associated element ωλ ∈ Ω, see
Remark 2.1. Then the map h 7→ Hω−1

λ
· h induces an embedding of right H-modules

Msph
λ

↪→Msph
ext . In this way, one can considerMsph

ext as the result of “gluing together”
all the modulesMsph

λ
from the introduction.
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3.2. Kazhdan–Lusztig and p-canonical bases

Via the natural embeddings H ↪→ Hext,Msph ↪→Msph
ext andMasph ↪→Masph

ext , the
Kazhdan–Lusztig and p-canonical bases of H, Msph and Masph define families of
elements in Hext,Msph

ext andMasph
ext . We complete these families into bases by setting,

for w ∈ W and ω ∈ Ω,

Hwω := Hw ·Hω,
pHwω := pHw ·Hω,

Mwω := Mw ·Hω,
pMwω := pMw ·Hω,

Nwω := Nw ·Hω,
pNwω := pNw ·Hω.

(It can be easily checked that we also have Hωw = HωHw and pHωw = Hω
pHw for

any ω ∈ Ω and w ∈ W .)
Let us recall the following well-known property of the Kazhdan–Lusztig basis.

Lemma 3.2. — Let w ∈ Wext and s ∈ S. If `(ws) < `(w), then

Hw ·Hs =
(
v + v−1

)
·Hw.

As in the setting of Section 1.5 we have an Hext-module morphism

ξ : Hext →Masph
ext

defined by ξ(h) = Nid ·h. This morphism is clearly surjective; moreover, for w ∈ Wext
we have

ξ(Hw) =



Nw if w ∈ fWext;
0 otherwise,

ξ(pHw) =



pNw if w ∈ fWext;
0 otherwise

(see [RW18] for details).
Now, let wf be the longest element in Wf . Consider the endomorphism of Hext

(as a right Hext-module) sending h to Hwf · h. It follows from Lemma 3.2 that this
morphism factors through a morphism

(3.1) ζ :Msph
ext → Hext.

This morphism is injective, and satisfies

(3.2) ζ(Mw) = Hwfw, ζ(pMw) = pHwfw

for any w ∈ fWext. In particular, for ω ∈ Ω we have

(3.3) ζ(Mω) = Hwf ·Hω =
∑

z ∈Wf

v`(wf)−`(z)Hzω

(where the second equality uses [Soe97, Proposition 2.9]).

Remark 3.3. — Recall that for any w ∈ Wext, there exists Kw ∈ Z> 0 such that
pHw = Hw for any prime number p such that p > Kw. (However, determining Kw is
a very difficult task.) A similar claim holds for the p-canonical bases inMasph

ext and
Msph

ext .
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3.3. Statement

We can now state a version of Theorem 1.4 in terms of the extended affine Hecke
algebra (and for reductive groups which are not necessarily semisimple).
The statement will involve the element considered in the following lemma. (Here

the second equality follows from [Soe97, Lemma 5.7]. We will give a (geometric)
proof of both equalities in Section 4.2 below.)

Lemma 3.4. — We have
(3.4) pN tς = N tς =

∑

z ∈Wf

v`(z)Ntς · z.

Moreover, for any s ∈ Sf we have
N tς ·Hs =

(
v + v−1

)
·N tς .

Note for later use that, if ω ∈ Ω, multiplying (3.4) on the right by Hω we obtain
that
(3.5) pN tςω = N tςω =

∑

z ∈Wf

v`(z)Ntςzω.

Lemma 3.4 shows that the map Hext → Masph
ext defined by h 7→ N tς · h factors

through a morphism of right Hext-modules
(3.6) ϕ :Msph

ext →Masph
ext .

The main technical result of the paper is the following.

Theorem 3.5. — Assume that p is good for G. Then for any w ∈ fWext we have
ϕ(pMw) = pN tς ·w.

Remark 3.6. —
(1) Theorem 3.5 implies in particular that ϕ is injective. (Of course, this can also

be seen more directly.)
(2) To deduce Theorem 1.4 from Theorem 3.5, one simply observes that ϕ restricts

to a morphism of right H-modules from the submodule of Msph
ext generated

by Nω−1
ς

to Masph. Now the latter submodules identifies with Msph
ς (see

Remark 3.1), so that Theorem 1.4 becomes the special case of Theorem 3.5
when w ∈ ω−1

ς W .

4. Proof of Theorem 3.5

4.1. Categorification and p-canonical bases

The proof of Theorem 3.5 will use the geometric description of the p-canonical
bases in terms of parity complexes, which we now recall. For this we need to choose
a field K of coefficients for the parity complexes, which should be of characteristic p
but might differ from k. In fact, for technical reasons we will take for K a finite field.
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We also choose a prime number ` 6= p, and assume that K contains a nontrivial `th

root of unity.
We now fix an algebraically closed field F of characteristic `. Let G∨ be the con-

nected reductive algebraic group over F which is Langlands dual to G. By definition,
this group comes with a maximal torus T∨ ⊂ G∨ whose cocharacter lattice is X.
We will denote by B∨ ⊂ G∨ the Borel subgroup containing T∨ whose T∨-weights
are the negative coroots of (G, T ). We set K := F((z)), O := F[[z]], and denote by
G∨K , resp. G∨O , the ind-group scheme, resp. group scheme, over F which represents
the functor R 7→ G∨(R((z))), resp. R 7→ G∨(R[[z]]). We also denote by I∨ ⊂ G∨K
the Iwahori subgroup, i.e. the inverse image of B∨ under the evaluation morphism
G∨O → G∨. We then consider the affine flag variety

Fl := G∨K /I∨.

Following [JMW14] we can consider the category ParityI∨(Fl,K) of I∨-equivariant
parity (étale) K-complexes on Fl. The I∨-orbits on Fl are parametrized in a natural
way by Wext; we will denote by Flw the orbit corresponding to w (so that dim(Flw)
= `(w)). For any w ∈ Wext, there exists a unique indecomposable parity complex Ew
on Fl which is supported on Flw and whose restriction to Flw is KFlw [`(w)]. Then
the assignment (w, n) 7→ Ew[n] defines a bijection between Wext × Z and the set of
isomorphism classes of indecomposable objects in ParityI∨(Fl,K).
The usual convolution construction endows ParityI∨(Fl,K) with the structure of

a monoidal category. (The fact that a convolution of parity complexes is parity is
proved in [JMW14, Section 4.1].) In particular, the split Grothendieck group

[ParityI∨(Fl,K)]
has a natural product; we will in fact view this ring as a Z[v±1]-algebra, where v
acts via the automorphism induced by the cohomological shift [1]. It is well known
(see [JMW14, JW17, Spr82]) that there exists a unique Z[v±1]-algebra isomorphism
(4.1) Hext

∼−→ [ParityI∨(Fl,K)]
sending Hs to [Es] for any s ∈ S and Hω to [Eω] for any ω ∈ Ω. Then for w ∈ Wext,
the element pHw is the inverse image of [Ew] under (4.1), see e.g. [RW18, Part 3].
Recall also that the p-Kazhdan–Lusztig polynomials are the elements (phy, w)y, w∈Wext

of Z[v±1] such that
pHw =

∑

y ∈Wext

phy, w ·Hy.

In order to categorify the module Masph
ext , we consider the category of “Iwahori–

Whittaker” parity complexes ParityIW(Fl,K) on Fl. These objects are defined using
the action of the unipotent radical I∨,+u of the Iwahori subgroup I∨,+ associated
with the Borel subgroup B∨,+ of G∨ which is opposite to B∨ with respect to T∨;
see [RW18, Section 11] for details. (Here we use our assumption on `th roots of unity in
K.) The I∨,+u -orbits on Fl are parametrized in a natural way by Wext; but only those
corresponding to elements in fWext support nonzero Iwahori–Whittaker local systems.
Therefore the isomorphism classes of indecomposable objects in ParityIW(Fl,K) are
naturally in bijection with fWext × Z; we will denote by EIWw the object associated
with (w, 0).
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The convolution construction defines a right action of the monoidal category
ParityI∨(Fl,K) on the category ParityIW(Fl,K), and there exists a unique isomor-
phism of right Hext-modules

(4.2) Masph
ext

∼−→ [ParityIW(Fl,K)]
sending Nid to EIWid . Then for w ∈ fWext, pNw is the inverse image of [EIWw ] under
this isomorphism, see [RW18, Section 11].
Finally, we explain the categorification ofMsph

ext . We consider the “opposite affine
Grassmannian”

Grop := G∨O\G∨K .

This variety admits an action of I∨ induced by right multiplication on G∨K , and we
can consider the corresponding category of parity complexes ParityI∨(Grop,K). The
I∨-orbits on Grop are parametrized by fWext; therefore the indecomposable objects
in ParityI∨(Grop,K) are parametrized in a natural way by fWext × Z. The object
associated with (w, 0) (for w ∈ fWext) will be denoted Fw.
Again, the convolution construction defines a right action of the monoidal cat-

egory ParityI∨(Fl,K) on the category ParityI∨(Grop,K), and there exists a unique
isomorphism of right Hext-modules

Msph
ext

∼−→ [ParityI∨ (Grop,K)]
sending Mid to Fid. Using [ACR18, Lemma A.5] and the construction of the p-
canonical basis inMsph

ext , one can check that, for w ∈ fWext, pMw is the inverse image
of [Fw] under this isomorphism.

4.2. Parity complexes on affine Grassmannians

From now on we assume that p is good for G.
Consider the “usual” affine Grassmannian

Gr := G∨K /G∨O ,

and the G∨O-equivariant constructible derived category Db
G∨O

(Gr,K). This category
possesses a natural perverse t-structure, whose heart will be denoted PervG∨O(Gr,K).
Under our assumptions that p is good for G (equivalently, for G∨) and that G

has a simply-connected derived subgroup (so that the quotient of X∗(T∨) by the
coroot lattice of G is torsion-free), it is known that the equivariant cohomology
H•G∨(pt;K) = H•G∨O(pt;K) vanishes in odd degrees; see e.g. [JMW14, Section 2.6]
or [MR18, Section 3.2] for references. Therefore, the theory developed in [JMW14]
applies in this context, and we will denote by ParityG∨O(Gr,K) the corresponding
category of parity complexes.
For λ ∈ X, we set Lλ := zλ ·G∨O ∈ Gr. Then the assignment λ 7→ G∨O · Lλ induces

a bijection between X+ and the set of G∨O-orbits on Gr. Therefore, the isomorphism
classes of indecomposable objects in ParityG∨O(Gr,K) are parametrized in a natural
way by X+ ×Z; for λ ∈ X+ we will denote by E sph

λ the object associated with (λ, 0).
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The following result is proved in [JMW16] under some technical assumptions, and
in [MR18, Corollary 1.6] in the present generality. (This claim is known to be false
if we remove the assumption that p is good for G, see [JMW16].)

Theorem 4.1. — For any λ ∈ X+, the object E sph
λ is perverse.

Remark 4.2. — From the combinatorial point of view, this theorem says that if
w ∈ Wext is maximal in WfwWf , then pHw belongs to ⊕y Z ·Hy.

The other result which we will need is the main result of [BGM+19]. Here we con-
sider the Iwahori–Whittaker derived category of sheaves on Gr, denoted Db

IW(Gr,K).
This category is endowed with the perverse t-structure, whose heart will be de-
noted PervIW(Gr,K). This abelian category admits a natural structure of highest
weight category (in the sense considered e.g. in [Ric, Section 7]), and moreover the
realization functor provides an equivalence of triangulated categories

DbPervIW(Gr,K) ∼−→ Db
IW(Gr,K).

The I∨,+u -orbits on Gr are parametrized by X, and those which support a nonzero
Iwahori–Whittaker local system are the ones parametrized by elements in ς + X+

(i.e. by strictly dominant weights). In particular, no orbit in the boundary of the orbit
associated with ς supports such a local system; therefore the corresponding standard
perverse sheaf is simple, and isomorphic to the associated costandard perverse sheaf
(see [BGM+19, Equation (3.2)]). Hence this object is also parity, and will be denoted
FIWς .
The following result is proved in [BGM+19]. (The first claim holds without any

assumption on p; however for the second assertion we need the restriction that p is
good.) Here we denote by ?G∨O the natural convolution bifunctor

Db
IW(Gr,K)×Db

G∨O
(Gr,K)→ Db

IW(Gr,K)

(see [BGM+19] for details).

Theorem 4.3. — The functor
Ψ : Db

G∨O
(Gr,K)→ Db

IW(Gr,K)

defined by Ψ(F) = FIWς ?G
∨
O F is t-exact for the perverse t-structures, and restricts

to an equivalence of categories PervG∨O(Gr,K) ∼−→ PervIW(Gr,K). Moreover, for any
λ ∈ X, the object Ψ(E sph

λ ) is a tilting perverse sheaf.

The consequence of Theorems 4.1 and 4.3 that we will use below is the following.

Corollary 4.4. — For any G,G ′ in ParityG∨O(Gr,K), the morphism

HomDb
G∨

O

(Gr,K)(G,G ′)→ HomDb
IW (Gr,K)(Ψ(G),Ψ(G ′))

induced by Ψ is surjective.

Proof. — Any object of ParityG∨O(Gr,K) is a direct sum of cohomological shifts of
objects of the form E sph

λ (with λ ∈ X+); therefore to prove the corollary it suffices

ANNALES HENRI LEBESGUE



A simple character formula 521

to prove that for any λ, µ ∈ X+ and n ∈ Z the functor Ψ induces a surjection

(4.3) HomDb
G∨

O

(Gr, )

(
E sph
λ , E sph

µ [n]
)
→ HomDb

IW (Gr,K)

(
Ψ
(
E sph
λ

)
,Ψ

(
E sph
µ

)
[n]
)
.

Now, by Theorem 4.3 the objects Ψ(E sph
λ ) and Ψ(E sph

µ ) are tilting perverse sheaves;
therefore the right-hand side vanishes unless n = 0. And if n = 0, since E sph

λ and
E sph
µ are perverse, and since Ψ restricts to an equivalence on perverse sheaves, the

map (4.3) is an isomorphism in this case. �
We can now give the proof of Lemma 3.4.
Proof of Lemma 3.4. — One can easily check using (2.1) (and the fact that

`(x) = `(x−1) for any x ∈ Wext) that tς is of maximal length in tς ·Wf . Therefore,
the I∨,+u -orbit in Fl associated with tς is the inverse image under the projection
π : Fl→ Gr of the orbit of Lς . Using [ACR18, Lemma A.5] we deduce that

EIWtς = π∗
(
FIWς

)
[`(wf)].

It follows that pN tς = ∑
z∈Wf v

`(z)Ntς ·z, and that for any s ∈ Sf we have pN tς · Hs

= (v + v−1) · pN tς . The claims about N tς follow, taking p� 0 (see Remark 3.3). �

4.3. Fullness

To prove Theorem 3.5 we will consider a categorification of ϕ. For this, we work
with the G∨O-equivariant derived category Db

G∨O
(Fl,K). This category admits a right

action of the I∨-equivariant derived category Db
I∨(Fl,K) (by convolution, as usual),

and it is clear that there exists a canonical equivalence of triangulated categories
ı : Db

I∨ (Grop,K) ∼−→ Db
G∨O

(Fl,K)

sending Fid to KG∨O/I
∨ [`(wf)] (where Grop is as in Section 4.1) and commuting with

the right actions of Db
I∨(Fl,K) on both sides. Moreover, the theory of parity com-

plexes from [JMW14] applies in Db
G∨O

(Fl,K) also, and ı restricts to an equivalence
of categories

ıPar : ParityI∨(Grop,K) ∼−→ ParityG∨O(Fl,K),
where in the right-hand side ParityG∨O(Fl,K) means the full subcategory of parity
complexes in Db

G∨O
(Fl,K). In particular, the indecomposable objects in the category

ParityG∨O(Fl,K) are the objects ı(Fw)[n] for w ∈ fWext and n ∈ Z, and we have a
canonical isomorphism

Msph
ext

∼−→
[
ParityG∨O(Fl,K)

]

sending pMw to [ı(Fw)] for any w ∈ fWext.
We now consider the functor

Φ : Db
G∨O

(Fl,K)→ Db
IW(Fl,K)

defined by
Φ(F) = FIWς ?G

∨
O F ,
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where ?G∨O now denotes the natural convolution bifunctor
Db
IW(Gr,K)×Db

G∨O
(Fl,K)→ Db

IW(Fl,K).

Lemma 4.5. — The functor Φ sends parity complexes to parity complexes. More-
over, the map on split Grothendieck groups induced by the restriction

ΦPar : ParityG∨O(Fl,K)→ ParityIW(Fl,K)
is ϕ.

Proof. — The proof of the first claim is similar to that of [BGM+19, Lemma 4.14].
For the second claim, we observe that the map induced by ΦPar is clearly a morphism
of right Hext-modules. Since Msph

ext is a cyclic module, this reduces the proof to
checking that the image of [KG∨O/I

∨ [`(wf)]] corresponds to ϕ(Me) = N tς under (4.2).
However we have

Φ
(
KG∨O/I

∨ [`(wf)]
)

= π∗‘
(
FIWς

)
[`(wf)] ,

where π : Fl → Gr is the projection. As observed in the proof of Lemma 3.4, the
right-hand side is EIWtς , whose class in the Grothendieck group corresponds to pN tς

by definition. The claim follows, using the first equality in Lemma 3.4. �
The key step in our proof of Theorem 3.5 is the following claim.

Proposition 4.6. — The functor ΦPar from Lemma 4.5 is full.

Proof. — It is easily seen that any object in ParityG∨O(Fl,K) is a direct sum of
direct summands of objects of the form KG∨O/I

∨ ?I
∨ E with E in ParityI∨(Fl,K), where

?I
∨ is the natural convolution bifunctor

ParityG∨O(Fl,K)× ParityI∨(Fl,K)→ ParityG∨O(Fl,K).

Now any functor of the form (−) ?I∨ E (with E in ParityI∨(Fl,K)) admits a left
adjoint of the form (−) ?I∨ E ′ with E ′ in ParityI∨(Fl,K), hence this remark reduces
the proof of fullness of ΦPar to proving that for any F in ParityG∨O(Fl,K) the map

Hom•Db
G∨

O

(Fl,K)

(
G,KG∨O/I

∨

)
→ Hom•Db

IW (Fl,K)

(
Φ(G),Φ

(
KG∨O/I

∨

))

induced by Φ is surjective. If π is as in the proof of Lemma 3.4 (or of Lemma 4.5),
then we have

KG∨O/I
∨ = π∗E sph

0 , Φ(KG∨O/I
∨) = π∗

(
FIWς

)
.

Since π∗ ∼= π![−2`(wf)], using adjunction we deduce isomorphisms

Hom•Db
G∨

O

(Fl,K)

(
G, KG∨O/I

∨

) ∼= Hom•−2`(wf)
Db
G∨

O

(Gr,K)

(
π!(G), E sph

0

)
,

Hom•Db
IW (Fl,K)

(
Φ(G),Φ

(
KG∨O/I

∨

)) ∼= Hom•−2`(wf)
Db
IW (Gr,K)

(
π!Φ(G),FIWς

)
.

Now we have π!Φ(G) ∼= Ψ(π!G), where Ψ is as in Theorem 4.3; hence we are reduced
to proving that the morphism

Hom•Db
G∨

O

(Gr,K)

(
π!(G), E sph

0

)
→ Hom•Db

IW (Gr,K)

(
Ψ (π!G) ,FIWς

)
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induced by Ψ is surjective. However, π!G is parity, so that the claim follows from
Corollary 4.4. �

4.4. Proof of Theorem 3.5

Since the functor Φ is a full functor between Krull–Schmidt categories, it must
send indecomposable objects to indecomposable objects. Indeed, this follows from the
observation that any quotient of a local ring is local. Using support considerations
it is not difficult to deduce that for any w ∈ fWext we have

Φ(ı(Fw)) ∼= EIWtςw .
Passing to classes in the split Grothendieck group we deduce the formula of Theo-
rem 3.5.

5. Application: a character formula for simple G-modules
In this section we return to the setting of Sections 1–3; in particular, G is a

connected reductive algebraic group with simply connected derived subgroup over
an algebraically closed field k of characteristic p. We will assume that p > h, where
h is the Coxeter number of G. (In particular, this condition implies that p is good
for G, so that Theorem 3.5 is applicable.)

5.1. The tilting character formula

We set
Masph

ext := Z⊗Z[v±1]Masph
ext ,

where Z is considered as a Z[v±1]-module via v 7→ 1. This Z-module is a right module
over

Z⊗Z[v±1] Hext = Z[Wext].
We will denote by Rep(G) the abelian category of finite-dimensional algebraic

G-modules. The simple objects in this category are labelled in a natural way by the
subset X+ ⊂ X of dominant weights; as in Section 1.1 we will denote by L(λ) the
simple G-module of highest weight λ ∈ X+.
We consider the dilated and shifted action of W on X defined by

w ·p λ = w(λ+ ς)− ς, tµ ·p λ = λ+ pµ

for w ∈ Wf and λ, µ ∈ X. (It is a classical fact that this action does not depend
on the choice of ς.) We then denote by Rep∅(G) the “extended principal block” of
Rep(G), i.e. the Serre subcategory generated by the simple objects L(w ·p 0) with
w ∈ fWext. (Here, under our assumptions, for w ∈ Wext we have w ·p 0 ∈ X+ iff
w ∈ fWext.)
For λ ∈ X+ we also denote by ∆(λ), ∇(λ) and T(λ) the Weyl, induced, and

indecomposable tilting G-modules of highest weight λ (see [RW18, Section 3.1]). If
λ = w ·p 0 for some w ∈ fWext, then these objects belong to Rep∅(G).
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In the following lemma, T νµ is the translation functor from the µ-block to the
ν-block of Rep(G), see [Jan03, Chapter II.7]. See also Remark 2.1 for the definition
of ως .
Lemma 5.1. — For any ω ∈ Ω we have

T (pς + ω ·p 0) ∼= T
ως ω ·p 0
ως ·p(−ς) (L ((p− 1)ς)) .

Moreover, for any λ ∈ X+ we have

(T (pς + ω ·p 0) : ∇(λ)) =




1 if λ = tςxω ·p 0 for some x ∈ Wf ;
0 otherwise.

Proof. — We have pς+ω ·p0 = tςω
−1
ς ·p (ωςω ·p0), and (p−1)ς = tςω

−1
ς ·p (ως ·p (−ς)).

Moreover, pς + ω ·p 0 is maximal among the elements of the form tςω
−1
ς ·p (ωςxω ·p 0)

with x ∈ Wf . Hence by [Jan03, Proposition E.11] we have
T (pς + ω ·p 0) ∼= T

ως ω ·p 0
ως ·p(−ς) (T ((p− 1)ς)) .

Now by [Jan03, Remark in Section II.3.19], the Steinberg module L((p − 1)ς) is
isomorphic to ∆((p − 1)ς) and to ∇((p − 1)ς), hence is tilting. It is also clearly
indecomposable, so that T((p− 1)ς) = L((p− 1)ς). The first claim follows.
The second claim follows from the first one (and the fact that L((p − 1)ς)

= ∇((p− 1)ς)) in view of [Jan03, Proposition II.7.13]. �
For any s ∈ S we choose a weight µs as in [RW18, Section 3.1] (i.e. a “generic”

weight on the s-wall of the fundamental alcove for the dilated and shifted action)
and consider the exact selfadjoint endofunctor

Θs :=
⊕

ω ∈Ω
T ω ·p 0
ω ·p µsT

ω ·p µs
ω ·p 0

of Rep∅(G). (Here the sum might be infinite but, for each object V of Rep∅(G),
only finitely many of these functors applied to V do not vanish; so the functor Θs

is well defined.) If we denote by [Rep∅(G)] the Grothendieck group of the abelian
category Rep∅(G), and by [M ] the class of an object M , then it is well known (see
e.g. [RW18, Section 1.2]) that the assignment

1⊗Nw 7→ [∆ (w ·p 0)] = [∇ (w ·p 0)]
induces an isomorphism of abelian groups
(5.1) Masph

ext
∼−→ [Rep∅(G)] .

Using [Jan03, Propositions II.7.11 and II.7.12] one can check that, under this identi-
fication, the endomorphism of the right-hand side induced by Θs corresponds to the
action of (1 + s) on the left-hand side.
The following statement was conjectured in [RW18] (see in particular [RW18,

Corollary 1.4.1]) and proved in [AMRW19].
Theorem 5.2. — Under the isomorphism (5.1), 1⊗ pNw is sent to [T(w ·p 0)] for

any w ∈ fWext.
Remark 5.3. — In [AMRW19, RW18] we work with W instead of Wext; but the

extension is immediate (see e.g. [AR19]).
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5.2. G1T -modules

Let Ġ be the Frobenius twist of G, and let Fr : G→ Ġ be the Frobenius morphism.
We denote by G1 the kernel of Fr (a normal finite subgroup scheme of G) and by
G1T , resp. G1B

+, the inverse image of the Frobenius twist Ṫ of T , resp. Ḃ+ of B+,
under Fr. (Here, B+ is the Borel subgroup of G opposite to B with respect to T .)
We will identify the characters of Ṫ with X, in such a way that the composition of
the Frobenius morphism T → Ṫ with the character λ of Ṫ is the character pλ of T .
We use similar conventions for Ḃ+.
We will denote by Rep(G1T ) the category of finite-dimensional algebraic G1T -

modules. As explained in [Jan03, Proposition II.9.6], the simple objects in Rep(G1T )
are in a canonical bijection with X; the simple module corresponding to λ will be
denoted L̂(λ). If λ is dominant and restricted then L̂(λ) is the restriction of L(λ) to
G1T , and if λ, µ ∈ X we have

(5.2) L̂(λ+ pµ) ∼= L̂(λ)⊗ kṪ (µ),

where kṪ (µ) is seen as a G1T -module via the surjection G1T → Ṫ . In particular,
these simple objects are completely determined by the objects (L(λ) : λ ∈ X+).
The category Rep(G1T ) also contains the baby Verma modules

Ẑ(λ) = CoindG1B+

B+

(
kB+(λ)

)

for λ ∈ X. With these conventions, we have a surjection of G1T -modules Ẑ(λ)
� L̂(λ), see [Jan03, Proposition 9.6(d)]. We also have canonical isomorphisms

(5.3) Ẑ(λ+ pµ) ∼= Ẑ(λ)⊗ kṪ (µ)

for λ, µ ∈ X.
The category Rep(G1T ) admits a “block” decomposition similar to that of Rep(G);

see e.g. [Jan03, Section II.9.19]. Hence we can consider Rep∅(G1T ), the “extended
block” of the weight 0, i.e. the Serre subcategory generated by the simple objets
L̂(λ) with λ ∈ Wext ·p 0. If λ ∈ Wext ·p 0 then Ẑ(λ) also belongs to Rep∅(G1T ). It
is clear from the Steinberg tensor product formula [Jan03, Proposition II.3.16] that
the restriction functor Rep(G)→ Rep(G1T ) restricts to a functor

(5.4) Rep∅(G)→ Rep∅(G1T ).

The image of a G-module M under this functor will sometimes be denoted M|G1T .
As explained in [Jan03, Section II.9.22], the translation functors can be canonically

“lifted” to the category Rep(G1T ). In particular, this means that there exists an exact
selfadjoint endofunctor of Rep∅(G1T ), which for simplicity will also be denoted Θs,
and such that the following diagram commutes:

Rep∅(G)
(5.4)

��

Θs // Rep∅(G)
(5.4)
��

Rep∅(G1T ) Θs // Rep∅(G1T ).
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Lemma 5.4. — For any w ∈ Wext and any s ∈ S, in the Grothendieck group of
Rep∅(G1T ) we have

[
Θs

(
Ẑ(w ·p 0)

)]
=
[
Ẑ (w ·p 0)

]
+
[
Ẑ (ws ·p 0)

]
.

Proof. — This follows from [Jan03, Equations (2) and (3) in Section II.9.22]. �
Remark 5.5. — The formula in Lemma 5.4 suggests that the Grothendieck group

[Rep∅(G1T )] is closely related with the right Z[W ]-module Z⊗Z[v±1]P . However, two
important remarks are in order. First, since A is in bijection with W rather than
Wext, to make this precise we would have to work with the “true” principal block
Rep0(G1T ) in Rep(G1T ), i.e. the Serre subcategory generated by simple modules
L̂(w ·p 0) with w ∈ W . But even then a difficulty would remain, since the classes of
baby Verma modules do not form a basis of the Grothendieck group [Rep0(G1T )].
We will not try to address this problem here.

5.3. Injective/projective G1T -modules

For λ ∈ X, we will denote by Q̂(λ) the injective hull of L̂(λ) as a G1T -module,
see [Jan03, Section II.11.3]. As explained in [Jan03, Equation (3) in Section II.11.5],
Q̂(λ) is also the projective cover of L̂(λ) in this category. As for simple and baby
Verma modules, for λ, µ ∈ X we have
(5.5) Q̂(λ+ pµ) ∼= Q̂(λ)⊗ kṪ (µ).
If λ ∈ Wext ·p 0 then Q̂(λ) belongs to Rep∅(G1T ). By [Jan03, Proposition II.11.4],

this module admits a filtration with subquotients of the form Ẑ(µ) with µ ∈ Wext ·p 0;
moreover the number of occurrences of Ẑ(µ) does not depend on the choice of
such a filtration, and is equal to the multiplicity [Ẑ(µ) : L̂(λ)]. More generally, any
projective object Q̂ in Rep∅(G1T ) admits a filtration with subquotients of the form
Ẑ(µ) with µ ∈ Wext ·p 0, and the number of occurrences of Ẑ(µ) does not depend on
the choice of filtration; this number will be denoted (Q̂ : Ẑ(µ)).
Lemma 5.6. — For any ω ∈ Ω, the projective G1T -module Q̂(tςwfω ·p 0) is the

image under (5.4) of T(pς + ω ·p 0). Moreover, for any µ in X we have
(
Q̂ (tςwfω ·p 0) : Ẑ(µ)

)
=




1 if µ = tςxω ·p 0 for some x ∈ Wf ;
0 otherwise.

Proof. — The element tςwfω ·p 0 = (tςwfω
−1
ς ) ·p (ωςω ·p 0) belongs to the unique

alcove which contains (p−1)ς = (tςwfω
−1
ς )·p(ως ·p(−ς)) in its upper closure. Therefore,

by [Jan03, Section II.11.10], the indecomposable projective G1T -module Q̂(tςwfω ·p0)
is obtained by translating from ως ·p (−ς) to ωςω ·p 0 the G1T -module Q̂((p− 1)ς).
Moreover, by [Jan03, Section II.9.16 and equation (1) in Section II.11.9] we have
Q̂((p − 1)ς) ∼= L̂((p − 1)ς) ∼= Ẑ((p − 1)ς). Then the description of (Q̂(tςwfω ·p 0) :
Ẑ(µ)) follows from the considerations surrounding Equations (2)–(3) in [Jan03,
Section II.9.22].
The first claim follows from the considerations above and Lemma 5.1. �
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The following result is an easy consequence of [Jan80, Corollary 4.5] (see also [Jan03,
Section 11.11]); see [Don93] or [Jan03, Section E.9] for details.

Theorem 5.7. — Assume that p > 2h − 2. Then for any restricted dominant
weight λ we have

Q̂(λ) ∼= T (2(p− 1)ρ+ wfλ)|G1T
.

We will say that an element w ∈ Wext is restricted if w ·p 0 is a restricted dominant
weight. Note that this condition does not depend on p, and that restricted elements
belong to fWext.
In terms of the orbit Wext ·p 0, since wf(ς) = ς − 2ρ, Theorem 5.7 implies in

particular that (if p > 2h− 2) for any w ∈ Wext such that tςw is restricted, we have
(5.6) Q̂ (tςw ·p 0) ∼= T (tςwfw ·p 0)|G1T

.

5.4. Characters of tilting modules as G1T -modules

Now we set
Msph

ext := Z⊗Z[v±1]Msph
ext ,

and still denote by ϕ : Msph
ext → Masph

ext and ζ : Msph
ext → Z[Wext] the (injective)

morphisms induced by (3.6) and (3.1) respectively. We then consider the maps

Msph
ext

ζ

��

ϕ // Masph
ext

(5.1)
∼
// [Rep∅(G)] // [Rep∅(G1T )]

Z [Wext]

where the rightmost arrow is induced by the restriction functor (5.4).

Proposition 5.8. — Let M be a tilting module in Rep∅(G), all of whose direct
summands are of the form T(tςw ·p 0) with w ∈ fWext. Then M|G1T is a projective
G1T -module. Moreover, the inverse image a of [M ] under (5.1) belongs to the image
of ϕ, and the image under ζ of the preimage of a is equal to

∑

w∈Wext

(
M|G1T : Ẑ (w ·p 0 + pς)

)
· w.

Proof. — As explained in [Jan03, Lemma E.8], an indecomposable tilting module
T(λ) (with λ ∈ X+) is projective as a G1T -module iff λ − (p − 1)ς ∈ X+. This
implies the first claim in the proposition, and also that the G-modules M as in the
statement are all isomorphic to direct sums of direct summands of modules of the
form

Θs1Θs2 · · · Θsn (T (pς + ω ·p 0))
with s1, · · · , sn in S and ω ∈ Ω. This reduces the proof of the proposition to the
case of modules of this form. We will prove this case by induction on n.
First we treat the case n = 0. By (3.5) and Lemma 5.1 we have

[T (pς + ω ·p 0)] = 1⊗N tς ω = ϕ (1⊗Mω) .
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(Of course, this equality is also a special case of Theorem 5.2.) Using (3.3), we deduce
that the image under ζ of the preimage of [T(pς + ω ·p 0)] is

∑

x∈Wf

1⊗Hxω.

On the other hand, by Lemma 5.6 we know that T(pς + ω ·p 0)|G1T = Q̂(tςwfω ·p 0),
and we know the multiplicities of baby Verma modules in this projective module.
Comparing with the formula above, we deduce the desired claim.
To prove the induction step, we will prove that if the claim is true for a module

M , then it is true also for Θs(M) for any s ∈ S. As explained just after (5.1), if we
denote by a the inverse image of [M ], then the inverse image of [Θs(M)] is a · (id +s).
Hence if a = ϕ(b), then this inverse image is ϕ(a · (id +s)). Now by Lemma 5.4, for
any w ∈ Wext we have
(
Θs

(
M|G1T

)
: Ẑ (pς + w ·p 0)

)

=
(
M|G1T : Ẑ (pς + w ·p 0)

)
+
(
M|G1T : Ẑ (pς + ws ·p 0)

)
,

and the desired claim follows. �

5.5. The simple character formula

Our main application of Theorem 3.5 is the following claim.

Theorem 5.9. — Assume that p > 2h− 2. If w ∈ Wext is such that tςw belongs
to fWext and is restricted, then for any y ∈ Wext we have

(
Q̂ (w ·p 0) : Ẑ (y ·p 0)

)
= phy, w(1).

Proof. — By (5.6), we have

T (tςwfw ·p 0)|G1T
∼= Q̂ (pς + w ·p 0) .

By Theorem 5.2, the class [T(tςwfw ·p 0)] in [Rep0(G)] is the image of 1 ⊗ pN tςwfw

under (5.1). Now by Theorem 3.5 we have

1⊗ pN tς wf w = ϕ
(
1⊗ pMwfw

)
.

Using (3.2) and Proposition 5.8 we deduce that
∑

x∈Wext

(
Q̂ (pς + w ·p 0) : Ẑ (pς + x ·p 0)

)
· x = 1⊗ pHw.

Since (Q̂(pς + w ·p 0) : Ẑ(pς + x ·p 0)) = (Q̂(w ·p 0) : Ẑ(x ·p 0)) for any x ∈ Wext
(see (5.3) and (5.5)), this implies the desired equality. �

Remark 5.10. —
(1) Let wmax ∈ W be the unique element such that wmax ·p0 belongs to the (shifted

and dilated) alcove of −pς. The main result of [Fie11] (see in particular [Fie11,
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Theorems 7.8 and 8.6]) states that if pHx = Hx for any x ∈ W such that
x 6 wmax in the Bruhat order, then we have

[
Ẑ (y ·p 0) : L̂ (w ·p 0)

]
= hy, w(1)

for any w, y ∈ W such that tςw belongs to fWext and is restricted (and
hence Lusztig’s conjecture holds). Of course, this claim also follows from
Theorem 5.9.

(2) Once the multiplicities (Q̂(w ·p 0) : Ẑ(y ·p 0)) are known for any w, y as in
Theorem 5.9, using (5.3) and (5.5) we can deduce these multiplicities for any
w, y ∈ W . Then, using the reciprocity formula

(
Q̂ (w ·p 0) : Ẑ (y ·p 0)

)
=
[
Ẑ (y ·p 0) : L̂ (w ·p 0)

]

(see Section 5.3) one can deduce the multiplicities on the right-hand side
of this equality. And this information allows to compute the characters of
the modules L̂(w ·p 0) for any w ∈ Wext. In fact, using (5.2) it suffices to
do so when w is restricted. In this case L̂(w ·p 0) is the restriction of a G-
module; hence its weights (and their multiplicities) are stable under Wf . As a
consequence, to determine them it suffices to compute the dominant weights
appearing in L̂(w ·p 0) and their multiplicities. Using the determination of the
multiplicities [Ẑ(y ·p 0) : L̂(w ·p 0)] and the “triangularity” of these numbers
(see [Jan03, Corollary 9.15(a)]) one can write

(5.7)
[
L̂ (w ·p 0)

]
=

∑

x∈W (1)
ext

ax ·
[
Ẑ (x ·p 0)

]
+

∑

y ∈W (2)
ext

by ·
[
L̂ (y ·p 0)

]

with W (1)
ext ,W

(2)
ext subsets of Wext, in such a way that L̂(y ·p 0) does not admit

any dominant weight for y ∈ W (2)
ext . The characters of the baby Verma modules

are easy to compute, see e.g. [Fie10, Section 3.1]. Hence from (5.7) one can
compute the dominant weights appearing in L̂(w ·p 0) and their multiplicities.
(See also [Sob20, Section 4] for a different presentation of this procedure.)

(3) Our assumptions on p in Theorem 5.9 are that p > 2h − 2 and p > h. It
is easily seen that these two conditions are equivalent to the condition that
p > 2h− 1.

5.6. Proof of Theorem 1.2

We conclude the paper by explaining how Theorem 5.9 implies Theorem 1.2 from
the introduction. As in Section 1.4, for m in P we denote by [m]v 7→1 its image in
Z ⊗Z[v±1] P ∼= Z[A ]. Recall that W acts on A on the right, see Section 1.5. This
induces in the natural way a structure of right Z[W ]-module on Z[A ], and it is clear
from (2.5) that this action coincides with the one induced by the H-action on P (via
the canonical isomorphism Z⊗Z[v±1] H ∼= Z[W ]).
Proof of Theorem 1.2. — Since both qA and pP Â are invariant under the replace-

ment of A by µ+A for µ ∈ X (see (5.5) and (2.9) respectively), we can assume that
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A ⊂ Π̌0, so that Â = wf(A) ∈ Π̂0. Then
pP Â = 1

πf
PAfund · ζ (pMw) ,

where w ∈ W is the unique element such that wf(A) = Afund ·w = w(Afund), i.e. such
that A = wfw(Afund). By construction we have

ζ (pMw) = pHwfw =
∑

y ∈W

phy, wf w ·Hy,

hence using (2.8) we obtain that

[pP Â]v 7→ 1 = 1
|Wf |


 ∑

x∈Wf

x(Afund)

 ·


 ∑

y ∈W

phy, wf w(1) · y



= 1
|Wf |



∑

x∈Wf
y ∈W

phy, wf w(1) · xy(Afund)




=
∑

z ∈W

1
|Wf |


 ∑

x∈Wf

phx−1z,wfw(1)

 · z(Afund).

Now since w ∈ fW , the element wfw is maximal in Wf · wfw, so that the parity
complex Ewfw (see Section 4.1) is constructible with respect to the stratification by
G∨O-orbits, which implies that phx−1z,wfw(1) = phz, wf w(1) for any x ∈ Wf . We deduce
that

[pP Â]v 7→ 1 =
∑

z ∈W

phz, wf w(1) · z(Afund).

Comparing with Theorem 5.9 and the definition of qA, we obtain the desired formula.
�

6. A combinatorial proof of Theorem 1.4 in the case of
Kazhdan–Lusztig bases

In this section we provide an alternative proof of the version of Theorem 1.4 for
“standard” Kazhdan–Lusztig bases, see Remark 1.5(2). This proof is based on the
results of [Soe97](4) (and is therefore “combinatorial”), and was explained to us by
Soergel.
In this section we assume that G is semisimple (and simply connected). As in

Section 1.4 we consider the “periodic module” P for H. As explained in [Soe97,
Section 4] the family (PA : A ∈ A ) forms a Z[v±1]-basis of a certain H-submodule
P◦ ⊂ P. By [Soe97, Lemma 4.9], the action of X on P considered in Section 2.3
extends to a Z[v±1]-linear action of the extended affine Weyl group Wext on P◦, for
(4)Some of the results of [Soe97] on which this proof is based are not originally due to Soergel, but
are restatements of results due to Lusztig and to Kato. We refer to [Soe97] for a discussion of the
original references.
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which the action of w ∈ Wext is denoted 〈w〉 : P◦ → P◦. It follows from (2.6) that
this action satisfies the following formula: for ω ∈ Ω and w ∈ W we have

〈ωw〉(P · h) = (〈ωw〉P ) · (HωhH
−1
ω )

for P ∈ P◦ and h ∈ H. (Here the element Hω belongs to the larger algebra Hext
introduced in Section 3.1; conjugation by this element stabilizes H.)
We next consider the map

alt : P◦ → P◦
defined by the formula

alt(P ) =
∑

w∈Wf

(−1)`(w)〈w〉P.

We will also consider the Z[v±1]-linear map
res : P →Masph

determined by

res(A) =



NA if A ∈ A +;
0 otherwise.

This morphism is not H-linear; but it follows from [Soe97, Proposition 5.2] that the
composition res ◦ alt is H-linear. Moreover, [Soe97, Theorem 5.3(1)] says that for
A ∈ A +

ρ we have
(6.1) res ◦ alt(PA) = NA.

On the other hand, let us consider the morphism of right H-modules
Alt := 〈t−ρ〉 ◦ alt ◦〈tρ〉 : P◦ → P◦.

In [Soe97, Section 6] Soergel introduces the Z[v±1]-module P̂ consisting of certain
formal linear combinations∑A fAA, and the map η : P̂ → P̂ . The module P̂ contains
P as a submodule in the natural way. We also have a map

Res : P̂ →Msph

sending ∑A fAA to ∑A∈A + fAMA. (Here the linear combination ∑A∈A + fAMA is
finite due to the form of the combinations authorized in P̂.) Then [Soe97, Corol-
lary 6.9] states that for any A ∈ A + we have
(6.2) MA = Res ◦η ◦ Alt(PA).
By [Soe97, Proposition 6.6], the map Res ◦η ◦Alt is H-linear; it follows that Res ◦η :
Alt(P◦) → Msph is H-linear as well. One can check that the elements (Alt(PA) :
A ∈ A +) form a Z[v±1]-basis of the sub-H-module Alt(P◦) ⊂ P◦; therefore this
formula implies that Res ◦η induces an isomorphism of H-modules from Alt(P◦) to
Msph.
By (2.7) we have 〈tρ〉(PA) = P ρ+A for any A ∈ A ; hence the formula (6.2) can be

written as
MA = Res ◦η ◦ 〈t−ρ〉 ◦ alt

(
P ρ+A

)

for any A ∈ A +.
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Fix now A ∈ A +, and choose h ∈ H such that MA = MAfund · h. Then we have

Res ◦η ◦ 〈t−ρ〉 ◦ alt
(
P ρ+A

)
= MA = MAfund · h
=
(
Res ◦η ◦ 〈t−ρ〉 ◦ alt

(
P ρ+Afund

))
· h

= Res ◦η ◦ 〈t−ρ〉 ◦ alt
(
P ρ+Afund ·HωρhH

−1
ωρ

)
.

By injectivity of Res ◦η on Alt(P◦) we deduce that
〈t−ρ〉 ◦ alt

(
P ρ+A

)
= 〈t−ρ〉 ◦ alt

(
P ρ+Afund ·HωρhH

−1
ωρ

)
,

and then that
alt
(
P ρ+A

)
= alt

(
P ρ+Afund ·HωρhH

−1
ωρ

)
.

Applying res and using (6.1), we deduce that

(6.3)
Nρ+A = res ◦ alt

(
P ρ+A

)
= res ◦ alt

(
P ρ+Afund ·HωρhH

−1
ωρ

)

=
(
res ◦ alt

(
P ρ+Afund

))
·HωρhH

−1
ωρ = Nρ+Afund ·HωρhH

−1
ωρ .

Now we have Sρ = τρ(Sf) = ωρSfωρ, see Remark 2.1. Hence there exists an
isomorphism of Z[v±1]-modules

Msph ∼−→Msph
ρ

which sendsMid·h toMρ
id·HωρhH

−1
ωρ for any h ∈ H. In terms of the parametrization by

alcoves, this morphism sendsMB toMρ
ρ+B for any B ∈ A +. (In fact, if B = w(Afund)

with w ∈ fW , then MB = MAfund ·Hw is sent to

Mρ
ρ+Afund

·HωρHwH
−1
ωρ = Mρ

(ρ+Afund)·ωρwω−1
ρ

= Mρ

xρωρwω
−1
ρ (Afund) = Mρ

ρ+B.
)

This morphism also commutes with the appropriate Kazhdan–Lusztig involutions,
hence sends MB to Mρ

ρ+B for any B ∈ A +. It follows that
Mρ

ρ+Afund
·HωρhH

−1
ωρ = Mρ

ρ+A,

which proves that
Nρ+Afund ·HωρhH

−1
ωρ = ϕρ

(
Mρ

ρ+A

)
.

Comparing with (6.3) we finally obtain that Nρ+A = ϕρ(Mρ
ρ+A), which finishes the

proof of Theorem 1.4.
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