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Abstract. — We show that the algebraic automorphism group of the SL2(C) character
variety of a closed orientable surface with negative Euler characteristic is a finite extension of
its mapping class group. Along the way, we provide a simple characterization of the valuations
on the character algebra coming from measured laminations.
Résumé. — Nous montrons que le groupe d’automorphismes de la variété des SL2(C)

caractères d’une surface orientable close de caractéristique d’Euler strictement négative est une
extension finie de son groupe modulaire. En cours de route, nous donnons une caractérisation
simple des valuations de l’algèbre des fonctions sur la variété des caractères qui proviennent
des laminations mesurées.

1. Introduction

Let Σ be a closed oriented surface of genus g > 2 and denote Mod(Σ) its map-
ping class group, which by the Dehn–Nielsen–Baer theorem can be identified with
Out(π1(Σ)) = Aut(π1(Σ))/ Inn(π1(Σ)).
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The meaningful spaces which carry an action of this group often manifest rigidity
properties, as explained for instance in [AS16]: whenever the mapping class group
acts preserving some structure, it is almost the full automorphism group; celebrated
examples are the Teichmüller space with its Kähler structure, the space of measured
laminations with its PL structure, or the curve complex with its simplicial structure.
Here we show the same kind of result for the character variety, that is the space

X(Σ) defined as the algebraic quotient of Hom(π1(Σ), SL2(C)) by the conjugation
action of SL2(C). Recall that this affine variety is constructed from its algebra of
functions

C[X(Σ)] = C [Hom(π1(Σ), SL2(C))]SL2(C) .

The automorphism group Aut(X(Σ)) of the affine variety X(Σ) is by definition the
group of automorphisms of the C-algebra C[X(Σ)].
The action [ϕ] · [ρ] = [ρ ◦ ϕ−1] of ϕ ∈ Aut(π1(Σ)) on ρ ∈ Hom(π1(Σ), SL2(C))

descends to an algebraic action of the mapping class group on the character vari-
ety. Moreover, multiplying all representations ρ : π1(Σ)→ SL2(C) by a central one
λ : π1(Σ) → {± Id} yields an action of H1(Σ,Z/2Z) on X(Σ). The purpose of this
note is to prove the:

Theorem. — When g > 3, the so defined map H1(Σ,Z/2Z) o Mod(Σ) →
Aut(X(Σ)) is an isomorphism. When g = 2 it is surjective with kernel the hy-
perelliptic involution.

Similar results were obtained in [ÈH74] for the 1-punctured torus and 4-punctured
sphere. We thank Serge Cantat for pointing this out and explaining the proof. The
computation of the automorphism group of the character variety had been asked on
many occasions to the first author by Juan Souto; however this work stemmed from
different motivations, including a better understanding of measured laminations in
terms of valuations.
Our strategy is to find an action of Aut(X(Σ)) on the space of measured lamina-

tions, and show that it preserves the set of simple curves and their disjointness rela-
tion, hence the curve complex. For this consider the action of Aut(X(Σ)) on a space
V of valuations. Those are by definition the functions v : C[X(Σ)]→ {−∞}∪[0,+∞)
which are null on C∗, take finite values except for v(0) = −∞, and satisfy for all f, g
the relations v(fg) = v(f) + v(g) and v(f + g) 6 max(v(f), v(g)). We endow V with
the topology given by pointwise convergence, for which the action of Aut(X(Σ)) is
continuous.
Although it is established (for instance in [Ota12]) that the space of measured

laminations ML(Σ) embeds continuously in V , it is not clear why this subset should be
preserved by Aut(X(Σ)), and this is one of the main steps in the proof. Corollary 3.2
gives a simple and presumably new characterization of measured laminations as the
set of “simple valuations” which is analogous to the set of monomial valuations for
polynomial algebras. We hope that this description will help understand the topology
of the set of all valuations over the character variety, for instance by showing that it
retracts by deformation on the space of simple valuations.
Section 2 is quite elementary: we define simple valuations and show that they

contain an embedded copy of the space measured laminations. Section 3 is the
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technical heart of the note: we show that any valuation is (sharply) dominated by one
which is associated to a measured lamination, for this we apply the Morgan–Otal and
Skora theorems to some Bass–Serre tree. Then we identify a property of valuations,
called untameability, which is obviously preserved by algebraic automorphism and we
show that it defines a dense subset in ML to conclude that Aut(X(Σ)) acts on ML(Σ).
In Section 4, after identifying multicurves with simple and discrete valuations, we
explain how to read the number of components and their geometric intersection in
terms of their associated valuation rings. We deduce that Aut(X(Σ)) acts on the
curve complex, and conclude using Ivanov’s Theorem.
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Athanase Papadopoulos, Juan Souto and Alex Wright for their implication in this
work. We thank in particular Christopher Leininger for his help in the proof of
Lemma 2.8 and Lemma 3.4. The referee also helped to bring the article to its present
form through his criticism.

2. Simple valuations and measured laminations

For α ∈ π1(Σ), define tα ∈ C[X(Σ)] by the formula tα([ρ]) = Tr ρ(α). Let us
recall a folklore presentation of the character variety, mainly due to Procesi. We
refer to [P17] for a full account and to [Che13, Prop. 2.3] for a proof of this specific
statement, which holds more generally for any finitely generated group.

Theorem (Algebra presentation). — The algebra C[X(Σ)] is generated by the
tα for α ∈ π1(Σ) with ideal of relations generated by t1 − 2 and tαtβ − tαβ − tαβ−1

for α, β ∈ π1(Σ).

We call multicurve on Σ an embedded one dimensional submanifold Γ ⊂ Σ which
is a union of curves homotopic to γi ∈ π1(Σ) \ {1}, and set tΓ = ∏n

i=1 tγi
∈ C[X(Σ)].

Components of Γ must be simple and disjoint; we allow the empty multicurve for
which t∅ = 1. The previous theorem has the following important consequence [PS00]:

Theorem (Linear basis for the character algebra). — The family (tΓ) where Γ
ranges over the isotopy classes of multicurves forms a linear basis of C[X(Σ)].

This allows to treat the elements tΓ as if they were monomials (despite the fact
that they are not stable by multiplication), and motivates the next definition.

Definition 2.1 (Simple valuations). — A valuation v ∈ V is called simple if for
any f ∈ C[X(Σ)] \ {0} decomposed as f = ∑

mΓtΓ in the basis of multicurves, one
has

(max) v(f) = max {v(tΓ) | mΓ 6= 0} .
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Remark 2.2. — It is not clear at this point why the set of simple valuations
should be preserved by Aut(X(Σ)), since we have not uniquely characterized our
linear basis.

Proposition 2.3 (Measured laminations are simple valuations). — Fix λ a mea-
sured lamination and denote by i(·, ·) the intersection pairing between measured
laminations. The map vλ : tα 7→ i(λ, α) for α ∈ π1(Σ) extends to a unique simple
valuation vλ ∈ V .

Proof. — First treat the case of the measured lamination associated to a simple
curve δ. We define vδ on the basis of multicurves by the expression vδ (∏n

i=1 tγi
) =∑

i(δ, γi) and extend it to C[X(Σ)] using equation (max). We must verify that both
definitions coincide, meaning that given α ∈ π1(Σ) such that tα = ∑

mΓtΓ we have
i(δ, α) = max{i(δ,Γ) | mΓ 6= 0}, but this is the content of D. Thurston’s [Thu09,
Lemma 12].
All that remains is to check the formula vδ(fg) = vδ(f) + vδ(g). For this, consider

the increasing filtration of C[X(Σ)] defined by Fn = Span{tγ | γ ∈ π1(Σ), i(δ, γ) 6 n}.
Let k = vδ(f) and l = vδ(g) be such that f ∈ Fk \ Fk−1 and g ∈ Fl \ Fl−1. It is
equivalent to prove vδ(fg) = vδ(f) + vδ(g) and that fg is non zero in Fk+l/Fk+l−1.
Hence, we are reduced to showing that the graded algebra ⊕n∈N Fn/Fn−1 is an
integral domain, which is [PS19, Theorem 12] (this can also be derived from the
proof of [CM12, Theorem 5.3]).
For the general case, we extend the map vλ to C[X(Σ)] in the same way. The fact

that it is indeed an extension and defines a simple valuation will follow from the case
of simple curves by a limiting procedure. We know from [FLP79, Théorème 1.3] that
any measured lamination λ is a limit of weighted simple curves mjδj in the sense
that for all α ∈ π1(Σ) one has i(λ, α) = limj→∞mji(δj, α). Hence by equation (max)
the mjvδj

converge pointwise to vλ, which indeed defines a valuation satisfying
vλ(tα) = i(λ, α) for all α ∈ π1(Σ). One could also observe that the subset of simple
valuations is closed in V for the topology of pointwise convergence. �

As a consequence of this proposition, we can identify a measured lamination λ
with the corresponding valuation vλ. Moreover, the usual topology on the space of
measured laminations ML is the topology of weak convergence of lengths: in other
terms, it is the topology induced by the embedding of ML in V .

Definition 2.4 (Strict valuations). — A valuation v ∈ V is strict if for all
multicurves Γ 6= ∆, we have v(tΓ) 6= v(t∆).

Definition 2.5 (Positive valuations). — A valuation v ∈ V is positive when
v(tγ) > 0 for every simple curve γ.

Remark 2.6. — Let us comment on the relations between simple, strict and
positive:

(i) For simple valuations it is equivalent to be positive on tγ for all simple γ, on
tα for all non-trivial α ∈ π1(Σ), or on non-constant elements in C[X(Σ)].

(ii) (Strict implies positive). By definition v(t∅) = v(1) = 0, it follows that if v is
strict, then for any simple curve γ we must have v(tγ) > 0.
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(iii) (Strict implies simple). For any valuation v ∈ V, the relation v(f + g) 6
max{v(f), v(g)} is an equality as soon as v(f) 6= v(g). Therefore strict valua-
tions are simple since they automatically satisfy the (max) relation.

Recall that Thurston introduced a natural measure on the space of measured
laminations that we use freely in this section. Masur showed that up to scaling, it
is the only Mod(Σ)-invariant measure on ML in its Lebesgue class. Therefore it is
proportional to the Borelian measure assigning to every open set U the limit as
r →∞ of the number of multicurves in the dilated set r · U divided by r6g−6. This
may serve as a definition.

Proposition 2.7 (Most measured laminations are strict). — The set of measured
laminations λ such that vλ is strict has full measure in ML.

Proof. — Let us first show that the set of λ ∈ ML such that vλ is positive has full
measure. By [Pap86a, Section 3, Lemma 2], for every simple curve γ, the set N(γ) =
{λ ∈ ML | i(γ, λ) 6= 0} is the complement of a codimension-1 PL-submanifold,
in particular it has measure 0 (see also [Pap86b, Section 4]). The set of positive
laminations is the intersection of all N(γ), so it has full measure.
Inside that set of positive laminations, the complement to the set of strict valuations

is the union over the countable set of pairs of distinct non-empty multicurves, of
the N(Γ1,Γ2) = {λ ∈ ML | i(λ,Γ1) = i(λ,Γ2)}, so the result follows from the next
lemma. �

Lemma 2.8 (Intersection with distinct multicurves seldom coincides). — For
distinct multicurves Γ1 6= Γ2, the set N(Γ1,Γ2) = {λ ∈ ML | i(λ,Γ1) = i(λ,Γ2)} has
measure 0 in the set of positive measured laminations.

Proof. — The space ML has a piecewise linear (PL) structure (given by Dehn–
Thurston coordinates or train tracks) for which the functions fj(λ) = i(Γj, λ) are
piecewise linear. In particular there exists an atlas (Uk, φk)k∈N of ML such that all
functions fj ◦ φ−1

k are PL. The subset W = {λ ∈ ML |∃ k ∈ N, f1 ◦ φ−1
k or f2 ◦

φ−1
k is not smooth at φk(λ)} is a PL-subcomplex of positive codimension so its com-

plement has full measure.
Let x ∈ ML \W , choose k ∈ N such that x ∈ Uk, and denote by V the connected

component of φk(Uk \W ) containing φk(x). Then f1 and f2 are linear on V : it is
sufficient to show that these two maps are distinct to conclude that the locus where
they coincide has zero measure.
Consider a collection of 9g − 9 curves γ1, . . . , γ9g−9 such that

λ = µ ⇐⇒ i(λ, γl) = i(µ, γl) for l = 1, . . . , 9g − 9.

Applying a power of a pseudo-Anosov map whose attracting point belongs to φ−1
k (V ),

we may suppose that the curves γl belong to φ−1
k (V ) (up to a scalar). As we have

f1(φk(γl)) 6= f2(φk(γl)) for some l, we can conclude that f1 and f2 are distinct. �

TOME 4 (2021)
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3. Domination of valuations

Definition (Order structure). — We shall work with the partial order structure
on V called domination and defined by v 6 w if v(f) 6 w(f) for all f ∈ C[X(Σ)]. A
valuation u is called untameable if u 6 v implies v = Cu for some C ∈ R.
The set U of untameable valuations is clearly preserved by the action of Aut(X(Σ)).

The main purpose of this subsection is to obtain the following theorem, whose proof
consists in a compilation of known results.
Theorem 3.1 (Domination by measured laminations). — For all v ∈ V, there

exists a unique λ ∈ ML such that v 6 vλ and satisfying v(tα) = vλ(tα) for all
α ∈ π1(Σ).
Recall that C[X(Σ)] is an integral domain (see [PS19, Theorem 12], again this can

also be derived from the proof of [CM12, Theorem 5.3]), so that we can consider its
field of fraction K = C(X(Σ)). We extend v to K by setting v(f/g) = v(f)− v(g).
Notice that our sign convention differs from the standard one in valuation theory:
for instance our definition of the valuation ring associated to v is Ov = {f ∈ K
| v(f) 6 0}. We first recall the standard construction of the so-called tautological
representation.
Lemma (Tautological representation). — There exists a finite extension K̂ of

K along with a representation ρ : π1(Σ) → SL2(K̂) such that Tr ρ(α) = tα for all
α ∈ π1(Σ).
Proof. — This follows from classical arguments in geometric invariant theory. In

a nutshell, consider an algebraic closure K of K. One may interpret the inclu-
sion C[X(Σ)] → K as a K-point of X(Σ). Since the map Hom(π1(Σ), SL2(K)) →
X(Σ)(K) is surjective, we have a representation ρ : π1(Σ) → SL2(K) satisfying
Tr ρ(γ) = tγ ∈ K. As π1(Σ) is finitely generated, the coefficients of ρ may be taken
in a finite extension of K. One may also consult [Mar16, Proposition 3.3] for a
down-to-earth proof using K. Saito’s theorem which even shows that a quadratic
extension suffices. �
Proof of Theorem 3.1. — There exists (see [Vaq07] for a proof) an archimedian

valuation v̂ : K̂∗ → R extending v, so we may consider the Bass–Serre real tree T
associated to the pair (K̂, v̂).
We know from [MO93, Corollary III.1.2] that there exists a measured lamination

µ with associated real tree Tµ and an equivariant morphism of R-trees Φ : Tµ → T
which decreases the distance (by Step 1 of Lemma I.1.1). Thus for any α ∈ π1(Σ),
the translation length of the action of α on Tµ, which equals i(µ, α), is greater than
the translation length of α acting on T which is max{0, 2v̂(tα)} = 2v(tα).
It follows in particular that 2v(tγ) 6 vµ(tγ) for every simple curve γ, therefore this

holds also over multicurves. For any f ∈ C[X(Σ)] expanded as f = ∑
wΓtΓ, we get

v(f) 6 max {v(tΓ) | wΓ 6= 0} 6 1
2 max {vµ(tΓ) | wΓ 6= 0} = 1

2vλ(f)

where the last equality follows by Proposition 2.3. Hence the first part of the theorem
holds if one sets λ = 1

2µ.
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If we prove that Φ is an isometry on its image then we are done. Indeed this implies
that the translation lengths of the actions of α ∈ π1(Σ) on Tµ and T coincide, in
other words that v(tα) = 1

2vλ(tα). But by Skora’s theorem [Sko96], the morphism of
R-trees Φ : Tµ → T mentioned above is an isometry on its image if and only if there
does not exist any free subgroup F2 ⊂ π1(Σ) stabilizing a non-trivial edge in Φ(Tµ).
Hence suppose by contradiction there exist α, β ∈ π1(Σ) generating a free sub-

group which fixes a non-trivial edge in T of length l. Following for instance [Ota12,
Section 4.2], this implies that up to conjugation, the tautological representation
restricted to F2 has values in

Gl =
{(

a b
c d

)∣∣∣∣∣ ad− bc = 1, v(a) 6 0, v(b) 6 0, v(c) 6 −l, v(d) 6 0
}
.

If Ml
v denotes the ideal of Ov defined by the equation v 6 −l then Gl con-

sists precisely of those elements in SL2(Ov) projecting to triangular matrices in
SL2(Ov/Ml

v). The commutator ρ([α, β]) is then unipotent in this quotient and we
get Tr ρ([α, β]) = 2 mod Ml

v. This means that v(t[α, β] − 2) 6 −l, contradicting the
fact that v is non-negative over C[X(Σ)]. �

Corollary 3.2 (Simple valuations are measured laminations). — A valuation is
simple if and only if it has the form vλ for some λ ∈ ML. In particular ML is closed.

Corollary 3.3 (Untameable implies Simple). — We have an inclusion U ⊂ ML.

Recall that a lamination is called maximal if it is filling (that is, the valuation vλ
is positive) and its complementary regions are triangles; or equivalently, when there
are no lamination with a strictly larger support. A lamination is uniquely ergodic if
it supports a unique transverse measure up to a scalar.

Lemma 3.4. — Almost all measured laminations are strict, maximal and uniquely
ergodic. Such laminations are untameable. In particular U is dense in ML.

Proof. — Almost all measured laminations are maximal by [LM08, Lemma 2.3],
uniquely ergodic by a theorem of Masur [Mas82, Theorem 2], and strict by Lemma 2.7.
If λ is maximal and uniquely ergodic and µ is another measured lamination such

that vλ 6 vµ, then the support of λ is included in the support of µ. By maximality,
the support of µ is the same as the support of λ: only the transverse measures may
differ. By unique ergodicity, µ and λ must be proportional.
Let λ be a strict, maximal and uniquely ergodic measured lamination. Now suppose

there exists another valuation w ∈ V with v 6 w. Applying Theorem 3.1, there exists
another measured lamination µ with w 6 vµ and w(tα) = vµ(tα) for all α ∈ π1(Σ).
From the previous discussion there exists C > 1 such that µ = Cλ. But w and Cλ
are strict and coincide on simple curves, so that w = Cλ and we are done. �

Corollary 3.5. — The action of Aut(X(Σ)) on V preserves ML.

Proof. — The action of Aut(X(Σ)) on V is continuous and preserves the subset
U ⊂ ML of untameable valuations, so it also preserves its closure U = ML. �

TOME 4 (2021)
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4. Discrete valuations and disjointness

We call discrete a valuation in V whose finite values belong to N, and likewise
a measured lamination whose associated valuation is discrete. One expects the
underlying lamination to be a multicurve, this is almost true:
Lemma (Discrete measured laminations). — Discrete measured lamination are

precisely the weighted multicurves 1
2Γ such that the class of Γ in H1(Σ,Z/2Z) van-

ishes.
Proof. — This lemma can be shown using Dehn’s coordinates, see [FLP79, Exposé

6]. Let us give a proof more in the spirit of this note as it follows the lines of reasoning
for Theorem 3.1. For this, observe that the Bass–Serre tree associated to a discrete
valuation has a simplicial structure.
We extend the discrete valuation v on K to a discrete valuation v̂ on K̂ whose

Bass–Serre tree T is thus simplicial. The Morgan–Otal–Skora theorem reduces to
a theorem of Stallings (see [Sha02, Chapter 2] for a nice account) stating that the
action of π1(Σ) on T is dual to a multicurve Γ. This implies v(tα) = 1

2i(Γ, α), so v is
associated to the measured lamination λ = 1

2Γ.
Computing modulo Z the weighted intersection of 1

2Γ with any curve γ, one should
get 0: by Poincaré duality this shows that the class of Γ in H1(Σ,Z/2Z) vanishes. �
Of course, an automorphism of C[X(Σ)] must preserve the set of discrete valuations,

and hence also the set of discrete simple valuations by Corollary 3.5. The previous
lemma says that such a valuation has the form v = 1

2vΓ for a multicurve Γ which is
null in homology modulo 2.
We wish to show that an algebraic automorphism actually preserves the set of

discrete valuations coming from simple curves, and the relation of being disjoint. Thus
we need an algebraic characterization for the number of components in a multicurve,
as well as the disjointness property, in terms of their associated valuations.
For this recall the notion of valuation ring associated to the valuation v ∈ V,

defined by O+
v = {f ∈ C[X(Σ)]|v(f) 6 0}; its Krull dimension dimO+

v is pre-
served by algebraic automorphisms. When λ = 1

2Γ for a multicurve Γ, we have
O+
λ = Span{t∆|i(Γ,∆) = 0}, which corresponds geometrically to the coordinate ring

for the image of the restriction map X(Σ)→ X(Σ \ Γ).
Lemma 4.1 (Number of components). — The number of distinct homotopy classes

of simple curves in a multicurve Γ is equal to codimO+
Γ = dimC[X(Σ)]− dimO+

Γ .
Proof. — Let γ1, . . . , γn be the simple curves composing Γ. We let U ⊂ X(Σ) be

the Zariski open subset of X(Σ) containing irreducible representations ρ satisfying
Tr ρ(γi) 6= ±2 for i = 1, . . . , n. The restriction map X(Σ) → X(Σ \ {γ1, . . . , γn})
restricted to U and corestricted to its image is a fibration whose fibres are covered by
the orbits of the (commuting) Goldman twist flows along γ1, . . . , γn on the character
variety. Since the fiber has dimension n, the image has codimension n, and the result
follows. �

Lemma 4.2 (Disjointness property). — For any pair of non-parallel simple curves
γ, δ one has dimO+

γ ∩O+
δ 6 dimC[X(Σ)]−2, with equality if and only if i(γ, δ) = 0.
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Proof. — If γ and δ are disjoint, Lemma 4.1 already gives codimO+
γ∪δ = 2 and the

result follows from the observation that O+
γ∪δ = O+

γ ∩ O+
δ .

Suppose now that γ and δ intersect minimally and set Σ′ = Σ \ (γ ∪ δ). The ring
O+
γ ∩ O+

δ is the image of the natural map C[X(Σ′)] → C[Σ]. Geometrically, it is
the coordinate ring for the image of the restriction map X(Σ) → X(Σ′), hence it
is sufficient to show that dimX(Σ′) < dimX(Σ) − 2. The surface Σ′ is a disjoint
union of connected surfaces with connected boundary: their fundamental group is
either trivial or free with rank > 2. Denoting by F the number of simply connected
components, we have dimX(Σ′) = −3χ(Σ′) + 3F .
But χ(Σ′) = χ(Σ) + i(γ, δ) so dimX(Σ′) = dimX(Σ)− 3i(γ, δ) + 3F , and we must

show that i(γ, δ) > F . Since γ ∪ δ is a taut union of simple curves, the polygonal
components have at least 4 corners, so 4F is smaller or equal to the total number of
corners which is 4i(γ, δ). But F = i(γ, δ) implies that Σ′ is a union of quadrilaterals,
so F = χ(Σ′) = χ(Σ) + i(γ, δ) and thus χ(Σ) = 0: a contradiction. �

Corollary 4.3 (Action on the curve complex). — The group Aut(X(Σ)) pre-
serves the set

C = {vγ|γ simple and non-separating} ∪
{
vγ/2

∣∣∣γ simple and separating
}

along with its orthogonality relation vγ ⊥ vδ ⇐⇒ i(γ, δ) = 0 for vγ, vδ ∈ C.

Set Mod′(Σ) = Mod(Σ) if g > 3 and Mod′(Σ) = Mod(Σ)/〈τ〉 if g = 2 where τ
denotes the hyperelliptic involution.

Theorem 4.4. — There is a natural split extension
0→ H1(Σ,Z/2Z)→ Aut(X(Σ))→ Mod′(Σ)→ 0.

Proof. — Let φ be an automorphism ofX(Σ). By Corollary 4.3, it acts on the curve
complex (C,⊥) and Ivanov’s Theorem (see [Iva97] or [Luo00]) implies the existence
of a unique element ϕ ∈ Mod(Σ) which acts in the same way: this defines the
map Aut(X(Σ)) → Mod(Σ), which is a group morphism. Since Mod(Σ) naturally
acts on X(Σ) by sending tγ to tϕ(γ), there is a natural section of the previous
map whose kernel consists of mapping classes which fix all non-oriented simple
curves. This reduces to the identity or the hyperelliptic involution in genus 2 (see
for instance [FM12]) hence the surjection Aut(X(Σ))→ Mod′(Σ).
Suppose φ ∈ Aut(X(Σ)) acts trivially on C. Fix a simple curve γ and consider the

possible values of φ(tγ). As φ preserves the valuation vδ for every simple curve δ we
get vδ(φ(tγ)) = vδ(tγ) = i(δ, γ). Write φ(tγ) = ∑

mΓtΓ: for any simple curve δ which
does not intersect γ one has 0 = vδ(φ(tγ)) = max{i(δ,Γ) | mγ 6= 0}, so every Γ such
that mΓ 6= 0 must be a family of parallel copies of γ. Hence φ(tγ) is a polynomial
in tγ , so φ induces an automorphism of the subalgebra C[tγ ], thus φ(tγ) = aγtγ + bγ
with aγ 6= 0.
Lemma 4.5 shows that bγ = 0 for every non trivial simple curve γ, so φ(γ) = aγtγ

and for any multicurve Γ with components γj, we thus have φ(tΓ) = aΓtΓ where
aΓ = ∏

aγj
. Lemma 4.6 says that aΓ does not change when Γ undergoes a saddle-

move (we give the definition after Lemma 4.5). But two multicurves are related by
a sequence of saddle moves when they belong to the same homology class modulo
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2, so a factors to a map a : H1(Σ,Z/2Z)→ C∗, which according to Lemma 4.7 is in
fact a morphism. Thus a ∈ H1(Σ,Z/2Z) and we are done. �

Lemma 4.5. — For every non-trivial simple curve γ, we have bγ = 0 and aγ = ±1.

Proof. — Suppose γ is a non-separating simple curve. Then there is another one δ
which intersects it once and a tubular neighborhood of their union is a π1-injectively
embedded punctured torus. In that case apply φ to the relation tγtδ = tγδ + tγδ−1 and
decompose in the basis of multicurves to get bγ = 0 and then aγaδ = aγδ. But the
simple curve γδ also intersects γ once, so the same reasoning also gives aγδaγ = aδ.
Combined with the previous relation this implies aγaδaγ = aδ, hence aγ = ±1.
From now on γ is a separating simple curve. There exists a non-separating simple

curve δ which intersects it twice with opposite signs. A neighborhood for their
union γ ∪ δ is an embedded four holed sphere F ⊂ Σ with boundary components
η1, η2, η3, η4 such that the triple η1, η2, γ bounds a three holed sphere. (This fixes the
configuration up to the action of the mapping class group.)
Since i(γ, δ) = 2 the ηj are non-trivial and as they are disjoint from γ and δ they

must be homotopically distinct from δ and γ. Also, as γ is separating, η1 and η2 are
both homotopically distinct from each of η3 and η4.
Using the trace relation on tγtδ to resolve the intersections of γ ∪ δ, we decompose

tγtδ = tη1tη3 + tη2tη4 − tθ − tζ where ζ, θ ⊂ F are two simple curves both intersecting
twice γ and δ, such that each triple η1, η3, θ and η2, η4, ζ bounds a three-holed sphere.
Considering intersection numbers as before we see that θ, ζ are homotopically

distinct from each other and from γ, δ, ηj: among all simple curves into play here,
only the boundary components η1 and η2, or η3 and η4, may belong the same class.
So when we decompose into the basis of multicurves after applying φ to the previous
relation, we find that bγ = 0 and then aγaδ = aζ . Since γ is separating and δ is not,
ζ must also be non-separating, and the previous discussion implies aδ = ±1 and
aζ = ±1, so aγ = ±1. �

In order to introduce the notion of a saddle move, we will think of multicurves as
isotopy classes of 1-submanifolds in Σ up to adding or removing a trivial component.
Two multicurves are related by a saddle move if they are represented by two 1-
manifolds which differ in a disc as in Figure 4.1.

Figure 4.1. Saddle move

It is an easy exercise to show that two multicurves are related by a sequence of
saddle moves if and only if they belong to the same homology class modulo 2. Let us
sketch the argument. Let Γ1,Γ2 be two multicurves homologous modulo 2 in Σ and
suppose that they intersect transversely. Any connected component of Σ \ (Γ1 ∪ Γ2)
containing a corner should contain an even number of those, and two consecutive
corners are cancelled by a saddle move. By induction, we are reduced to the case
where Γ1∩Γ2 = ∅. As Γ1 and Γ2 are homologous modulo 2, there exists en embedded
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subsurface S ⊂ Σ with ∂S = Γ1 ∪ Γ2, and decomposing this cobordism into saddles
shows how to transform Γ1 into Γ2.
Set tε = 2 for the trace of a trivial component ε and extend the tΓ by multiplicativity

on all components γj to encompass the more general notion of multicurves. This
remains consistent with the trace relation. As φ(tε) = tε we have aε = 1, and
according to the previous lemma we now have aΓ = ∏

aγj
defined as a function on

multicurves with values in ±1.

Lemma 4.6. — The function a so defined on multicurves is invariant by saddle
move.

Proof. — Before starting the proof, observe that a saddle move changes the number
of components of a 1-submanifold by 0 (type 0) or 1 (type 1).
Consider first a saddle move of type 0: ignoring the components that are not

affected, one can assume it transforms a simple curve η into another one θ. Basing the
fundamental group at the singular point appearing half way during the saddle move,
we see that there exists two simple curves γ, δ intersecting once such that η = γδ and
θ = γδ−1. As in the proof of Lemma 4.5, we deduce that aη = aγaδ = aγaδ−1 = aθ,
which concludes this case.
Now consider the case of a saddle move of type 1. Again, ignoring the components

that are not affected, we observe that we must prove the formula aγ = aη1aη2 where
γ, η1, η2 are three boundary components of an embedded pair of pants P in Σ. Since
aγ = ±1 by Lemma 4.5, this can be written more symmetrically as aγaη1aη2 = 1. This
formula obviously holds if one of the three boundary components is homotopically
trivial so that we can suppose that P is incompressible in Σ.
Thus we may consider another embedded 3-holed sphere bounded by γ, η3, η4 such

that the ηj bound an embedded 4-holed sphere F as in the proof of the previous
lemma. This time, using the trace relation on tθtδ to resolve the intersections of θ∪δ,
we decompose tθtδ = tη1tη2 + tη3tη4 − tν − tγ where the simple curve ν corresponds to
the image of θ under the half Dehn twist along δ. Applying φ to it and decomposing
into the basis of multicurves we find that aγ = aη1aη2 , and the lemma follows. �

Lemma 4.7. — The map induced on homology a : H1(Σ;Z/2Z)→ C∗ is a mor-
phism.

Proof. — Let α, β be two classes in H1(Σ,Z/2Z). They can be represented by
simple curves γ, δ which are either disjoint (if α ·β = 0) and then α+β is represented
by the disjoint union γ ∪ δ, or else intersect once (if α · β = 1) and then α + β is
represented by the product γδ. In any case, we already proved that aαβ = aαaβ. �
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