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654 L. ADDARIO-BERRY & M. ALBENQUE

Résumé. — Soient p > 5 un entier impair fixé et Mn une p-angulation uniforme à n
sommets, munie de la loi uniforme sur l’ensemble de ses sommets. Nous prouvons qu’il existe une
constante Cp ∈ R+ telle qu’après avoir renormalisé ses distances par Cp/n

1/4, Mn converge en
distribution vers la carte brownienne au sens de la topologie de Gromov–Hausdorff–Prokhorov.
Pour établir ce résultat, nous introduisons une technique de bootstrap qui permet d’obtenir
la converence d’arbres étiquetés aléatoires. En particulier, celle-ci nous permet d’obtenir un
résultat d’invariance pour la convergence d’arbres de Galton–Watson multitypes étiquetés en
ne supposant que des hypothèses faibles sur la distribution de leurs étiquettes.

1. Introduction

1.1. Convergence of random planar maps

A planar map is an embedding of a finite connected graph into the two-dimensional
sphere, viewed up to orientation-preserving homeomorphisms. For p > 3, a
p-angulation is a planar map whose faces all have degree p. Scaling limits of random
planar maps have been the subject of a lot of attention in recent years; perhaps
the most celebrated results are the independent proofs by Miermont [Mie13] and
Le Gall [LG13] of the fact that the scaling limit of random 4-angulations (or quad-
rangulations) is the Brownian map. In fact, in his work Le Gall also established that,
for p = 3 or p > 4 even, the scaling limit of p-angulations is the Brownian map. The
current paper establishes the analogous result for p-angulations with p > 5 odd.
Theorem 1.1. — Let p > 5 be an odd integer and let (Mn) be a sequence of

independent random maps, such that for any n > 1, Mn is a uniform p-angulation
with n vertices. Denote by distMn the graph distance on Mn and µn the uniform
probability distribution on its set of vertices V (Mn). Then there exists a constant
Cp such that, as n goes to infinity,(

V (Mn), Cp
n1/4 distMn , µn

)
d→ (M,d?, λ),

for the Gromov–Hausdorff–Prokhorov topology and where (M,d?, λ) is the Brownian
map.

We obtain Theorem 1.1 as a consequence of a more general result, stated in
Theorem 4.1, which establishes convergence to the Brownian map for so-called
regular critical Boltzmann maps. Before giving further context for our result, and
the ideas of its proof, let us first emphasize that it relies on the work of Miermont
and Le Gall and does not constitute an independent proof of the uniqueness of the
limiting object.
The main motivation for our work is the conjecture that the Brownian map is a

universal limiting object for many families of planar maps. As already mentioned, the
Brownian map is known to be the scaling limit for uniform p-angulations for p ∈ {3}∪
2N, but also for quadrangulations without vertices of degree one [BLG13], for simple
triangulations and quadrangulations [ABA17], for general maps [BJM14], for bipar-
tite maps [Abr16] and for bipartite maps with prescribed degree sequence [Mar18]. In
this sense, our result is an additional step towards the universality of the Brownian
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Convergence of non-bipartite maps 655

map. Moreover, recall that a bipartite map is a map whose vertices can be partitioned
into two sets, say B and W such that all edges in the map have one extremity in
B and one extremity in W . It is easy to see that a planar map is bipartite if and
only if all its faces have even degree. With the notable exception of [BJM14] (which
does not control the degree of faces of the maps considered), all the results listed
above deal with either bipartite maps or with triangulations. Some results about
distance statistics of odd-angulations (and more generally of non-bipartite regular
critical Boltzmann maps) have been obtained previously in [Mie06, MW08], but the
methods developed in these works did not yield convergence to the Brownian map.
As with most results in this field, our work relies on a bijection between planar maps

and labeled multitype trees: the Bouttier–di Francesco–Guitter bijection [BDG04]
plays this role in our case. Thanks to the general approach developed in [LG13],
the only new result needed to prove Theorem 1.1 is that the encoding functions of
multitype labeled trees associated to p-angulations by that bijection converge to the
Brownian snake. Numerous results about convergence of labeled trees already exist
in the literature (see for instance [Mar08, Mie08]). However, most of these results
rely on the assumption that the variation of labels along an edge is centered (see
Section 2.5 below), or that degrees are bounded and the trees only have one type;
such assumptions do not hold in our setting. To describe how we circumvent this
difficulty, we introduce some further notations and definitions.

1.2. Symmetrization of labeled trees

Let t be a rooted plane tree. For a vertex v of t we write kt(v) for the number of
children of v in t (k stands for “kids”). In the following we identify the vertex set V (t)
with the set of words given by the Ulam–Harris encoding. In this encoding, nodes are
labeled by elements of ⋃n> 0 Nn, where N0 = {∅} by convention. The root receives
Ulam–Harris label ∅; the children of node v = v1v2 . . . vh ∈ Nh receive Ulam–Harris
labels (vi, 1 6 i 6 kt(v)) in the order given by the plane embedding.
A rooted labeled plane tree is a pair t = (t, d) where t is a rooted plane tree and

d = (d(e), e ∈ E(t)) ∈ RE(t) give the displacements of labels along the edges E(t)
of t.
We fix, for the remainder of the paper, a generic countable set S which will serve

as a type space. A tree t is a multitype tree if each node v ∈ V (t) has a type s(v) ∈ S.
We likewise define multitype labeled plane trees. We may view an un-typed tree as
a typed tree by giving all nodes the same type, so hereafter all trees in the paper
are considered to be multitype, unless we mention otherwise.
Given a plane tree t, let [t] be the set of plane trees which are isomorphic to t as

multitype rooted trees (but not necessarily as multitype plane rooted trees). Write
Pt for the set of vectors σ = (σv, v ∈ V (t)), where each σv is a permutation of
{1, . . . , kt(v)}. Such a vector σ uniquely specifies a tree t′ = σ(t) ∈ [t] by reordering
the children at each node according to σ as follows: for each node v = v1v2 . . . vk ∈
V (t), there is a corresponding node σ(v) ∈ V (t′) whose type is the same as that of
v and whose Ulam–Harris label is

σ(v) = σ∅(v1)σv1(v2) . . . σv1 ... vk−1(vk) .
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656 L. ADDARIO-BERRY & M. ALBENQUE

Visually, this reorders the children of each node v according to the permutation σv.
If t is a labeled plane tree, we likewise define [t] and t′ = σ(t) ∈ [t] by letting the

labels follow their edges. Formally, if e = uv ∈ e(t) then d′(σ(u)σ(v)) = d(uv).
We typically use µ to denote a measure on unlabeled plane trees. We say such a

measure µ is symmetric if µ(t) = µ(t′) for all plane trees t, t′ with t′ ∈ [t]. Similarly,
ν will typically denote a measure on labelled plane trees, and we say such a measure
ν is symmetric if ν((t, d)) = ν((t′, d′)) whenever (t′, d′) ∈ [(t, d)].
Fix a plane tree t and let σ = (σv, v ∈ V (t)) ∈u Pt be a uniformly random element

of Pt. We call the random tree σ(t) the symmetrization of t. This also makes sense
for a random tree T ; in this case, conditionally given T , we have σ ∈u PT , and the
symmetrization is the tree σ(T ). If µ is the law of T then we write µsym for the law
of its symmetrization. Note that µ is symmetric if and only if µ = µsym.
The definitions of the preceding paragraphs all have analogues for labeled plane

trees. The symmetrization of (t, d), is σ(t, d), where σ ∈u Pt; if ν is the law of random
labeled plane tree (T,D) then we write νsym for the law of the symmetrization of
(T,D); and, ν is symmetric if and only if ν = νsym.
This work establishes a tool for establishing distributional convergence of random

labelled plane trees, if such convergence is already known for symmetrized versions
of the trees. We exclusively consider random labeled plane trees (T,D) satisfying
the following three properties.

(i) The law µ of the underlying unlabeled plane tree is symmetric.
(ii) For each v ∈ V (T ), let Dv = (Dv, v1, . . . , Dv, vk(v)) be the vector of displace-

ments from v to its children. Then the vectors (Dv, v ∈ V (T )) are conditionally
independent given T .

(iii) The law of each vector Dv is determined by the type of v together with the
vector of types of its children.

If (T,D) satisfies all three properties then we say its law ν is valid.
The following theorem establishes that certain asymptotic distributional properties

of random labeled plane trees sampled from a valid law are unchanged by symmetriza-
tion of the distributions involved. The proof makes reference to the contour and
label processes of trees; these are defined in Section 2, immediately following the
statement of the theorem.

Theorem 1.2. — For each n > 1 let Tn = (Tn,Dn) be a random labeled multi-
type plane tree whose law νn is valid, and let Tsym

n have law νsym
n . Write

(CTn(t), ZTn(t))06 t6 1 and
(
CTsym

n
(t), ZTsym

n
(t)
)

06 t6 1

for the contour and label processes of Tn and Tsym
n , respectively.

Suppose there exist positive sequences (an, n > 1) and (bn, n > 1) with an → 0 and
bn → 0, and a C([0, 1],R2)-valued random process (C,Z) = ((C(t), Z(t)), t ∈ [0, 1]),
such that (

anCTsym
n
, bnZTsym

n

) d→ (C,Z)
for the uniform topology. Then, the following convergence also holds for the uniform
topology:

(anCTn , bnZTn) d→ (C,Z).
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Let us conclude by coming back to planar maps. For p > 5 and p /∈ 2N, the push-
forward of the uniform measure on p-angulations (or indeed of any regular critical
Boltzmann distribution on maps) by the Bouttier–di Francesco–Guitter (described in
Section 4.3, below) is a probability distribution on labeled plane trees which is valid
but not symmetric. Theorem 1.2 allows the transfer of results of Miermont [Mie08]
to establish that contour and label processes of these trees have the same scaling
limit as their symmetrized versions (see Theorem 4.4 for a more precise statement).

2. Valid laws, finite-dimensional-distributions and
symmetrization

2.1. Definitions and notation

Recall that throughout the paper, we use S to denote the type space of our trees.
We write Sfin for the set of all vectors of finite length with entries from S; we include
the empty vector () of length zero in this set.
In this section t always denotes a rooted multitype plane tree and t a labeled

rooted multitype plane tree. For a vertex v ∈ V (t), the child type vector of v is the
vector ctype(v) = (s(vi), 1 6 i 6 kt(v)) ∈ Skt(v) ⊂ Sfin.
We use the notation |t| = |t| = |V (t)| interchangeably. We define the contour

exploration θ = θt : {0, . . . , 2|t|−2} → V (t) of t inductively as follows. Let θ(0) = ∅.
Then, for 1 6 i 6 2|t| − 2, let θ(i) be the lexicographically first child of θ(i− 1) that
is not an element of {θ(0), . . . , θ(i− 1)}, or let θ(i) be the parent of θ(i− 1) if no
such node exists.
For v, w ∈ V (t), we write dist(v, w) = distt(v, w) for the graph distance between

v and w in t. We write h(v) = distt(∅, v) for the distance from v to the root, so if
v ∈ Nk then h(v) = k. Note that h(v) is the length of v in the Ulam–Harris encoding.
The label of a vertex v of t = (t, d), denoted `t(v) or `(v), is defined as the sum of
the edge labels on the path between v and the root. Formally, if v = v1 . . . vk then
`t(v) = d(∅, v1) + . . . + d(v1 . . . vk−1, v1 . . . vk).
The contour and label processes Ct and Zt are the functions from [0, 1] to R defined

as follows. For 0 6 i 6 n, set Ct(i/(2|t| − 2)) = h(θ(i)) and Zt(i/(2|t| − 2)) = `(θ(i)).
(Note that Ct may be viewed as traversing an edge in time 1/(2|t| − 2); this differs
from some other works, where the contour process explores each edge in one unit of
time.).

2.2. Notes on treelike paths

The metric structure of t may be recovered from C = Ct as follows. For x, y ∈ [0, 1]
with x 6 y, let

DistC(x, y) = DistC(y, x) = Ct(x) + Ct(y)− 2 inf {Ct(u), x 6 u 6 y} .
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Then for all 0 6 i, j 6 n, distt(θt(i), θt(j)) = DistC(i/n, j/n). In particular, if
DistC(i/n, j/n) = 0 then θt(i) = θt(j). Let ∼C be the equivalence relation {(x, y) :
DistC(x, y) = 0}, and let TC = [0, 1]/∼C . Then (TC ,DistC) is a metric space (here,
by DistC we really mean its push-forward to TC), and its subspace induced by the
points {[i/n], 0 6 i 6 n} is isometric to t.
Using the equivalence of distt and DistC at lattice times, if DistC(i/n, j/n) = 0

then Zt(i/n) = Zt(j/n). Since Zt is defined by linear interpolation, it follows that
Zt(x) = Zt(y) whenever DistC(x, y) = 0, and that the push-forward Z of Zt to TC is
well-defined and continuous for DistC . We then clearly have Z([i/n]) = `t(θt(i)) for
all 0 6 i 6 n.
The two preceding paragraphs may be viewed as motivation for the following

general construction. Say ζ ∈ C([0, 1],R+) is an excursion if ζ(0) = ζ(1) = 0. If ζ
is an excursion then we may define Distζ and Tζ just as above, and (Tζ ,Distζ) is
always a compact metric space. (In fact, it is always an R-tree.)
Now fix a pair (ζ, f) with ζ ∈ C([0, 1],R+) and f ∈ C([0, 1],R). We say (ζ, f)

is a tree-like path if ζ is an excursion, f(0) = f(1) = 0, and for all x, y ∈ [0, 1], if
Distζ(x, y) = 0 then f(x) = f(y). This implies that the push-forward of f to Tζ is
well-defined and is continuous for Distζ .
It follows from the results in [MM03] that if (C,Z) is a distributional limit as in

Theorem 1.2 then (C,Z) is a tree-like path, a fact which will be useful in the proof
of the theorem.

2.3. Valid distributions and symmetrization

Let (T,D) be a random labeled tree with type space S. Then (T,D) satisfies (ii)
and (iii) in the definition of validity if and only if there exists a set {πrs : r ∈ S, s ∈⋃
k> 1 S

k}, with each πr(s1, ..., sk) a probability measure on Rk, such that the following
holds. For any plane tree t and any sets (Bv, v ∈ V (t)) with Bv a Borel subset of
Rkt(v) for all v,

(2.1) P {T = t,∀ v ∈ V (t), Dv ∈ Bv} = P {T = t} ·
∏

v ∈V (t)
π
s(v)
ctype(v)(Bv) .

In other words, writing πT for the conditional law of D given T , the identity (2.1)
states that πT = ⊗v ∈V (T )π

s(v)
ctype(v).

Next, it is clear that if ν is valid then νsym is also valid. Moreover, the definition
of symmetrization implies that if the displacement laws under ν are described by
the measures {πus : u ∈ S, s ∈ ⋃k> 1 S

k}, then the displacement laws under νsym are
described by the measures {πu, sym

s : u ∈ S, s ∈ ⋃k> 1 S
k}, where for any type u, any

k > 1, any type vector s ∈ Sk and any Borel B ⊂ Rk, we have

(2.2) πu, sym
s (B) = 1

k!
∑
σ ∈Sk

πuσ(s)(σ(B)).
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2.4. Valid distributions and labeled Galton–Watson trees

A multitype Galton–Watson tree with type space S is defined by a collection
p = (ps, s ∈ S) with each ps a probability distribution on Sfin, such that if ~v, ~w ∈ Sfin

are such that ~w is a permutation of ~v then ps(~v) = ps(~w) for all s ∈ S. Observe that,
writing nx(~v) for the number of entries of ~v equal to x ∈ S, this means each ps is
uniquely determined by the values

ps
({
~v ∈ Sfin :∀ x ∈ S, nx(~v) = ix

})
,

as (ix, x ∈ S) ranges over collections of non-negative integers with finite sum.
A random tree T is Galton–Watson(p)-distributed if the following holds. For all

n > 1 and all rooted plane trees t with node types in S and with height at most n,
writing s for the type of the root of t,

P {T6n = t | s(∅) = s} =
∏

v ∈V (t< n)
ps(v)(ctypet(v)) .

Here we have written T6n for the subtree of T consisting of nodes at distance at
most n from the root (and likewise defined t<n); also, we use the convention that
ctypet(v) = () if v has no children. In particular, this implies that, for t a finite tree,

P {T = t | s(∅) = s} =
∏

v ∈V (t)
ps(v)(ctypet(v)) .

From the assumption that the offspring distributions (ps, s ∈ S) are permutation-
invariant, the following result is immediate.
Proposition 2.1. — Let T be a multitype Galton–Watson tree with type space

S. Fix any type s ∈ S and integer n > 1 such that P{s(∅) = s, |T | = n} > 0. Then
the conditional probability measure P{·s(∅) = s, |T | = n} is symmetric.
Remark 2.2. — We have built symmetry into our definition of multitype Galton–

Watson trees. This is relatively standard (for example, it is also the case in [Mie08]),
possibly because from the perspective of the (multitype) generation size process,
there is no loss of generality in restricting to the symmetric case. One could of course
study families of offspring distributions p = (ps, s ∈ S) which are not assumed to be
permutation-invariant; but this is beyond the scope of the current work.
We next consider how the definition of valid laws interacts with that of multitype

Galton–Watson trees. Suppose that (T , D) is a random labeled plane tree whose
law is valid, and suppose there is p such that the underlying plane tree T is Galton–
Watson(p)-distributed. Then for any finite plane tree t, writing s for the type of the
root of t, we have

P {T = t} = P {s(∅) = s} ·
∏

v ∈V (t)
ps(v)(ctype(v)),

and by (2.1), for any Borel sets (Bv, v ∈ V (t)), we then have

P {T = t, ∀ v ∈ V (t), Dv ∈ Bv} = P {s(∅) = s} ·
∏

v ∈V (t)
ps(v)(ctype(v)) · πs(v)

ctype(v)(Bv)

,
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for an appropriate family {πus : u ∈ S, s ∈ ⋃k> 1 S
k} of displacement laws. Moreover,

for any n ∈ N, we have
P {T = t,∀ v ∈ V (t), Dv ∈ Bv | |T | = n}

= 1
P {|T | = n}

P {s(∅) = s} ·
∏

v ∈V (t)
ps(v)(ctype(v)) · πs(v)

ctype(v)(Bv)

= P {T = t | |T | = n} ·
∏

v ∈V (t)
π
s(v)
ctype(v)(Bv) ,

so the conditional law of (T , D) given that |T | = n is again valid. A similar logic
shows that the conditional law of (T , D) conditional on the type of its root, and on
containing a fixed number of vertices of a given type, is also valid; we mention this
as such a conditioning will arise later in the paper.

2.5. Locally centered, centered and globally centered displacements

Let (T,D) be a tree sampled from a valid distribution. We consider π = {πrs : r ∈
S, s ∈ ⋃k> 1 S

k}, the family of the distributions of the vector of displacements. Recall
that for ~v = (v1, . . . , vk) ∈ Sfin and x ∈ s we write nx(~v) = |{1 6 i 6 k : vi = x}|.

Definition 2.3. — For each πrs ∈ π, let (Xr
s, i, 1 6 i 6 |s|) have law πrs . We say

π is locally centered if E[Xr
s, i] = 0 for all r ∈ S, s ∈ Sfin and i ∈ {1, . . . , |s|}.

The family π is centered if for any k ∈ Z+, for all z = (zs, s ∈ S) ∈ ZS+ with∑
s∈S zs = k and for all r ∈ S, ∑

{s∈Sk: (nx(s), x∈S)=z}

k∑
i=1

E
[
Xr

s, i

]
= 0.

The assumption that π is locally centered appears often in the literature about the
convergence of labeled Galton–Watson trees. As already alluded to in the introduc-
tion, the families of trees we want to study are not locally centered – however, they
are centered. The next claim, which is immediate from (2.2), says symmetrization
turns centered displacements into locally centered displacements.

Claim 2.4. — If (T,D) is a tree sampled from a valid distribution with centered
displacements, then the family of displacement distributions of (T sym,Dsym) is locally
centered.

For Galton–Watson trees, a number of asymptotic results have been obtained for
displacements which are not locally centered but satisfy weaker centering assump-
tions. For example, in [Mar08], Marckert studies the convergence to the Brownian
snake for labelled single type Galton–Watson trees, where the offspring distribution
ζ is assumed to have bounded support and where the displacements are assumed to
be globally centered, in that ∑

k> 0
ζ(k)

k∑
i=1

E [Xk, i] = 0,
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where (Xk, 1, . . . , Xk, k) has the distribution of vector displacements to the children
for a node with k children. We could not find a way to use symmetrization to
transform globally centered into locally centered displacements. It is an open problem
to know whether the bounded support assumption in Marckert’s work can be relaxed.

2.6. Subsampling in labeled trees

A important step of the proof of Theorem 1.2 is accomplished by the following
lemma, which relates the laws of subtrees obtained by sampling in random labeled
trees and their symmetrizations. Informally, the lemma states that the distribution
of the subtree spanned by a set of randomly sampled vertices is the same in a random
labeled tree and in its symmetrization, provided that all label displacements on child
edges incident to branchpoints of the subsampled trees are ignored.
For a plane tree t and a sequence v = (v1, . . . , vk) ∈ V (t)k, write t(v) for the

subtree of t spanned by the vertices of v together with all their ancestors in t. We
view t(v) as a plane tree by using the plane structure of t. The Ulam–Harris labels
in t(v) need not agree with those in t, so for a vertex v which is an ancestor of a
vertex in v (not necessarily strict), we write U(v, v) for (the Ulam–Harris label of)
the node corresponding to v in t(v). We also let U(v) = (U(v, v1), . . . , U(v, vk));
this vector plays a key role in the coming Lemma 2.5.
If d ∈ Re(t) is a labeling of t then we let d(v) be the pushforward of d to t(v); so if

e = uu′ ∈ e(t(v)) with u = U(v, v), u′ = U(v, v′) then d(v)uu′ = dvv′ . We also define
a modified labeling d〈s〉 as follows. For an edge uu′ ∈ e(t(v)) with u the parent of
u′, let

(2.3) d〈v〉uu′ =

d(v)uu′ if kt(v)(u) = 1
0 otherwise.

Think of d〈v〉 as “ignoring displacements at branchpoints of t(v)”.
Let T = (T,D) be a random labeled plane tree. We say that a random vector

R = (R1, . . . , Rk) is uniformly sampled from T if for all plane trees t, Borel sets
(Be, e ∈ e(t)) and vectors r = (r1, . . . , rk) ∈ V (t)k,

P {T = t,R = r, De ∈ Be ∀ e ∈ e(t)} = 1
|V (t)|kP {T = t,De ∈ Be ∀ e ∈ e(t)} .

Lemma 2.5. — Let T = (T,D) be a random labeled multitype plane tree with
valid law ν, and let Tsym = (T sym,Dsym) have law νsym.
Fix k ∈ N, and let R = (R1, . . . , Rk) and Q = (Q1, . . . , Qk) be random vectors of

length k, uniformly sampled from T and Tsym respectively. Then (T (R),D〈R〉, U(R))
and (T sym(Q),Dsym〈Q〉, U(Q)) are equal in distribution.

Proof. — Given a tree t and a sequence u = (u1, . . . , uk) ∈ V (t)k, let branch(t, u)
be the set of vertices of t possessing at least two distinct children with descendants
in u (in other words, these are the vertices of t which correspond to branchpoints of
t(u)). Further, let P(t,u) be the set of vectors σ = (σv, v ∈ t) ∈ Pt such that σv is the
identity permutation for all v ∈ branch(t, u).
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Now let (T,D) have law ν, let R = (R1, . . . , Rk) ∈ V (T )k be a random vector
of length k uniformly sampled from T , and let σ ∈u P(T,R). We construct another
labelled tree (T̂ , D̂) from (T,D) as follows. In words we use σ to perform a full
symmetrization at all vertices of T except at vertices corresponding to branchpoints
of T (R); at the latter vertices we don’t permute the children and we set all the
displacements to zero. Formally, set T̂ = σ(T ), for 1 6 i 6 k set R̂i = σ(Ri), and let
R̂ = (R̂1, . . . , R̂k). Then for (v, vi) ∈ e(T ) let

D̂σ(v), σ(vi) =

0 if v ∈ branch(T,R)
Dv, vi otherwise,

so if e = vw ∈ E(T̂ ) then D̂e = Dσ−1(v)σ−1(w). Now set D̂ = (D̂e, e ∈ e(T̂ )).

a
cb
d

σ = (14)(23)
a

b
d
cb b

(a) Symmetrization outside the
branchpoints.

00 0
a

cb d σ = Id
0

(b) Symmetrization at a branch
point.

Figure 2.1. Examples of symmetrization. In both figures, the tree t is on the left
and t̂ on the right. Labels a, b, c and d represent the displacements along the
edges. Branches of t(u) are represented in bold blue.

Here is an important property of the preceding construction. For all 1 6 i, j
6 k, if Ri ≺ Rj (where ≺ corresponds to the lexicographic ordering on the Ulam–
Harris encoding) then R̂i ≺ R̂j. This immediately implies that (T (R), U(R)) =
(T̂ (R̂), U(R̂)). Moreover, the only differences between (T (R),D(R)) and (T̂ (R̂), D̂(R̂))
occur at nodes with at least two children in T (R). Since the displacements on edges
leaving such nodes are set to 0 when passing from D(R) to D〈R〉 (see (2.3)), it follows
that D̂〈R̂〉 = D〈R〉 as well, so (T̂ (R̂), D̂〈R̂〉, U(R̂)) = (T (R),D〈R〉, U(R)).
For v ∈ V (T̂ ) we write D̂v = (D̂v, vi, 1 6 i 6 k(v)). Now fix a tree t and a

length-k vector r = (r1, . . . , rk) of vertices of t. We will show that for any collection
(Bv, v ∈ V (t)\ branch(t, r)), with each Bv a Borel set of Rkt(v),

P
{(
T̂ , R̂

)
= (t, r) and D̂v ∈ Bv ∀ v ∈ V (t)\ branch(t, r)

}
= P {(T sym,Q) = (t, r) and Dsym

v ∈ Bv ∀ v ∈ V (t)\ branch(t, r)} .

This equality implies that (T̂ (R̂), D̂〈R̂〉, U(R̂)) and (T sym(Q),Dsym〈Q〉, U(Q)) are
equal in distribution. Since (T̂ (R̂), D̂〈R̂〉, U(R̂)) = (T (R),D〈R〉, U(R)), this will
prove the Lemma 2.5 for single type trees.
For τ ∈ P(t,r), we let τ(t, r) = (τ(t), (τ(r1), . . . , τ(rk)). For τ ∈ Pt, we let τ ∗ be

the element of Pτ(t) defined by setting τ ∗τ(v) = (τv)−1 for all v ∈ t. Note that τ ∗(τ(t))
= t – so τ ∗ acts as an inverse to τ – and that if τ ∈ P(t, r) then τ ∗ ∈ Pτ(t, r).
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Since T̂ = σ(T ) we have

P
{(
T̂ , R̂

)
= (t, r) and D̂v ∈ Bv ∀ v ∈ V (t)\ branch(t, r)

}
=

∑
τ ∈P(t, r)

P
{
τ ∗(T,R) = (t, r), σ = τ ∗ and D̂v ∈ Bv ∀ v ∈ V (t)\ branch(t, r)

}
=

∑
τ ∈P(t, r)

P
{

(T,R) = τ(t, r), σ = τ ∗ and Dτ(v) ∈ τv(Bv) ∀ v ∈ V (t)\ branch(t, r)
}
,

Now note that
|P(t, r)| =

∏
v ∈V (t)\ branch(t, r)

kt(v)! = |Pτ(t, r)|,

as branch (τ(t, r)) = {τ(v), v ∈ branch(t, r)}. Using that T is symmetric, that the
elements of R are uniformly sampled from T , and that σ ∈u P(T,R), it follows that
for all τ ∈ Pt,

(2.4) P {(T,R) = τ(t, r), σ = τ ∗} = P {T = t}
|t|k

· 1
|Pτ(t, r)|

= P {T = t}
|t|k

· 1
|P(t, r)|

.

Now note that for any v ∈ V (t) and any τ ∈ P(t, r), s(τ(v)) = s(v) and ctype(τ(v))
= τv(ctype(v)). Together with (2.1) and (2.4), this implies that

P
{(
T̂ , R̂

)
= (t, r) and D̂v ∈ Bv ∀ v ∈ V (t)\ branch(t, r)

}
= P {T = t}

|t|k
·

∑
τ ∈P(t, r)

1
|P(t, r)|

∏
v ∈V (t)\ branch(t,r)

π
s(τ(v))
ctype(τ(v))(τv(Bv))

= P {T = t}
|t|k

·
∑

τ ∈P(t, r)

1
|P(t, r)|

∏
v ∈V (t)\ branch(t,r)

π
s(v)
τv(ctype(v))(τv(Bv))

From this, applying the definition of πu, sym
s given in (2.2) then yields that

P
{(
T̂ , R̂

)
= (t, r) and D̂v ∈ Bv ∀ v ∈ V (t)\ branch(t, r)

}
= P {T = t}

|t|k
·

∏
v ∈V (t)\branch(t, r)

π
s(v), sym
ctype(v) (Bv)

= P {(T sym,Q) = (t, r) and Dsym
v ∈ Bv ∀ v ∈ t\ branch(t, r)} ,

as required, which completes the proof of the Lemma 2.5. �

The key point in the preceding argument is that, because we ignore displacements
at branchpoints, the probability factorizes due to (2.1).

3. Proof of Theorem 1.2

In this section we explain how Theorem 1.2 follows from Lemma 2.5. For the
remainder of the section, fix labeled trees Tn = (Tn,Dn) and Tsym

n = (T sym
n ,Dsym

n )
for n > 1, satisfying the conditions in Theorem 1.2, and suppose that there exists a
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random C([0, 1],R2)-valued random process (C,Z) and positive sequences (an, n > 1)
and (bn, n > 1) with an → 0 and bn → 0 such that(

anCTsym
n
, bnZTsym

n

) d→ (C,Z)

for the uniform topology. We must show that the same distributional limit holds for
(anCTn , bnZTn). In the coming arguments we write θn = θTn , Cn = CTn , Zn = ZTn

and `n = `Tnto simplify notation, and similarly write Distsym
n = DistC

T
sym
n

et cetera.
In brief, the proof proceeds as follows. To prove convergence in distribution it suf-

fices to prove convergence of finite-dimensional distributions (FDDs), plus tightness.
Lemma 2.5 will yield convergence of random FDDs; by sampling sufficiently many
random points we may use this to show convergence of arbitrary FDDs. Tightness
will follow fairly easily from the convergence for the symmetrized process and fact
that, aside from the plane structure, a labeled tree is identical to its symmetrization.
In the proof of the next lemma we use the following definition. Fix a plane tree t

and write n = 2|V (t)| − 2. For 0 6 y < 1, let v(t, y) be whichever of θt(bnyc) and
θt(bnyc+ 1) is further from the root. Note that if U is uniformly distributed on [0, 1]
then v(t, U) is a uniformly random non-root node of t.

Lemma 3.1. — Let (Xi, i > 1) be independent Uniform[0, 1] random variables,
independent of the trees Tn. Fix k > 1 and write (X↑i , 1 6 i 6 k) for the increasing
reordering of X1, . . . , Xk. Then(

anCn
(
X↑i
)
, bnZn

(
X↑i
)
, i 6 k

) d→
(
C
(
X↑i
)
, Z

(
X↑i
)
, i 6 k

)
as n→∞.

Proof. — We note at the outset that, since the entries of (Xi, i > 1) are independent
of the trees Tn, they are also independent of Cn and of Zn, since these two random
functions are measurable with respect to Tn.
Let R = (R1, . . . , Rk) and Q = (Q1, . . . , Qk) be vectors of independent uniform

samples from Tn and Tsym
n as in Lemma 2.5. (We leave the dependence of R and

Q on n implicit.) The conclusion of that lemma implies that Tn(R) conditioned on
the event that ∅ /∈ R has same distribution as Tsym

n conditioned on the event that
∅ /∈ Q.
For each 1 6 i 6 k, let R′i = v(Tn, Xi) and let Q′i = v(T sym

n , Xi); then let
R′ = (R′i, i 6 k) and let Q′ = (Q′i, i 6 k). Let E be the event that ∅ 6∈ {R1, . . . , Rk},
so the conditional law of (Tn(R), U(R)) given E is the law of (Tn(R′), U(R′)). Simi-
larly, the conditional law of (Tsym

n (Q), U(Q)) given ∅ 6∈ {Q1, . . . , Qk} is the law of
(Tsym

n (Q′), U(Q′)). By Lemma 2.5, it then follows that (Tn(R′),D〈R′〉, U(R′)) and
(T sym

n (Q′),Dsym〈Q′〉, U(Q′)) are also identically distributed.
Using the conclusion of the preceding paragraph, we may fix a coupling which

makes
(Tn(R′),D〈R′〉, U(R′)) a.s.= (T sym

n (Q′),Dsym〈Q′〉, U(Q′)) .
Letting R↑i = v(Tn, X↑i ), Q↑i = v(T sym

n , X↑i ) and R↑ = (R↑i , i 6 k), Q↑ = (Q↑i , i 6 k),
we then have
(3.1)

(
Tn
(
R↑
)
,D〈R↑〉, U

(
R↑
)) a.s.=

(
T sym
n

(
Q↑
)
,Dsym〈Q↑〉, U

(
Q↑
))

.
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Now write ∆n and ∆sym
n for the greatest absolute values of an edge label of Tn

and Tsym
n , respectively, i.e.

∆n = sup
uv ∈ e(Tn)

|`n(u)− `n(v)| and ∆sym
n = sup

uv ∈ e(T sym
n )
|`sym
n (u)− `sym

n (v)| .

For all i 6 k, the difference between `n(R↑i ) and the label of U(R↑, R↑i ) in (Tn(R↑),
D〈R↑〉) is at most (k − 1)∆n, since any difference between these labels is caused
exclusively by the zeroing of labels in D〈R↑〉 at branchpoints, and there are at
most k − 1 branchpoints of Tn(R↑) along any path from the root. Likewise, the
difference between `sym

n (Q↑i ) and the label of U(Q↑, Q↑i ) in (T sym
n (Q↑),D〈R↑〉) is at

most (k − 1)∆sym
n . It then follows from (3.1) that∣∣∣`sym

n

(
Q↑i
)
− `n

(
R↑i
)∣∣∣ 6 (k − 1) (∆n + ∆sym

n ) .

Also, the value of Zn(X↑i ) lies between `n(R↑i ) and the label of one of its neighbours
in Tn, and the value Zsym

n (X↑i ) lies between `sym
n (Q↑i ) and the label of one of its

neighbours in Tsym
n , so∣∣∣Zn (X↑i )− `n (R↑i )∣∣∣ 6 ∆n and

∣∣∣Zsym
n

(
X↑i
)
− `sym

n

(
Q↑i
)∣∣∣ 6 ∆sym

n .

It follows that

(3.2) bn sup
i6 k

∣∣∣Zsym
n

(
X↑i
)
− Zn

(
X↑i
)∣∣∣ 6 kbn (∆n + ∆sym

n )

Now notice that, writing N = 2|T sym
n | − 2, we may represent ∆n and ∆sym

n as

∆n = sup
|x−y|6 1/N

|Zn(x)− Zn(y)| and ∆sym
n = sup

|x−y|6 1/N
|Zsym

n (x)− Zsym
n (y)| .

Since (C,Z) is a C([0, 1],R2)-valued process, Z itself is a C([0, 1],R)-valued process,
so is almost surely uniformly continuous. Since (anCsym

n , bnZ
sym
n ) d→ (C,Z) it fol-

lows that bnZsym
n

d→ Z for the uniform topology on C([0, 1],R). The second of the
preceding equalities then implies that bn∆sym

n
d→ 0.

For any labelled tree t = (t, d) and any σ ∈ Pt, the multiset of edge labels is the
same in t and in σ(t), so in particular the largest absolute value of an edge label is
the same in both trees. It thus follows from the definition of symmetrization that
∆n

d= ∆sym
n . Since bn∆sym

n
d→ 0 it follows that bn∆n

d→ 0 as well, and (3.2) then
implies that

bn sup
i6 k

∣∣∣Zsym
n

(
X↑i
)
− Zn

(
X↑i
)∣∣∣ d→ 0 .

Under the coupling which yields (3.1), we also have(
Cn

(
X↑i
)
, i 6 k

)
=
(
Csym
n

(
X↑i
)
, i 6 k

)
,

from which it follows that (anCn(X↑i ), bnZn(X↑i )) and (anCsym
n (X↑i ), bnZsym

n (X↑i ))
must have the same distributional limit. By the assumption of Theorem 1.2, the
latter converges to (C(X↑i ), Z(X↑i ), i 6 k). �
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Lemma 3.2. — Let T = (T,D) be a random labeled tree and let Tsym be its
symmetrization. Then for any constants k,K,M , we have

P
{

sup
|i−j|6 k

|`T(θT (i))− `T(θT (j))| > M

}

6 P
{

sup
|i−j|6 k

dist(θT (i), θT (j)) > K

}

+ P
{

sup
v, w∈Tsym : dist(v, w)6SK

|`Tsym(v)− `Tsym(w)| > M

}
.

Proof. — For vertices v, w of a rooted plane tree, write [[v, w]] for the unique path
between v and w; this path is determined by the Ulam–Harris labels of v and w
themselves, so there is no need to indicate the tree to which v and w belong in
the notation. Now fix a labeled tree t = (t, d) and let σ ∈ Pt. Note that for any
v, w ∈ V (t), the paths [[v, w]] and [[σ(v), σ(w)]] are identical, in that they have the
same length, and visit edges with the same labels, in the same order. It follows that
for all i, j 6 2|V (t)| − 2,

dist(θt(i), θt(j)) = dist(σ(θt(i)), σ(θt(j))) and
`t(θt(i)) = `σ(t)(σ(θt(i))) .

The second identity implies that for any k,
sup
|i−j|6 k

|`t(θt(i))− `t(θt(j))| = sup
|i−j|6 k

∣∣∣`σ(t)(σ(θt(i)))− `σ(t)(σ(θt(j)))
∣∣∣ .

The first identity implies that
sup
|i−j|6 k

dist(θt(i), θt(j)) = sup
|i−j|6 k

dist(σ(θt(i)), σ(θt(j))) .

For any constants M,K, it follows that if
sup
|i−j|6 k

|`t(θt(i))− `t(θt(j))| > M

then either
sup
|i−j|6 k

dist(θt(i), θt(j)) > K

or
sup

v, w ∈V (σ(t)) : dist(v, w)6K

∣∣∣`σ(t)(v)− `σ(t)(w)
∣∣∣ > M .

We now apply this to the random tree T = (T,D), and to σ ∈u PT. By a union
bound, this gives

P
{

sup
|i−j|6 k

|`T(θT (i))− `T(θT (j))| > M

}

6 P
{

sup
|i−j|6 k

dist(θT (i), θT (j)) > K

}

+ P
{

sup
v, w ∈V (σ(T )) : dist(v, w)6K

∣∣∣`σ(T)(v)− `σ(T)(w)
∣∣∣ > M

}
,
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which concludes the proof of the Lemma 3.2, since σ(T) d= Tsym. �

Lemma 3.3. — Under the hypotheses of Theorem 1.2, for all β > 0, there exists
α = α(β) > 0 such that

lim sup
n

P
{

sup
|i−j|6 bα|Tn|c

an dist (θn(i), θn(j)) > β

}
< β.

Proof. — Fix β > 0. Since µn is symmetric, Tn and T sym
n have the same distribution

(as unlabeled plane trees). Thus, the convergence result for the contour of (T sym
n )

translates immediately into the same result for the contour of (Tn). This implies in
particular that the process (anCn) is tight, so there exists α > 0 such that

(3.3) lim sup
n

P
{

sup
|x−y|6α

an |Cn(x)− Cn(y)| > β

}
< β.

Now, for any n and 0 6 i 6 j 6 2|Tn| − 2, observe that

dist (θn(i), θn(j)) = Cn

(
i

2|Tn| − 2

)
+ Cn

(
j

2|Tn| − 2

)
− 2 inf

i6 k6 j
Cn

(
k

2|Tn| − 2

)
,

which together with (3.3) and the triangle inequality gives the desired result. �

Lemma 3.4. — Under hypotheses of Theorem 1.2, for all ε > 0, there exists
β = β(ε) > 0 such that

sup
n

P
{

sup
v, w∈T sym

n : dist(v, w)6 sβ/an

bn |`sym
n (v)− `sym

n (w)| > ε

}
< ε

Proof. — As noted in the introduction, if (ζ, f) is a tree-like path then f can be
pushed forward to Tζ and is continuous on that domain. Since Tζ is compact, f
is in fact uniformly continuous on Tζ . In the current setting, this implies that the
push-forward of Z to TC is a.s. uniformly continuous on TC with respect to (the
pushforward of) DistC . Thus, for all ε > 0, there exists β > 0 such that

(3.4) P
{

sup
x, y ∈ [0,1]: DistC(x, y)6β

|Z(x)− Z(y)| > ε

}
< ε .

Since (anCsym
n , bnZ

sym
n ) d→ (C,Z) by assumption, after decreasing β if necessary, (3.4)

implies that

sup
n

P
{

sup
x, y : Distsym

n (x, y)6β/an

{bn |Zsym
n (x)− Zsym

n (y)|} > ε

}
< ε.

Since T sym
n is isometric to a subspace of TCsym

n
, we have

sup
v, w∈T sym

n : dist(v, w)6β/an

bn |`sym
n (v)− `sym

n (w)|

6 sup
x, y : Distsym

n (x, y)6β/an

{bn |Zsym
n (x)− Zsym

n (y)|} ,

and the result follows. �

Proposition 3.5. — Under the hypotheses of Theorem 1.2, the family (bnZn) is
tight.
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Proof. — Fix ε > 0, let β < ε be such that the bound of Lemma 3.4 holds
and let α = α(β) be such that the bound of Lemma 3.3 holds. Let t = Tn and
N = 2|Tn| − 2; we assume n is large enough that αN > 2. Applying Lemma 3.2
with k = αN , K = β/an and M = ε/bn, we get

P
{

sup
|i−j|6αN

|`n(θn(i))− `n(θn(j))| > ε/bn

}

6 P
{

sup
|i−j|6αN

dist(θn(i), θn(j)) > β/an

}

+ P
{

sup
dist(v, w)6β/an

|`sym
n (v)− `sym

n (w)| > ε/bn

}
.

By Lemmas 3.3 and 3.4, it follows that

(3.5) lim sup
n

P
{

sup
|i−j|6αN

|`n(θn(i))− `n(θn(j))| > ε/bn

}
6 β + ε 6 2ε .

For any x, y ∈ [0, 1], by the triangle inequality, we have

|Zn(x)− Zn(y)| 6 |`n(θn(bxNc))− `n(θn(byNc))|
+ |Zn(x)− `n(θn(bxNc))|+ |Zn(y)− `n(θn(byNc))| .

By definition of Zn this yields

|Zn(x)− Zn(y)| 6 |`n(θn(bxNc))− `n(θn(byNc))|
+ |`n(θn(dxNe))− `n(θn(bxNc))|+ |`n(θn(dyNe))− `n(θn(byNc))| .

Since αN > 2, if |x− y| 6 α/2 then |bxNc − byNc| 6 αN , so
sup

|x−y|6α/2
|Zn(x)− Zn(y)| 6 3 sup

|i−j|6 bαNc
|`n(θn(i))− `n(θn(j))| .

Together with Equation (3.5), this establishes the requisite tightness. �

Proof of Theorem 1.2. — For n > 1 write Ln for the law of (anCn, bnZn), so Ln is
a Borel probability measure on C([0, 1],R)2. Proposition 3.5 and (3.3) together imply
that the family (Ln, n > 1) is tight. To complete the proof, we establish convergence
of finite-dimensional distributions by showing that for any 0 6 t1 < t2 < . . . < tm 6 1
and any bounded Lipschitz function F :

(
R2
)m
→ R,

(3.6) E
[
F
(
(anCn(ti), bnZn(ti))16 i6m

)]
→ E

[
F
(
(C(ti), Z(ti))16 i6m

)]
For the remainder of the proof, fix F and (ti, 1 6 i 6 m) as above, let ||F ||∞ be the
uniform norm of F , and let ||F ||Lip be the Lipschitz constant of F with respect to
this norm.
By [Bil13, Theorem 8.2], since (Ln, n > 1) is tight, for all δ > 0 there is α = α(δ)

such that

(3.7) lim sup
n→∞

P
{

sup
x, y ∈ [0,1], |x−y|6α

(an |Cn(x)− Cn(y)|+ bn |Zn(x)− Zn(y)|) > δ

}
< δ .

ANNALES HENRI LEBESGUE



Convergence of non-bipartite maps 669

We write (An, n > 1) for the events whose probabilities are bounded in (3.7).
Since C and Z are almost surely uniformly continuous, by decreasing α(δ) if

necessary we may additionally ensure that

(3.8) P
{

sup
x, y ∈ [0,1], |x−y|6α

(|C(x)− C(y)|+ |Z(x)− Z(y)|) > δ

}
< δ.

Let (Ui, i > 1) be independent Uniform[0, 1] random variables, and for k > 1, let
(U↑i; k, 1 6 i 6 k) be the increasing reordering of U1, . . . , Uk. Then the sequence of
random variables (sup06x6 1 |U

↑
bkxc; k−x|)k> 1 converges in probability to 0 as k →∞.

For δ > 0, letting α = α(δ) be as above, we may therefore choose j > 2/α large
enough that

P
{

max
16 i6 j

∣∣∣∣∣U↑i; j − i

j

∣∣∣∣∣ > α

2

}
< δ.

Now choose integers k1, . . . , km so that for 1 6 i 6 m, |ki/j − ti| < α/2; this is
possible since j > 2/α. It follows that

(3.9) P
{

max
16 i6m

∣∣∣U↑ki; j − ti
∣∣∣ > α

}
< δ .

Let B and C be the events whose probabilities are bounded in (3.8) and (3.9).
Writing En = (An ∪ B ∪ C)c, we then have lim infn P {En} > 1 − 3δ. When En
occurs,∣∣∣∣F ((anCTn(ti), bnZTn(ti))16 i6m

)
− F

((
anCTn

(
U↑ki; j

)
, bnZTn

(
U↑ki; j

))
16 i6m

)∣∣∣∣
6 δ||F ||Lip ,

so for n sufficiently large,

(3.10)
∣∣∣E [

F
(
(anCn(ti), bnZn(ti))16 i6m

)]
− E

[
F
((
anCn

(
U↑ki; j

)
, bnZn

(
U↑ki; j

))
16 i6m

)]∣∣∣∣ 6 δ||F ||Lip + 6δ||F ||∞ .

On En, we also have∣∣∣C(ti)− C
(
U↑ki; j

)∣∣∣+ ∣∣∣Z(ti)− Z
(
U↑ki; j

)∣∣∣ < δ,

so it likewise follows that

(3.11)
∣∣∣∣E [

F
(
(C(ti), Z(ti))16 i6m

)
− F

((
C
(
U↑ki; j

)
, Z

(
U↑ki; j

))
16 i6m

)]∣∣∣∣
6 δ||F ||Lip + 6δ||F ||∞.

Finally, Lemma 3.1 implies that

E
[
F
((
anCn

(
U↑ki; j

)
, bnZn

(
U↑ki; j

))
16 i6m

)]
→ E

[
F
((
C
(
U↑ki; j

)
, Z

(
U↑ki; j

))
16 i6m

)]
as n → ∞. Together with (3.10) and (3.11), this yields (3.6) and completes the
proof. �
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For use in the next section, we note two further straightforward points related
to convergence of processes built from trees. For a tree t with |V (t)| = n > 1, and
q ∈ S a fixed type, define Λ(q)

t (i/(2n − 2)) as the number of times the contour
process visits for the first time a vertex of type q before time i. More formally, for
0 6 i 6 2n− 2, set

Λ(q)
t

(
i

2n− 2

)
= |{0 6 j < i : s(θ(j)) = q}| .

Then extend the domain of definition of Λ(q)
t to [0,1] by linear interpolation. The

first proposition is a consequence of the fact that if T = (T, d) is a random labeled
tree with valid law ν, then the law of the underlying plane tree T is symmetric; its
proof is omitted.

Proposition 3.6. — For each n > 1 let Tn = (Tn,Dn) be a random labeled
multitype plane tree whose law νn is valid, and let Tsym

n have law νsym
n . Fix any type

q ∈ S. If there exists a C([0, 1],R)-valued random process Λ(q) such that

|V (T sym
n )|−1 Λ(q)

T sym
n

d→ Λ(q) ,

then also
|V (Tn)|−1 Λ(q)

Tn

d→ Λ(q) .

Next, fix a labeled plane tree t = (t, d) and list the vertices of t in lexicographic
order with respect to their Ulam–Harris labels as ∅ = v0, v1, . . . , v|t|−1, and write
v|t| = v0 for convenience. The height processHt of t is the C([0, 1],R) function defined
as follows. For integers 0 6 i 6 |t| let Ht(i/|t|) = distt(∅, vi); then extend to [0, 1] by
linear interpolation. Similarly, define St : [0, 1]→ R by taking St(i/|t|) = `t(vi) for
0 6 i 6 |t| and extending to [0, 1] by linear interpolation.

Proposition 3.7. — Let (Tn, n > 1) be random labelled plane trees. If

(anHTn , bnSTn) d→ (C,Z),
for the uniform topology with an → 0 and an · |Tn| → ∞ in probability, then

(anCTn , bnZTn) d→ (C,Z)
also for the uniform topology.

Proof. — We roughly follow the argument from [LG05, Section 1.6], but must
modify it slightly to handle the label process. Again fix a labeled plane tree t = (t, d)
and list the vertices of t in lexicographic order as v0, v1, . . . , v|t|−1, writing v|t| = v0 for
convenience. For 0 6 i < |t| let j(i) = jt(i) = 2i−distt(∅, vi), and set j(|t|) = 2|t|−2.
Also, for 0 6 s 6 1 let ϕt(s) = |t|−1 · sup(i : jt(i) 6 s(2|t| − 2)).
It is straightforward to verify the following facts.
• For all 0 6 i < |t|, j(i) = inf(j > 0 : θt(j) = vi).
• For all 0 6 i < |t|, for 1 6 k < j(i + 1)− j(i), the vertex θt(j(i) + k) is the
parent of θt(j(i) + k − 1), and if i < |t| − 1 then θt(j(i + 1)) is the child of
θt(j(i+ 1)− 1). In particular,
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distt (θt(j(i)) , θt(j(i) + k)) = k

for 1 6 k < j(i+ 1)− j(i).
It follows that if s ∈ (0, 1) and j(i) 6 s(2|t| − 2) < j(i + 1) then both Ct(s) and

Ht(ϕt(s)) lie in the interval
[distt(∅, vi+1)− 1, distt(∅, vi) + 1] ,

so
(3.12) sup

06 s6 1
|Ct(s)−Ht(ϕt(s))| 6 2 + max

06 i< |t|
distt(vi, vi+1) .

Writing αt = 2 + max06 i< |t| distt(vi, vi+1), it likewise follows that
(3.13) sup

06 s6 1
|Zt(s)− St(ϕ(s))| 6 max (|`t(u)− `t(v)| : distt(u, v) 6 αt) .

Also, from the definition, we have that
jt(|t|ϕt(s)) 6 s(2|t| − 2) and jt(|t|ϕt(s) + 1) > s(2|t| − 2).

Thus, for x > 0, if ϕt(s)− s = x/|t| then
jt(|t|s+ x) 6 s(2|t| − 2) = 2(|t|s+ x)− 2(x+ 1) ,

and if ϕt(s)− s = −x/|t| then
jt(|t|s− x+ 1) > s(2|t| − 2) = 2(|t|s− x+ 1) + 2(x− 2) ,

from which it follows that
(3.14) (2|t| − 2) · sup

06 s6 1
|ϕt(s)− s| 6 4 + sup

06 i6 |t|
|j(i)− 2i| = 4 + height(t) .

We now turn to asymptotics. If anHTn

d→ C then the fact that C is continuous
implies that
(3.15) an · max

06 i<n
distTn(vi, vi+1)→ 0

in probability, and together with the fact that an|Tn|
(p)−→∞ implies that height(Tn)

/|Tn| → 0 in probability. Using the first of these convergence results in (3.12) gives
that

an sup
06 s6 1

|CTn(s)−HTn(ϕTn(s))| → 0

in probability; using the second in (3.14) gives that
sup

06 s6 1
|ϕTn(s)− s| → 0

in probability. Finally, using (3.15) in (3.13), and exploiting the convergence of bnSTn

to the continuous process Z as in the proof of Lemma 3.4, it follows that
bn sup

06 s6 1
|ZTn(s)− STn(ϕTn(s))| → 0

in probability. The last three convergence results together imply that (anHTn , bnSTn)
and (anCTn , bnZTn) must have the same limit. �
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4. Convergence of random non-bipartite Boltzmann planar
maps

4.1. Definitions around Theorem 1.1

4.1.1. Brownian tree, Brownian snake, Brownian map

In the rest of this section, we denote e = (e(s), 0 6 s 6 1) a standard Brownian
excursion. Recall the construction given in Section 2.2. The random tree (Te,Diste)
was introduced in [Ald91] and is called the Brownian Continuum Random Tree.
Next, conditionally given e, let Ze = (Ze(s), 0 6 s 6 1) be a centred Gaussian

process such that Z(0) = 0 and for 0 6 s 6 t 6 1,

Cov (Ze(s), Ze(t)) = inf {e(u), for s 6 u 6 t} .

We may and shall assume Ze to be a.s. continuous; see [LG05, Section 3] for a
more detailed description of the construction of the pair (e, Ze), which is called the
Brownian snake. It can be checked that almost surely, for all x, y ∈ [0, 1], if x ∼e y
then Ze(x) = Ze(y). Therefore, a.s the pair (e, Ze) is a tree-like path.
To construct the Brownian map, we further need the following. For x, y ∈ [0, 1], let

(4.1)

D◦(x, y) = D◦(y, x) = Ze(x) + Ze(y)− 2 max
(

min
q ∈ [x, y]

Ze(q), min
q ∈ [y, 1]∪ [0, x]

Ze(q)
)
.

Then there is a unique pseudo-distance D∗ 6 D◦ on [0, 1] such that D∗(x, y) = 0
whenever x ∼e y which is maximal, in that if D′ 6 D◦ is any other pseudo-distance
on [0, 1] satisfying this condition, then D′(x, y) 6 D∗(x, y) for all x, y ∈ [0, 1]. The
function D∗ is given explicitly as

D∗(x, y) = inf
{

k∑
i=1

D◦(xi, yi),
}

where the infimum is taken over k ∈ N and over sequences (x1, y1), . . . , (xk, yk) of
elements of [0, 1]2 with x1 = x, yk = y, and D◦(xi, yi+1) = 0 for 1 6 i < k; see [BBI01,
Section 3.1.2] and also [LG07, Mie13].
Then, let M = [0, 1]/{D∗ = 0} and let d∗ be the push-forward of D∗ to M . Finally,

let λ be the push-forward of Lebesgue measure on [0, 1] to M . We refer to the triple
(M,d∗, λ), or to any other random variable with the same law as (M,d∗, λ), as the
Brownian map.

4.1.2. Gromov–Hausdorff and Gromov–Hausdorff–Prokhorov distance

We give in this section the definition of Gromov–Hausdorff and Gromov–Hausdorff–
Prokhorov distances and refer the readers to [GPW09] and [Mie09, Section 6] for
details.
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Let X and X ′ be two compact metric spaces. The Gromov–Hausdorff distance(1)

dGH(X,X ′) between X and X ′ is defined by
dGH(X,X ′) = inf

φ, φ′
δH (φ(X), φ(X ′)) ,

where the infimum is taken over all isometries φ : X → Z and φ′ : X ′ → Z into
a common metric space Z and where δH denotes the classical Hausdorff distance
between closed subsets of Z.
Let X = (X,µ) and X′ = (X ′, µ′) be two compact measured metric spaces (that

is X and X ′ are two compact metric spaces and µ and µ′ are Borel probability
measures on X and X ′ respectively). The Gromov–Hausdorff–Prokhorov distance
dGHP (X,X′) between X and X′ is defined by

dGHP (X,X′) = inf
φ, φ′

(δH (φ(X), φ(X ′)) ∧ δP (φ∗µ, φ∗µ′)) ,

where the infimum is taken over all isometries φ : X → Z and φ′ : X ′ → Z into a
common metric space Z and where δP denotes the Prokhorov distance between two
probability measures and φ∗µ and φ∗µ′ denote the push-forwards of µ and µ′ by φ
and φ′.

4.2. Planar maps and Boltzmann distributions

All maps considered in this section are rooted, meaning that an edge is marked and
oriented. This edge is called the root edge and its tail is the root vertex. In addition
to their rooting, maps can also be pointed meaning that an additional vertex is
distinguished. A map M rooted at an oriented edge e and pointed at a vertex v•
is denoted (M, e, v•). The set of rooted maps and of rooted and pointed maps are
respectively denotedM andM•. For n > 1, we denote byMn andM•

n the subsets
ofM andM• consisting of maps with n vertices, respectively. We assume thatM
andM• both contain the “vertex map” †, which consists of a single vertex, no edge,
and a single face of degree 0.
Following [Mie06, MM07], we introduce the Boltzmann distribution onM defined

as follows. Let q = (q1, q2, q3, . . .) be a sequence of non-negative real numbers. For
m ∈M or m ∈M•, we define the weight of m by

Wq(m) =
∏

f ∈ f(m)
qdeg(f),

where f(m) is the set of faces of m; by convention Wq(†) = 1.
For n > 1 let Zq, n = ∑

m∈Mn
Wq(m), let Z•q, n = ∑

m∈M•n Wq(m) = nZq, n, and
let

Z•q =
∑

m• ∈M•
Wq(m•) =

∑
n> 1

∑
m• ∈Mn

nWq(m•) .

From now until the end of the paper, we assume the following holds.

(1)We define here in fact a pseudo-distance and we should consider instead isometric classes of
compact metric spaces to be perfectly rigorous.
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Assumption 1. — The sequence q has finite support, and there exists an odd
integer p > 3 such that qp > 0. Moreover, Z•q <∞.

Under this assumption, we may define probability measures Pq and P•q on Mn

andM•
n, respectively, by setting, for m ∈Mn and m• ∈M•

n,

Pq, n(m) = Wq(m)
Zq, n

and P•q(m•) = Wq(m•)
Z•q, n

.

These definitions only make sense when Zq, n 6= 0, and in what follows, we restrict
attention to values of n for which this the case.
Note that, assuming q has finite support, we may always choose c > 0 such

that Z(cq) < ∞, where we write cq = (cq1, cq2, . . .). Moreover, if Zq, n < ∞ and
Zcq, n <∞, then we have Pq, n = Pcq, n and P•q, n = P•cq, n. Also, it is proved in [CLM13,
the Appendix] that if q has finite support and there exists p > 3 such that qp > 0,
then there is c > 0 such that cq is regular critical. Together these facts imply that,
in studying Pq, n and P•q, n we may assume q is itself regular critical; we make this
assumption henceforth.
The goal of this section is to prove the following result.

Theorem 4.1. — Let (Mn, n > 1) be random rooted maps with Mn having law
Pq,n. Denote by distMn the graph distance on Mn and by µn the uniform probability
distribution on V (Mn). Then there exists a constant bq such that, as n goes to
infinity, (

V (Mn), bq

n1/4dMn , µn

)
d→ (M,d∗, λ),

for the Gromov–Hausdorff–Prokhorov topology, where (M,d∗, λ) is the Brownian
map.

Remarks. —
? If there exists an odd integer p > 3 such that qp > 0 and qj = 0 for all
j 6= p, then clearly q satisfies Assumption 1. In this case Pq, n is the uniform
distribution on the set of p-angulations with n vertices. Thus, Theorem 1.1 is
a direct corollary of Theorem 4.1.

? The pushforward of P•q, n toMn obtained by forgetting the marked vertex is
Pq, n, so we may and will prove Theorem 4.1 for Mn distributed according to
P•q, n rather than Pq, n.

To prove this theorem, we rely on the method introduced by Le Gall in [LG13,
Section 8]. This approach exploits distributional symmetries of the Brownian map
(which can be deduced from the fact that the ensemble of quadrangulations has the
Brownian map as their scaling limit [LG13, Mie13]) to simplify the task of proving
convergence for other ensembles.
At a high level, to apply the method, three points need to be checked. First, Mn

must be encoded by a labeled tree such that vertices of the map are in correspondence
with a subset of vertices of the tree and such that the labels on the vertices of the tree
encode certain metric properties of the map. Second, the contour and label processes
of the labeled trees encoding the sequence of maps should converge (once properly

ANNALES HENRI LEBESGUE



Convergence of non-bipartite maps 675

rescaled) to the Brownian snake, (defined in Section 4.1.1). Third, the vertex with
minimum label in the tree must correspond to a vertex in the map whose distribution
is asymptotically uniform on V (Mn) as n goes to infinity.
In our setting, the first point is achieved by the Bouttier–Di Francesco–Guitter

bijection, which we recall in the next section. The third one, addressed in Section 4.4,
is a direct consequence of a result by Miermont. Proving that the second point holds
(its precise statement will be given in Proposition 4.5) is the main new contribution
of this section.
With these three ingredients, we conclude the proof of Theorem 4.1 in Section 4.5.

4.3. The Bouttier–Di Francesco–Guitter bijection

In this section, we describe the Bouttier–Di Francesco–Guitter bijection [BDG04],
roughly following the presentation given in [CLM13].
Let (M, e, v•) be an element of M•. Let e− and e+ be respectively the tail and

the head of e. Three cases can occur: either dM(s, e−) = dM(s, e+), dM(s, e−)
= dM(s, e+) + 1 or dM(s, e−) = dM(s, e+) − 1. Depending on which case occurs,
we say that M is respectively null, negative or positive. The set of null (resp. pos-
itive and negative) pointed and rooted maps is denotedM0 (resp.M+ andM−).
By convention, we let † ∈ M+. Reversing the orientation of the root edge gives a
bijection between the setsM+\{†} andM−. Thus, in the following, we focus only
on the setsM+ andM0.
We now introduce the class of decorated trees or mobiles which appear in the

bijection.

Definition 4.2. — A mobile t = (t, d) is a 4-type rooted plane labeled tree
which satisfies the following constraints.

(i) Vertices at even generations are of type 1 or 2 and vertices at odd generations
are of type 3 or 4.

(ii) Each child of a vertex of type 1 is of type 3.
(iii) Each non-root vertex of type 2 has exactly one child of type 4 and no other

child. If the root vertex is of type 2, it has exactly two children, both of type 4.
The labelling d is an admissible labeling of t, meaning that the following hold.

(1) If the root is of type 1, vertices of type 1 and 3 are labeled by integers and
vertices of type 2 and 4 by half-integers.

(2) If the root is of type 2, vertices of type 2 and 4 are labeled by integers and
vertices of type 1 and 3 by half-integers.

(3) For all vertices u of type 3 or 4, for every i = 0, . . . , kt(u),`(u(i+ 1)) > `(ui)− 1 if u(i+ 1) is of type 1,
`(u(i+ 1)) > `(ui)− 1/2 if u(i+ 1) is of type 2.

where we use Ulam–Harris encoding together with the convention that u(kt(u)
+ 1) and u0 both denote the parent of u.

(4) For all vertices u of type 3 or 4, we have `(u) = `(u0).
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Figure 4.1. An example of the Bouttier–Di Francesco–Guitter bijection. The
original map (left), the construction of Φ(m) (middle) and the resulting mobile
(right). Circle and square labeled vertices correspond respectively to vertices of
type 1 and 2. Empty and filled unlabeled vertices correspond respectively to
vertices of type 3 and 4.

The set of mobiles such that the root is of type 1 (resp. of type 2) is denoted T+

(resp. T0). For n > 1, the respective subsets of T+ and T0 with n − 1 vertices of
type 1 are denoted T+

n and T0
n. We also set T− = T+ and T−n = T+

n . The notation is
justified by Proposition 4.3, below.
We now give the construction which maps an element ofM+ to an element of T+

and which is illustrated in Figure 4.1. (the construction forM0 being very similar,
we refer the reader to the original paper [BDG04] or to [CLM13] for the details).
First, label each vertex of M by `M(v) := dM(v, v•). Then, for each edge of the
map whose both extremities have the same label, say `, add a “flag-vertex” in the
middle of the edge and label it `M(f) := `+ 1/2. Call the resulting augmented map
M ′. Next, add a “face-vertex” f in each face of the map. Now, for each face of M ′,
considering its vertices in clockwise direction, each time a vertex v is immediately
followed by a vertex w with smaller label (the introduction of flag-vertices ensure
that any two adjacent vertices have different labels), draw an edge between v and
the corresponding face-vertex. Erase all edges of M ′.
The result of [BDG04] ensures that the resulting map, denoted Φ(M), is in fact a

spanning tree of the union of the set of face-vertices, of the set of flag-vertices and
of the set of vertices V (M)\{v•}. The tree Φ(M) inherits a planar embedding from
M . To make it a rooted plane tree, we additionally root it at e+, and choose the
first child of e+ to be the face-vertex associated to the face on the left of (e−, e+);
note that because M is positive, there always exists an edge in Φ(M) between e+

and this face-vertex.
We assign types to the vertices of Φ(M) as follows. Vertices of M have type 1, and

flag-vertices have type 2. Face-vertices have type 3 if their parent is of type 1 and
have type 4 otherwise, This turns Φ(M) is a mobile, rooted at a vertex of type 1.
For v ∈ V (M) \ {v•}, by a slight abuse of notation, we also denote v the image of v
in Φ(M).
Label the nodes of Φ(M) as follows. For u of type 1 or 2, let `(v) = `M(v)−`M(e+),

this makes sense since v is a node of M ′. Having rooted Φ(M), we give vertices of
type 3 and 4 the same label as their parent. We now use these vertex labels to
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turn Φ(M) into a rooted labeled tree by giving each edge (u, ui) of Φ(M) the label
`(ui)− `(u).
The properties of this construction which are essential to our work appear in the

following proposition. (Properties (i) and (ii) are contained in the above description
and Property (iii) is [LG07, Lemma 3.1]).

Proposition 4.3 (Properties of the Bouttier–Di Francesco–Guitter bijection).
For each n > 1 and ? ∈ {−, 0,+}, Φ gives a bijection between M?

n and T?n. For
(m, e, v•) ∈M+, write t = (t, d) for the image of (m, e, v•) by Φ. Then

(i) Elements of V (m)\{v•} are in bijection with vertices of type 1 in t.
(ii) For all v ∈ V (m)\{v•}, distm(v, v•) = `t(v)−minx∈V (t) `t(x) + 1.
(iii) For all u, v ∈ V (m)\{v•},

distm(u, v) 6 `t(v) + `t(u)− 2 max
(

ˇ̀t (u, v) , ˇ̀t (v, u)
)

+ 2,

where ˇ̀t is defined as follows. For x, y ∈ t, set ix = inf{i : θt(i) = x} and
iy = inf{i : θt(i) = y}. Then

ˇ̀t (x, y) =

infi∈ [ix, iy ] `t(θt(i)) if ix 6 iy
infi∈ [ix, 2|t|−2]∪ [0, iy ] `t(θt(i)) if iy < ix .

4.4. Convergence of labeled trees

This section is devoted to the study of random labeled trees obtained by applying
the Bouttier–Di Francesco–Guitter bijection Φ to random maps distributed according
to Pq,n.

Theorem 4.4. — There exist aq > 0 and bq > 0 such that the following holds.
For n > 1 with Zq, n > 0 let Mn have law Pq, n, and let Tn = Φ(Mn) be obtained by
applying the Bouttier–Di Francesco–Guitter bijection to Mn. Then as n→∞ along
values with Zq, n > 0,(

aq

n1/2CTn(s), bq

n1/4ZTn(s)
)

06 s6 1

d→ (e(s), Ze(s))06 s6 1 ,

for the topology of uniform convergence on C([0, 1],R2). Moreover, for each i ∈
{1, 2, 3, 4}, there exists γi > 0 such that( 1

n
Λ(i)

Tn
(t), 0 6 s 6 1

)
d→ (γis, 0 6 s 6 1) ,

for the topology of uniform convergence on C([0, 1],R).

Theorem 4.4 is an immediate consequence of the following proposition. For n > 1
let Z+

q, n = ∑
m∈M+

n
Wq(m) and, if Z+

q, n > 0 then define P+
q, n by

P+
q, n(m) = Wq(m)

Z+
q, n

.

Likewise define Z0
q, n,Z−q, n and P0

q, n, P−q, n.
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Proposition 4.5. — There exist aq > 0 and bq > 0 such that for any symbol
? ∈ {−, 0,+} the following holds. For n > 1 with Z?

q, n > 0 let M?
n have law ?

q, n,
and let T?

n = Φ(M?
n) be obtained by applying the Bouttier–Di Francesco–Guitter

bijection to M?
n. Then as n→∞ along values with Z?

q, n > 0,(
aq

n1/2CT?
n
(s), bq

n1/4ZT?
n
(s)
)

06 s6 1

d→ (e(t), Ze(s))06 s6 1,

for the topology of uniform convergence on C([0, 1],R2). Moreover, for each i ∈
{1, 2, 3, 4}, there exists γi > 0 such that(

1
|T?

n|
Λ(i)

T?
n
(s), 0 6 s 6 1

)
d→ (γis, , 0 6 s 6 1) ,

for the topology of uniform convergence on C([0, 1],R).

Proof. — We provide details only for the case that ? = +, and briefly dis-
cuss the other cases at the end of the proof. Using the notation of Section 2.4,
[CLM13, Proposition 4.6] gives the following description of the distribution of Φ(M+

n )
= T+

n = (T+
n , D

+
n ).

(1) The tree T+
n is a 4-type Galton–Watson tree whose root has type 1 and which

is conditioned to have n− 1 vertices of type 1. Its offspring distribution ζ+
q

is as follows.
• The support of ζ(1)

q is {0} × {0} × Z+ × {0}, and for k > 0,

ζ(1)
q (0, 0, k, 0) = 1

Z+
q

(
1− 1
Z+

q

)k
.

• ζ(2)
q (0, 0, 0, 1) = 1.

• ζ(3)
q and ζ(4)

q are supported on Z+×Z+×{0}×{0}, and for any k, k′ > 0,

ζ(3)
q (k, k′, 0, 0) = αq

(
Z+

q

)k (
Z0

q

)k′/2 (2k + k′ + 1
k + 1, k, k′

)
q2k+k′+2

ζ(4)
q (k, k′, 0, 0) = βq

(
Z+

q

)k (
Z0

q

)k′/2 (2k + k′

k, k, k′

)
q2k+k′+1,

where αq and βq are the appropriate normalizing constants.
(2) Conditionally given T+

n , the labeling D+
n is uniformly distributed over all

admissible labellings (see Definition 4.2).
The law ν+

q, n of T+
n is valid (see Section 2.4) but its displacements are not locally

centered. However, by [Mie06, Lemma 2], we know that its displacements are centered.
Moreover, it follows directly from [Mie06, Proposition 3] that the symmetrization
T+, sym
n satisfies all the assumptions of [Mie08, Theorems 2 and 4](2) . The conclusion

of those theorems is that there exist aq > 0 and bq > 0 such that, as n→∞ along

(2)N.B. The term “centered” as used in [Mie08, Theorem 4] in fact corresponds to the notion of
“locally centered” used in the current work.
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values with Z+
q, n > 0, with T+, sym

n distributed as ν+,sym
q, n , then(

aq

n1/2HT+, sym
n

(s), bq

n1/4ST+, sym
n

(s)
)

06 s6 1

d→ (e(s), Z(s))06 s6 1,

for the topology of uniform convergence on C([0, 1]2), and for all i ∈ {1, 2, 3, 4},( 1
n

Λ(i)
T+, sym

n
(s), 0 6 s 6 1

)
(p)−→ (γis, 0 6 s 6 1)

for the topology of uniform convergence on C([0, 1]), for suitable constants (γi, 1 6
i 6 4). By Proposition 3.7 and Theorem 1.2, the first convergence also holds with
HT+, sym

n
and ST+, sym

n
replaced by CT+

n
and ZT+

n
, respectively; by Proposition 3.6, the

second convergence also holds with T+, sym
n replaced by T+

n . This completes the proof
in the case that ? = +.
Since it suffices to flip the orientation of the root edge of a map sampled from P+

q, n
to simulate P−q, n, the case that ? = − reduces to the case that ? = +. In the case
? = 0, the pushforward ν0

q, n of P0
q, n by Φ is very similar to ν+

n,q, the only exception
being that the root has type 2 and has two children of type 4. We are hence left
with an ordered pair of Galton–Watson trees, both with root vertex of type 4, and
conditioned to together contain a total of n− 1 vertices of type 1. A reprise of the
above arguments (again using the results of [Mie08] together with Theorem 1.2)
again yields the result in this case. (The fact that there are two trees rather than
one may seem like an issue; but it is known that in this case one of the two trees
will have O(1) size and will disappear in the limit, while the other one will exhibit
the desired invariance principle. The extension of the invariance principle from trees
to forests with a bounded number of trees is explained in the remark on [Mie08,
page 1149].) �

4.5. Convergence of Boltzmann maps

We conclude the proof of Theorem 4.1 in this section. Our argument closely mimics
that given in [LG13, Section 8] for the convergence of triangulations, so we only give
the main steps of the proof.
Proof of Theorem 4.1. — Let Mn have law P+

q, n. We shall prove that(
V (Mn), bq

n1/4 distMn , µn

)
d→ (M,d∗, λ)

in distribution for the Gromov–Hausdorff–Prokhorov topology, as n→∞. The same
holds with Mn having law P0

q, n or P−q, n, with essentially the same proof (with some
minor modifications, as at the end of Section 4.4; we omit the details for these cases).
Fix (m, e, v) in M+ and write Φ(m, e, v) = t = (t, d) ∈ T +. For i 6 j ∈
{0, . . . , 2|t| − 2} such that θ(i) and θ(j) are both of type 1, we define

δt(i, j) = distm (θ(i), θ(j))
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and, writing ` = `t for the vertex labeling of t,

δ◦t (i, j) = δ◦t (j, i)

= `(θ(i)) + `(θ(j))− 2 max
(

min
k∈{i, ..., j}

`(θ(k)), min
k∈{j, ..., 2 |t| −2}∪ {0, ... i}

`(θ(k))
)

+ 2.

It follows directly from Proposition 4.3(iii) that

(4.2) δt(i, j) 6 δ◦t (i, j).

Finally, we extend both δt and δ◦t to [0, 2|t| − 2]× [0, 2|t| − 2] by linear interpolation.
The inequality in (4.2) readily extends to this whole set.
We write Tn = Φ(Mn) and mn = 2|Tn| − 2, and for 0 6 r, s 6 1 we define

Dn(r, s) := bq

n1/4 δTn(mnr,mns) and D◦n(r, s) := bq

n1/4 δ
◦
Tn

(mnr,mns).

Recall the definition of D◦ given in (4.1). Since D◦ depends continuously on Z,
Proposition 4.5 implies that D◦n

d→ D◦; moreover this convergence holds jointly
with that stated in Proposition 4.5. Together with the bound (4.2) this implies
(see [LG07, Proposition 3.2]) that the family of laws of (Dn, n > 1) is tight in the
space of probability measures on C([0, 1],R2). Hence, from any increasing sequence
of positive integers, we can extract an increasing subsequence (nj)j > 1, such that,
jointly with the convergence in Proposition 4.5, we have

(4.3)
(
D◦nj

(s, t), Dnj
(s, t)

)
06 s6 t6 1

d→
(
D◦(s, t), D̃(s, t)

)
06 s6 t6 1

,

for some random process D̃ taking values in C([0, 1],R). We will show that this
convergence holds without extracting a subsequence with D̃ = D∗; from this the
theorem follows just as in [LG13], since d∗ is the push-forward of D∗ to [0, 1]\{D∗
= 0} By the Skorohod representation theorem, we may and will assume that the
convergence along (nj)j > 1 in (4.3) and in Proposition 4.5 jointly hold almost surely.
To prove that the distributional convergence holds without extracting a subsequence,
it then suffices to prove that D̃ a.s.= D∗, where D∗ is defined in Section 4.1.1; recall
that D∗ is a measurable function of (e, D◦).
By (4.2), necessarily D̃ 6 D◦ almost surely. Since D̃ satisfies the triangle inequality,

it then follows from the definition of D∗ that D̃ 6 D∗ almost surely. By continuity,
to show that D̃ a.s.= D∗ it is then enough to prove that for any U, V two independent
uniform random variables in [0, 1], independent of all the other random objects, we
have D̃(U, V ) d= D∗(U, V ).
So let U, V be two such uniform random variables. List the vertices of type 1 in

Tn in lexicographic order as v1, . . . , vn−1. For k ∈ {1, . . . , n− 1}, let iTn(k) = inf{i
> 0, θTn(i) = vk}. Next, define Un = dU · (n− 1)e and Vn = dV · (n− 1)e which are
both uniformly distributed on {1, . . . , n− 1}. It follows from the last statement of
Proposition 4.5 that (n− 1)/|Tn|

(p)−→ γ1 and that
iTn(Un)
mn

(p)−→ U and iTn(Vn)
mn

(p)−→ V ;
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the last statement of Proposition 4.5 is written as convergence in distribution, but
the limit is non-random and so we indeed obtain convergence in probability. Hence,

(4.4)
∣∣∣∣∣Dn(U, V )− bq

n1/4 distMn (vUn , vVn)
∣∣∣∣∣ (p)−→ 0.

Let now Xn, Yn be two independent uniform vertices of Mn. Then, the convergence
results stated in (4.3) and in (4.4) together imply that

bq

n
1/4
j

distMnj

(
Xnj

, Ynj

)
also converges in distribution(3) . Since,

distMn(Xn, Yn) d= distMn (Xn, v
•(Mn)) ,

for all n, it follows that the limiting distribution of bq

n
1/4
j

distMnj
(Xnj

, Ynj
) is the same

as the limiting distribution of
bq

n1/4 distMn (Xn, v
•(Mn)) = bq

n1/4 (ZTn(Un)−minZTn + 1) ,

where the equality is a consequence of Proposition 4.3(ii) and of the definition of
ZTn (see Section 2.1). This last quantity converges to Ze(U)− inf(Ze(s), 0 6 s 6 1).
By [LG13, Corollary 7.3],

Ze(U)− inf (Ze(s), 0 6 s 6 1) d= D∗(U, V ) ,

and therefore D̃ a.s.= D∗ as required. �
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