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regularity of K has crucial importance and we deal with both the smooth and polygonal cases.
Techniques are based on accurate estimates of the area of the Voronoi flower and of the support
function of Kλ as well as on an Efron-type relation. Finally, we show the existence of limiting
variances in the smooth case for the defect area and the number of vertices as well as analogous
expectation asymptotics for the so-called Crofton cell.
Résumé. — Soit K un corps convexe de R2. Nous considérons la mosaïque de Voronoï

engendrée par un processus ponctuel de Poisson homogène d’intensité λ conditionné par
l’existence d’une cellule Kλ contenant K. Quand λ→∞, la cellule Kλ converge en décroissant
vers K et nous donnons les estimées asymptotiques précises des espérances de la différence
d’aire, de la différence de périmètre et du nombre de sommets. Comme dans les articles
fondateurs de Rényi et Sulanke sur les enveloppes convexes aléatoires, la régularité de K a une
importance cruciale et nous traitons séparément le cas lisse et le cas polygonal. Les méthodes
sont basées sur des estimées fines de l’aire de la fleur de Voronoï et de la fonction de support
de Kλ et sur une relation de type Efron. Enfin, nous montrons l’existence de variances limites
dans le cas lisse pour la différence d’aire et le nombre de sommets ainsi que des résultats
analogues d’espérances asymptotiques pour le modèle de la cellule de Crofton.

1. Introduction

For any λ > 0, let Pλ be a homogeneous Poisson point process on R2 with intensity
λ. The Poisson–Voronoi tessellation generated by the set of nuclei Pλ is the collection
of all cells {

y ∈ R2 : ‖y − x‖ 6 ‖y − x′‖ for all x′ ∈ Pλ
}
, x ∈ Pλ,

where ‖ · ‖ denotes the Euclidean norm of R2, see e.g. [Møl94, OBSC00].
Let K be a convex body of R2 with non-empty interior and let Kλ be the particular

Voronoi cell containing K when Pλ is conditioned on the existence of such a cell. We
are interested in studying the geometrical properties of this random polygon Kλ. In
particular, we aim at providing exact asymptotics of several mean characteristics of
Kλ, see Theorem 1.3.
This problem falls naturally within the general literature on the asymptotic de-

scription of large cells from random tessellations. The breakthrough paper [HRS04]
proves and extends the famous conjecture stated by D. G. Kendall in the 40’s and
which asserts that large cells from a stationary and isotropic Poisson line tessellation
are close to the circular shape. Thereafter, the work [CS05] investigates the mean
defect area and mean number of vertices of the typical Poisson–Voronoi cell and of
the zero-cell, i.e. the cell containing the origin, of a stationary and isotropic Poisson
line tessellation conditioned on containing a disk of radius r when r → ∞. More
recently, [HS14] provides an estimate of the Hausdorff distance between K and its
random polyhedral approximation in the slightly different model of a zero-cell from
a stationary Poisson hyperplane tessellation in any dimension.
In a first step, we study a different random polygon. Let o be the origin of R2 and

let us assume that o is included in the interior of K. We then construct the Voronoi
tessellation generated by the set of nuclei Pλ∪{o} and we denote by Ko

λ the Voronoi
cell associated with o when Pλ is conditioned on the event that this Voronoi cell
contains K. In that situation, Ko

λ is equal in distribution to the Voronoi cell of o
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Large planar Poisson–Voronoi cells containing a given convex body 713

associated with the set of nuclei (Pλ ∩ (R2 \ 2Fo(K))) ∪ {o}, where Fo(K) is the
Voronoi flower of K with respect to o (see (2.1) for a precise definition).
In Theorems 1.1 and 1.2 below, we provide limiting expectations up to proper

rescalings of its area A(Ko
λ), perimeter U(Ko

λ) and number of vertices N (Ko
λ) when

K has a smooth boundary or is a polygon.
In the sequel, we set f(u)∼g(u) (resp. f(u)=O(g(u))) when the ratio

f(u)
g(u) → 1

(resp. f(u)
g(u) is bounded from above) when the variable u→∞ or u→ 0 according to

the situation.
In all this work, a set K is said to be a smooth convex body if ∂K is of class C2

with positive curvature which is bounded from above and from below by positive
constants.

Theorem 1.1 (Smooth case). — Let K be a smooth convex body containing o in
its interior. For s ∈ ∂K we denote by rs and ns respectively the radius of curvature
and the outer unit normal vector of ∂K at point s. The mean defect area, defect
perimeter and number of vertices of Ko

λ have respectively the following asymptotics
when the intensity λ→∞ :

E(A(Ko
λ))−A(K) ∼

λ→∞
λ−

2
3 2−23− 1

3 Γ
(2

3

) ∫
∂K
r

1
3
s 〈s, ns〉−

2
3 ds(i)

E(U(Ko
λ))− U(K) ∼

λ→∞
λ−

2
3 3− 4

3 Γ
(2

3

) ∫
∂K
r
− 2

3
s 〈s, ns〉−

2
3 ds(ii)

E(N (Ko
λ)) ∼

λ→∞
λ

1
3 223− 4

3 Γ
(2

3

) ∫
∂K
r
− 2

3
s 〈s, ns〉

1
3 ds.(iii)

Theorem 1.2 (Polygonal case). — Let K be a convex polygon containing o in
its interior, with nK > 3 consecutive vertices in anticlockwise order denoted by
a1, . . . , anK and set anK+1 = a1. We denote by oi the orthogonal projection of o onto
the line (ai, ai+1). The mean defect area, defect perimeter and number of vertices of
Ko
λ have respectively the following asymptotics when the intensity λ→∞ :

E(A(Ko
λ))−A(K) ∼

λ→∞
λ−

1
2 2− 9

2π
3
2

nK∑
i=1
‖oi‖−

1
2‖ai+1 − ai‖

3
2(i)

E(U(Ko
λ))− U(K) ∼

λ→∞

(
λ−1 log λ

)
· 2−13−1

nK∑
i=1
‖oi‖−1(ii)

E(N (Ko
λ)) ∼

λ→∞
(log λ) · 2 · 3−1nK .(iii)

Theorems 1.1 and 1.2 are reminiscent of the famous results obtained by Rényi
and Sulanke [RS63, RS64] in the study of the approximation of a convex body K
by the convex hull of Pλ ∩K. In particular, in the smooth case, the exponents of λ
coincide but the geometric quantities involved in the constants differ. In particular,
these quantities in Rényi and Sulanke’s theorem above are intrinsic, equal to the
classical affine perimeter of K in the case of the mean defect area and mean number
of vertices. In Theorem 1.1, they are reminiscent of the Lp-centroaffine surface area
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714 P. CALKA, Y. DEMICHEL & N. ENRIQUEZ

defined notably in [Hug96] and [Lut96]. They depend not only on K but also on the
origin through the variable s present in the integral terms of our results.
In the polygonal case, the respective growth rates of the mean defect area and

mean defect perimeter in Theorem 1.2 are switched with respect to their analogues
in Rényi and Sulanke’s work. This can be explained by the fact that the duality
between the two models implies a correspondence between the defect area (resp.
defect perimeter) of the Voronoi cell outside of K and the defect perimeter (resp.
defect area) of the random convex hull inside K. This duality will also be at play
when using the inversion technique in Section 6.
Again, the constants in points (i) and (ii) of Theorem 1.2 depend on the position of

the origin inside K. Surprisingly, the limiting mean number of vertices in point (iii)
of Theorem 1.2 does not depend on that position and it even coincides with Rényi
and Sulanke’s corresponding result. To the best of our knowledge, there is no easy
explanation of this feature.

o

Figure 1.1. Voronoi cells (red) generated by the origin and a Poisson point
process of intensity 10000 outside the double of the Voronoi flower (blue), with
respect to the origin, of an ellipse (left) and of a square (right).

In a second step, we go back to the original problem, i.e. studying the asymp-
totic mean characteristics of the initial random polygon Kλ. We show that when
λ → ∞, the nucleus of Kλ concentrates around a point whose associated Voronoi
flower has the smallest area. This point is known as the Steiner point of K. Con-
sequently, we derive in Theorem 1.3 below the required asymptotic results for the
mean characteristics of Kλ.
Theorem 1.3. — Let K be a convex body with non-empty interior and with

its Steiner point at the origin. The asymptotics of E(A(Kλ))−A(K), E(U(Kλ))−
U(K) and E(N (Kλ)) are then provided by Theorem 1.1 when K is smooth and by
Theorem 1.2 when K is a polygon.
The convergence in mean to zero of the defect area of Ko

λ (resp. Kλ) allows us
to show that both random polygons converge in probability to K for the Hausdorff
distance. Indeed since Ko

λ (resp. Kλ) is a convex body which contains K, any tail
probability of the Hausdorff distance between K and Ko

λ (resp. Kλ) is bounded by a
tail probability of the defect area which in turn is upper-bounded by its expectation
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up to a multiplicative constant, thanks to Markov’s inequality. Moreover, when the
processes Pλ, λ > 0, are coupled, the convergence holds almost surely. The results
are stated in Corollary 1.4 below.
Corollary 1.4. — Let P be the homogeneous Poisson point process of intensity

1 in R3. When Pλ = {x ∈ R2 :∃ t ∈ (0, λ) such that (x, t) ∈ P}, the random polygons
Ko
λ and Kλ converge almost surely to K for the Hausdorff distance when λ→∞.
We also collect further results in two directions. First, we obtain explicit limiting

variances in the smooth case for the defect area and the number of vertices. The
results are provided in Theorem 1.5 below.
Theorem 1.5. — Let K be a smooth convex body. There exists two positive

constants cA and cN , independent of K, such that the variances of the defect area
and the number of vertices of Ko

λ have respectively the following asymptotics when
the intensity λ→∞ :

Var(A(Ko
λ)) ∼

λ→∞
λ−

5
3 2− 13

3 π−1cA

∫
∂K
r

4
3
s 〈s, ns〉−

5
3 ds(i)

Var(N (Ko
λ)) ∼

λ→∞
λ

1
3 2− 1

3π−1cN

∫
∂K
r
− 2

3
s 〈s, ns〉

1
3 ds.(ii)

These results are on par with the explicit limiting variances which were obtained
in [CY14] for the number of k-dimensional faces and volume of random convex hulls
inside a smooth convex body. It comes as no surprise as the proof of Theorem 1.5 relies
on a polarisation argument followed by a general technique already used in [CY14].
In both models, the growth rate of the variance of each functional coincides with
the rate of its expectation. The case of the perimeter seems more intricate and is
briefly discussed at the end of Section 6.
Second, analogues of Theorems 1.1 and 1.2 are derived when the Poisson–Voronoi

cell is replaced by the so-called Crofton cell.
The paper is structured as follows. We start by presenting in Section 2 preliminary

results related to the so-called support function of Ko
λ. The proofs of Theorems 1.1

and 1.2 are presented in Section 3 and Section 4 for the smooth and polygonal cases
respectively. The answers to the original question are summarized in Section 5. In
Section 6, the additional results on the limiting variances are proved and followed by
a general discussion on possible extensions of the method. Finally, Section 7 contains
the proofs for the analogues of the limiting expectations for the Crofton cell.

2. The key role of the support function

In this section, we rewrite in a tractable way the three expectations which appear in
Theorems 1.1 and 1.2, i.e. we aim at getting the three relations (2.3), (2.5) and (2.6).
We also emphasize the basic ideas and guidelines of the proofs from Sections 3 and 4.
Let us introduce the Voronoi flower of a compact set L with respect to a point

x ∈ R2 as the set defined by
(2.1) Fx(L) =

⋃
s∈L

B 1
2‖s−x‖

(
1
2(s+ x)

)
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where Br(z) denotes the closed ball centered at z ∈ R2 and of radius r > 0. This set
is central in the study of Voronoi tessellations for the reasons described below and
has sometimes been renamed as the fundamental region, see e.g. [Zuy92]. A quick
study of the literature reveals that in most cases the set 2Fx(L) instead of Fx(L)
is considered. We have chosen this arbitrary normalization of the Voronoi flower
in this work in order to connect it to the notion of pedal curve, see e.g. [Zwi63,
Chapter 11]. In other words, the boundary of Fx(L) is the pedal curve associated
with the boundary of L with respect to the pedal point at x.
We notice in particular that Fx(L) = Fx(conv(L)) where conv(·) denotes the

convex hull. The basic equivalence

x ∈ Ko
λ \K ⇐⇒ Pλ ∩ 2

(
Fo(K ∪ {x}) \ Fo(K)

)
= ∅

and the equality

(2.2) P
(
Pλ ∩ 2(Fo(K ∪ {x}) \ Fo(K)

)
= ∅ = exp

(
− 4λA(Fo(K ∪ {x}) \ Fo(K))

)
imply that

(2.3) E(A(Ko
λ))−A(K) =

∫
R2\K

exp
(
− 4λA(Fo(K ∪ {x}) \ Fo(K))

)
dx.

Thus, our problem consists in providing accurate estimates for the extra area of
the Voronoi flower of K when adding to K a single point x outside of it. We will
need to treat separately the case where K has a smooth boundary (Lemma 3.1) and
the case where K is a convex polygon (Lemma 4.1). In particular, Lemma 3.1 will
be proved using the Cauchy–Crofton formula (2.4) involving the so-called support
function of K.
For every θ ∈ [0, 2π), let us denote by (uθ, vθ) the orthonormal basis in direction

θ, i.e. uθ = (cos θ, sin θ) and vθ = (− sin θ, cos θ). The support function of K with
respect to a point x ∈ R2 (see e.g. [Sch93, Section 1.7]) is the function defined for
z ∈ R2 by

px(K, z) = sup
y ∈K
〈y − x, z〉.

Observe that px(K, ·) is homogeneous of degree 1. We will denote by px(K, θ)
the quantity px(K, uθ) and we will use indifferently both notations in the sequel,
depending on the context. In particular, when x ∈ K, the distance from x to the
boundary of Fx(K) in direction uθ is precisely px(K, θ), which implies in turn that

(2.4) A(Fx(K)) = 1
2

∫ 2π

0
p2
x(K, θ)dθ.

The support function also makes it possible to rewrite the defect perimeter as an
integral using the well-known Cauchy–Crofton formula

(2.5) E(U(Ko
λ))− U(K) =

∫ 2π

0
E(po(Ko

λ, θ)− po(K, θ))dθ.

Therefore, in order to deal with this expectation we aim to determine the distri-
bution of the point which achieves the support function into a fixed direction (see
Propositions 3.3 and 4.2). The strategy will consist in using nontrivial changes of
variable according to the case where K is smooth or not. The main difficulty will be
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in the computation of its Jacobian, the determination of the domain of integration
for it and finally its integration.
In the next proposition, we prove a relation in the same spirit as the well-known

Efron’s relation for convex hulls of random inputs, see e.g. [Efr65], which connects
the mean number of sides of Ko

λ either to the mean defect area of the flower or to the
mean defect support function. Efron-type identities for random tessellations have
been recently derived in [Sch09, Section 5] and [HHRT15, Theorem 3.1]. The two
formulas below are new though the method to get (i) is very similar to these two
references. Only the asymptotic relation (2.6) will be used in the sequel.

Proposition 2.1. —
(i) For every λ > 0, the following identity holds

E(N (Ko
λ)) = 4λ

(
E
(
A(Fo(Ko

λ))−A(Fo(K))
))
.

(ii) Moreover,

(2.6) E(N (Ko
λ)) = 4λ

∫ 2π

0
po(K, θ)E(po(Ko

λ, θ)− po(K, θ))dθ +Rλ

where Rλ = 2λ
∫ 2π

0 E ((po(Ko
λ, θ)− po(K, θ))2) dθ.

Proof of Proposition 2.1. — We recall that N (Ko
λ) is the number of neighbors

of o, i.e. the set of all x ∈ Pλ \ 2Fo(K) such that the bisecting line of the segment
[o, x] has a non-empty intersection with the boundary of Ko

λ. Moreover, for any
x ∈ Pλ \ 2Fo(K), x is a neighbor of o if and only if 1

2x ∈ Fo(Cx) \ Fo(K), where Cx
is the Voronoi cell of the origin associated with the set of nuclei (Pλ \ 2Fo(K)) \ {x}.
Consequently, thanks to Mecke–Slivnyak’s formula (see [SW08, Corollary 3.2.3]) and
Fubini theorem, we obtain

E(N (Ko
λ)) = E

( ∑
x∈Pλ\2Fo(K)

1I{x2 ∈Fo(Cx) \Fo(K)}

)

= λ
∫
R2 \ 2Fo(K)

P
(
x ∈ 2(Fo(Ko

λ) \ Fo(K))
)
dx

= 4λE
(
A(Fo(Ko

λ))−A(Fo(K))
)
.

Now, using (2.4), we obtain

E(N (Ko
λ))

= 2λ
∫ 2π

0
E
(
p2
o (Ko

λ, θ)− p2
o(K, θ)

)
dθ

= 2λ
∫ 2π

0
E
(
(2po(K, θ) + (po(Ko

λ, θ)− po(K, θ)))(po(Ko
λ, θ)− po(K, θ))

)
dθ.

This completes the proof of Proposition 2.1. �

Let us notice that Proposition 2.1 can be extended to higher dimension when the
number of sides is replaced by the number of facets.
We now rewrite Proposition 2.1 in the two particular cases when K has a smooth

boundary (Corollary 2.2) and when K is a convex polygon (Corollary 2.3). We will

TOME 4 (2021)



718 P. CALKA, Y. DEMICHEL & N. ENRIQUEZ

show in both cases that the first term in the right hand side of (2.6) is the leading
term while the quantity Rλ is negligible.

Corollary 2.2. — If K has a smooth boundary, then

(i) E(U(Ko
λ))− U(K) =

∫
∂K

E(Ys,λ)r−1
s ds

(ii) E(N (Ko
λ)) = 4λ

∫
∂K
〈s, ns〉E(Ys,λ)r−1

s ds+Rλ

where Ys, λ = po(Ko
λ, ns)− po(K,ns) and Rλ = 2λ

∫
∂K E(Y 2

s,λ)r−1
s ds.

Proof of Corollary 2.2. — When K has a smooth boundary, for every s ∈ ∂K
such that ns = uθ, we get

ds
dθ = rs and po(K, θ) = po(K,ns) = 〈s, ns〉.

We obtain the two results by setting Ys,λ = po(Ko
λ, ns)−po(K,ns) and applying (2.5)

and Proposition 2.1(ii). �

Let us now rewrite Proposition 2.1 when K is a polygon. Let us denote by uδi ,
δi ∈ (0, 2π), the external unit normal vector to the line (ai, ai+1) (with the convention
δ0 = δnK ). We expect E(po(Ko

λ, θ) − po(K, θ)) to be maximal in directions close to
δi for every i while the remaining directions should have a negligible contribution
inside the integrals on the right-hand side of (2.5) and (2.6).

Corollary 2.3. — If K is a convex polygon, then

E(U(Ko
λ))− U(K) =

nK∑
i=1

∫ ∞
ηi,λ

∑
ε∈{+,−}

E (Zi,γ,λ,ε) (λ−γ log λ)dγ(i)

E(N (Ko
λ))(ii)

= 4λ
nK∑
i=1

∫ ∞
ηi,λ

∑
ε∈{+,−}

po
(
K, δi + ελ−γ

)
E(Zi,γ,λ,ε)

(
λ−γ log λ

)
dγ +Rλ

where

ηi,λ = −
log

(
1
2(δi − δi−1)

)
log λ ,

Zi,γ,λ,ε = po
(
Ko
λ, δi + ελ−γ

)
− po

(
K, δi + ελ−γ

)
and

(2.7) Rλ = 2λ
nK∑
i=1

∫ ∞
ηi,λ

∑
ε∈{+,−}

E
(
Z2
i,γ,λ,ε

) (
λ−γ log λ

)
dγ.

Proof of Corollary 2.3.
Proof of (i). — The integral in (2.5) is equal to

nK∑
i=1

(∫ 1
2 (δi−1+δi)

δi−1
E
(
po(Ko

λ, θ)− po(K, θ)
)
dθ +

∫ δi

1
2 (δi−1+δi)

E
(
po(Ko

λ, θ)− po(K, θ)
)
dθ
)
.
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Let us only estimate the second integral above (the first one will be treated
analogously). Using the change of variable θ = δi − λ−γ, we get∫ δi

1
2 (δi−1+δi)

E(po(Ko
λ, θ)− po(K, θ))dθ =

∫ ∞
ηi,λ

E(Zi,γ,λ,−)(λ−γ log λ)dγ.

Proof of (ii). — This point is stated in the same way by decomposing the integral
in (2.6) and using the same changes of variables. �

3. The smooth case

In this section, K is a smooth convex body containing the origin in its interior.
Every x ∈ R2 \ K can be written as x = s + hns = sh with s ∈ ∂K and h > 0.
We denote by ∆Fsh the set Fo(K ∪ {sh}) \ Fo(K). Because of (2.2) and (2.3), a
key ingredient for proving Theorem 1.1 is the estimate of the area A(∆Fsh) of the
increase ∆Fsh of a Voronoi flower of K induced by the addition of a point outside K.
To the best of our knowledge this estimate stated in Subsection 3.1 is new despite the
natural aspect of the question. Subsections 3.2, 3.3 and 3.4 are then devoted to the
asymptotic mean area of Ko

λ, the asymptotic mean support function and perimeter
of Ko

λ and the asymptotic intensity and mean number of vertices of Ko
λ respectively.

3.1. Increase of the area of the Voronoi flower

The next lemma provides the exact calculation of the limiting rescaled defect area
of the Voronoi flower as well as a lower-bound.
Lemma 3.1. — Let us assume that K is a smooth convex body containing the

origin o in its interior.
(i) For every s ∈ ∂K, we get

A(∆Fsh) ∼
h→0

h
3
2 2 5

2 3−1r
− 1

2
s 〈s, ns〉.

(ii) Moreover, there exists C > 0 such that, for every h > 0 and s ∈ ∂K,

h−
3
2A(∆Fsh) > C > 0.

Proof of Lemma 3.1.
Proof of (i). — We wish to use the simpler case where the origin o coincides with

the center of curvature ωs of ∂K at point s. In other words, our aim is to show that
the area A(∆Fsh) can be calculated as a function of A(∆F̃sh) where

∆F̃sh = Fωs(K ∪ {s+ hns})−Fωs(K).
We assume for the time being that ωs belongs to K and we will explain at the

end of the proof how to adapt the arguments to the general case. We then use the
equality (2.4) and the relation px(K, θ) − po(K, θ) = −〈x, uθ〉 for every x ∈ R2, to
obtain

(3.1) A(Fo(K)) = A(Fωs(K)) + 1
2

∫ 2π

0
〈ωs, uθ〉2dθ +

∫ 2π

0
pωs(K, θ)〈ωs, uθ〉dθ.
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Applying this formula to both K and K ∪ {sh} yields

(3.2) A(∆Fsh) = A(∆F̃sh) +
∫ 2π

0
∆pωs(θ)〈ωs, uθ〉dθ

where ∆pωs(θ) = pωs(K ∪ {sh}, θ)− pωs(K, θ).
We treat separately the two terms of the right-hand side of (3.2).
− Estimate of A(∆F̃sh).
Let us define s(θ) as the point belonging to ∂K such that θ ∈ (−π, π] is the angle

between the two half-lines ωs + R+(s− ωs) and ωs + R+(s(θ)− ωs) (see Figure 3.1).
Denote by −θ−s,h and θ+

s,h the two angles such that pωs(K ∪ {sh}, θ) = pωs(K, θ) if
and only if θ /∈ [−θ−s,h, θ+

s,h]. Then we can write

(3.3) A(∆F̃sh) =
∫ θ+

s,h

−θ−
s,h

∫ (rs+h) cos θ

pωs (K,θ)
rdrdθ.

∂Fωs
(K)

∆F̃sh

rs

ns sh

s

ωs

∆pωs
(θ)

θ+s,h
θ−s,h

θ

Figure 3.1. Flowers viewed from the center of curvature ωs of ∂K at point s.

If ∂K were a perfect circle of radius rs in the neighborhood of s we would have
θ−s,h = θ+

s,h = θs,h with cos(θs,h) = rs
rs+h . In particular, this means that when h→ 0,

(3.4) θ2
s,h ∼ 2r−1

s h.

In the general case, we approximate locally the polar equation of ∂K with respect
to the center ωs:
(3.5) lim

θ→0
θ−2(‖s(θ)− ωs‖ − rs) = 0.

Let us fix η > 0. For h > 0 small enough, we get from (3.5), (3.4) and the fact
that rs is lower bounded along ∂K that for any s ∈ ∂K and θ ∈ [−θ−s,h, θ+

s,h],
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|‖s(θ)− ωs‖ − rs| 6 ηh. This implies that we can locally sandwich ∂K between two
circles of radii rs + ηh and rs − ηh. This being true for any η > 0, we deduce from
this sandwiching that the angles θ−s,h, θ+

s,h and θs,h can all be written as

(3.6) θ+
s,h =

h→0
θ−s,h + o

(
h

1
2
)

=
h→0

θs,h + o
(
h

1
2
)

=
h→0

2 1
2 r
− 1

2
s h

1
2 + o

(
h

1
2
)
.

Moreover, since θ+
s,h is bounded from above by its value obtained when ∂K is

replaced by an outer circle of radius rs + Ch, we have

(3.7) θ+
s,h 6 arccos

(
1− h

rs + (C + 1)h

)
6 2 1

2 r
− 1

2
s h

1
2 .

Similarly, the defect of circularity implies that uniformly for θ ∈ [−θ−s,h, θ+
s,h],

(3.8) pωs(K, θ) =
h→0

rs + o(h).

Indeed, by definition of the curvature radius, pωs(K, θ) = rs + o(θ2) when θ → 0 and
moreover, θ±s,h = O(θ 1

2 ) thanks to (3.6).
Let us show

(3.9) A
(
∆F̃sh

)
=
h→0

2 5
2 3−1r

1
2
s h

3
2 + o

(
h

3
2
)
.

Using (3.3), we get

A
(
∆F̃sh

)
= A+ +A−

where

A+ = (rs + h)2

2

(
θ+
s,h

2 +
sin(2θ+

s,h)
4

)
−
∫ θ+

s,h

0

p2
ωs(K, θ)

2 dθ

and A− is the same with θ+
s,h replaced by θ−s,h. In order to get (3.9), it is enough to

show that when h→ 0,

(3.10) A+ = 2 3
2 3−1r

1
2
s h

3
2 + o

(
h

3
2
)

and A− = 2 3
2 3−1r

1
2
s h

3
2 + o

(
h

3
2
)
.

We prove (3.10) for A+ and omit the proof for A−. We start by rewriting A+ in a
more appropriate way.

(3.11)

A+ =
(
r2
s

2 + rsh+ h2

2

)[
θ+
s,h +

(
sin(2θ+

s,h)
4 −

θ+
s,h

2

)]

− 1
2

∫ θ+
s,h

0

(
p2
ωs(K, θ)− r

2
s

)
dθ − r2

s

2 θ
+
s,h

= T1 + T2 + T3 − T4
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where

T1 = r2
s

2

(
sin(2θ+

s,h)
4 −

θ+
s,h

2

)
,

T2 = rshθ
+
s,h,

T3 = rsh

(
sin(2θ+

s,h)
4 −

θ+
s,h

2

)
+ h2

2

[
θ+
s,h +

(
sin(2θ+

s,h)
4 −

θ+
s,h

2

)]
,

T4 = 1
2

∫ θ+
s,h

0

(
p2
ωs(K, θ)− r

2
s

)
dθ.

Study of T4: because of (3.8), pωs(K, θ)− rs = o(h) uniformly for θ ∈ [0, θ+
s,h] and

pωs(K, θ)2 − r2
s = O(pωs(K, θ)− rs) = o(h).

Integrating the estimate above, we obtain that when h→ 0

(3.12) T4 = o
(
hθ+

s,h

)
= o

(
h

3
2
)
.

Study of T3: when h→ 0, θ+
s, h → 0 so using (3.6), we get when h→ 0

(3.13)
sin(2θ+

s,h)
4 −

θ+
s,h

2 = −
8θ+

s,h
3

24 + o
(
θ+
s,h

3) = −2 3
2 3−1r

− 3
2

s h
3
2 + o

(
h

3
2
)
.

This implies that

(3.14) T3 = o
(
h

3
2
)
.

Study of T2: using (3.6), we get when h→ 0

(3.15) T2 = 2 1
2 r

1
2
s h

3
2 + o

(
h

3
2
)
.

Study of T1: using the estimate (3.13) above, we obtain that when h→ 0

(3.16) T1 = −2 1
2 3−1r

1
2
s h

3
2 + o

(
h

3
2
)
.

Inserting (3.16), (3.15), (3.14) and (3.12) into (3.11), we obtain the required re-
sult (3.10) and in turn (3.9).

− Estimate of
∫ 2π

0 ∆pωs(θ)〈ωs, uθ〉dθ.
We have, uniformly for every θ ∈ [−θ−s,h, θ+

s,h],

〈ωs, uθ〉 =
h→0
〈ωs, ns〉+ o(1).

Moreover, since pωs(K ∪ {sh}, θ) = (rs + h) cos θ, we can write successively
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∫ 2π

0
∆pωs(θ)〈ωs, uθ〉dθ

=
∫ θ+

s,h

−θ−
s,h

∆pωs(θ)〈ωs, uθ〉dθ

=
h→0

(〈ωs, ns〉+ o(1))
∫ θ+

s,h

−θ−
s,h

∆pωs(θ)dθ

=
h→0

(〈ωs, ns〉+ o(1))
∫ θ+

s,h

−θ−
s,h

((rs + h) cos θ − rs)dθ

=
h→0

(〈ωs, ns〉+ o(1))
(
(rs + h)

(
sin

(
θ+
s,h

)
+ sin

(
θ−s,h

))
− rs

(
θ+
s,h + θ−s,h

) )
=
h→0

2 5
2 3−1 r

− 1
2

s 〈ωs, ns〉h
3
2 + o

(
h

3
2
)

(3.17)

where the last line is deduced from the penultimate one by methods similar to those
used to prove statements (3.12) to (3.16).

− Conclusion when ωs ∈ K.
Inserting (3.9) and (3.17) into (3.2) and using s = ωs + rsns, we get

A(∆Fsh) =
h→0

2 5
2 3−1r

1
2
s

(
1 + r−1

s 〈ωs, ns〉
)
h

3
2 + o

(
h

3
2
)

=
h→0

2 5
2 3−1r

− 1
2

s 〈s, ns〉h
3
2 + o

(
h

3
2
)

that gives the desired result.

− Case when ωs 6∈ K.
The equality (3.1) is still valid as soon as the term A(Fωs(K)) in the right-hand

side of (3.1) is replaced by 1
2
∫ 2π

0 p2
ωs(K, θ)dθ. Applying this new equality to both K

and K ∪ {sh}, we get that
(3.18)
A(∆Fsh) = 1

2

∫ 2π

0

(
p2
ωs (K ∪ {sh}, θ)− p2

ωs(K, θ)
)

dθ +
∫ 2π

0
∆pωs(θ)〈ωs, uθ〉dθ

We claim that for h > 0 small enough,

(3.19) 1
2

∫ 2π

0

(
p2
ωs(K ∪ {sh}, θ)− p

2
ωs(K, θ)

)
dθ = A

(
∆F̃sh

)
.

Indeed, for h > 0 small enough, the area A(∆F̃sh) stays the same when K is replaced
by K ∪ {ωs}. Moreover, on the left-hand side, we recall that pωs(K ∪ {sh}, θ) =
pωs(K, θ) as soon as θ 6∈ [−θ−s,h, θ+

s,h] and when θ ∈ [−θ−s,h, θ+
s,h], pωs(K ∪ {sh}, θ) and

pωs(K, θ) stay the same when K is replaced by K ∪ {ωs}. Consequently, we can
proceed as if ωs would belong to K, which allows us to derive (3.19) from (2.4).
Combining now (3.18) and (3.19), we get (3.2) and then Lemma 3.1(i) by repeating
verbatim the rest of the arguments.
Proof of (ii). — Thanks to (i), the function which to any couple (s, h) associates

either
A(∆Fsh)h− 3

2 if h > 0 or 2 5
2 3−1r

− 1
2

s 〈s, ns〉
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if h = 0 is continuous on the compact set ∂K × [0, 1] so it is bounded from below
by a positive constant C > 0. When h > 1, we notice that the region ∆Fsh contains
a disk of radius proportional to h, which means that there exists C ′ > 0 such that
A(∆Fsh) > C ′h2 > C ′h

3
2 . �

3.2. Proof of Theorem 1.1(i): the defect area

Proof of Theorem 1.1(i). — Every x ∈ R2\K can be written as x = s+λ− 2
3hns =

s
λ−

2
3 h

with s ∈ ∂K and h > 0, the Jacobian of this change of variables being given
by

dx
dsdh = λ−

2
3
∣∣∣1 + λ−

2
3hr−1

s

∣∣∣ .
Thus we get from (2.3) that

E(A(Ko
λ))−A(K) = λ−

2
3

∫
∂K

∫ ∞
0

exp
(
−4λA

(
∆Fs

λ−2/3h

)) ∣∣∣1 + λ−
2
3hr−1

s

∣∣∣ dhds.

Thanks to Lemma 3.1, we get, for h > 0 fixed,

4λA
(
∆Fs

λ−2/3h

)
∼

λ→∞
4
(
λ−2/3h

)− 3
2 A

(
∆Fs

λ−2/3h

)
h

3
2 ∼
λ→∞

Csh
3
2

where Cs = 2 9
2 3−1r

− 1
2

s 〈s, ns〉 and the existence of a constant C > 0 such that, for all
λ > 0 and s ∈ ∂K,

4λA
(
∆Fs

λ−2/3h

)
> CCsh

3
2 .

Consequently, we can apply Lebesgue’s dominated convergence theorem to obtain

λ
2
3 (E(A(Ko

λ))−A(K)) ∼
λ→∞

∫
∂K

∫ ∞
0

exp
(
− Csh

3
2
)
dhds = 2

3Γ
(2

3

) ∫
∂K
C
− 2

3
s ds

which provides assertion (i) of Theorem 1.1. �

3.3. Proof of Theorem 1.1(ii): support points and defect perimeter

The strategy of the proofs is to apply Corollary 2.2 hence we only need now
to explain how to estimate the mean defect support function in a fixed direction.
To do so, let us introduce the support point ms,λ on ∂Ko

λ in direction ns, i.e. the
point which satisfies 〈ms,λ, ns〉 = po(Ko

λ, ns). Denoting by Xs,λ = 〈ms,λ − s, ts〉
and Ys,λ = po(Ko

λ, ns) − po(K,ns), we can write ms,λ = s + Xs,λts + Ys,λns where
(ts, ns) stands for the Frenet frame at point s. Thus this subsection is devoted to
investigate the asymptotic distribution of the couple (Xs,λ, Ys,λ) and provide the
required asymptotic estimate for E(Ys,λ). A key step in the proof of Proposition 3.3
will the use of the following lemma providing a change of variables formula which
may be understood as a classical formula à la Blaschke–Petkantschin (see e.g.[SW08,
Theorem 7.3.1]). It consists essentially in the computation of the Jacobian of a four
dimensional transformation. We omit the calculation which is analogous to the proof
of the classical Blaschke–Petkantschin’s formula (see the previous reference again).
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Lemma 3.2. — Let x = ruθ, r > 0, θ ∈ (0, 2π) and θ − π < θ1 < θ2 < θ. Let
x1 = 2r sin(θ − θ1)uθ1+π

2
and x2 = 2r sin(θ − θ2)uθ2+π

2
be the symmetric points of

the origin o with respect to the lines x+ Ruθ1 and x+ Ruθ2 respectively. Then the
Jacobian of the change of variables (r, θ, θ1, θ2) 7−→ (x1, x2) is given by

dx1dx2

rdrdθdθ1dθ2
= 16r2J(θ, θ1, θ2)

with J(θ, θ1, θ2) = | sin(θ1 − θ2) sin(θ − θ2) sin(θ − θ1)|.

Proposition 3.3. —
(i) For every s ∈ ∂K, the couple (λ 1

3Xs,λ, λ
2
3Ys,λ) converges in distribution when

λ→∞ to the distribution with density function fs given by

fs(x, y) = 2 11
2 〈s, ns〉2r

− 3
2

s exp
−2 9

2 3−1r
− 1

2
s 〈s, ns〉

(
x2

2rs
+ y

) 3
2
( x2

2rs
+ y

) 1
2

y1I{y > 0}.

(ii) There exists C > 0 such that for every s ∈ ∂K and λ > 0, λ 2
3E(Ys,λ) 6 C.

Moreover, for every s ∈ ∂K,

E(Ys,λ) = E (po (Ko
λ, ns)− po(K,ns)) ∼

λ→∞
λ−

2
3 3− 4

3 Γ
(2

3

)
r

1
3
s 〈s, ns〉−

2
3 .

Proof of Proposition 3.3.
Proof of (i). — We first notice that the pointms,λ is necessarily one of the vertices

of Ko
λ, i.e. is at the intersection of two bisecting lines between o and two Voronoi

neighbors of o. For x1, x2 ∈ Pλ \ 2Fo(K), we denote by cx1,x2 the intersection point
of the two bisecting lines of the segments [o, x1] and [o, x2]. In particular,

(cx1,x2 = ms,λ)⇐⇒

cx1,x2 is extreme in direction ns
B‖cx1,x2‖(cx1,x2) ∩ (Pλ \ 2Fo(K)) = ∅

From a given ms,λ emanate two segments, one on the left of the half-line R+ms,λ,
one on the right. The symmetric points of o with respect to these two segments define
the right and the left Poisson–Voronoi neighbors of o with respect to ms,λ. They
will be denoted by x+(ms,λ) and x−(ms,λ) respectively. Consequently, by Mecke–
Slivnyak’s formula, for every positive and measurable function ϕ : R2 −→ R+,

E
(
ϕ
(
λ

1
3Xs,λ, λ

2
3Ys,λ

))

= E

 ∑
(x1,x2)∈ (Pλ\2Fo(K))2

1I{ cx1,x2 =ms,λ

x1 =x+(ms,λ)
x2 =x−(ms,λ)

}ϕ (λ 1
3 〈cx1,x2 − s, ts〉, λ

2
3 〈cx1,x2 − s, ns〉

)
= λ2

∫
R2×R2

exp
(
−4λA

(
B ‖cx1,x2‖

2

(
cx1,x2

2

)
\ Fo(K)

))
1I{ cx1,x2 is extreme in direction ns

x1 = x+(cx1,x2 ), x2 = x−(cx1,x2 )

}
× ϕ

(
λ

1
3 〈cx1, x2 − s, ts〉, λ

2
3 〈cx1,x2 − s, ns〉

)
dx1dx2.

We now apply two consecutive changes of variables in the integral above.
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∂K
o

s

ns

ts

Ys,λ

Xs,λ

ms,λ

scθ−s (λ, x, y)

θ̃s(λ, x, y)

θ+s (λ, x, y)

θ̃s(λ, x, y)θ2
θ1

x+(ms,λ)

x−(ms,λ)

nsc

tsc

θ̃s(λ, x, y)

Figure 3.2. Realisation of the support function: ms,λ denotes the support point
in the direction ns.

First, we write cx1,x2 = ruθ and denote by θ1 and θ2 the angles between one of the
two bisecting lines emanating from cx1,x2 and ts. We then use Lemma 3.2 to compute
the corresponding Jacobian.
Secondly, we replace the couple (r, θ) by (x, y) defined by

x = λ
1
3 〈cx1,x2 − s, ts〉 and y = λ

2
3 〈cx1,x2 − s, ns〉.

We get in particular

(3.20)


r = ρs(λ, x, y) =

((
〈s, ts〉+ λ−

1
3x
)2

+
(
〈s, ns〉+ λ−

2
3y
)2
) 1

2

θ = θs(λ, x, y) = arccos
〈 s+λ−

1
3 xts+λ−

2
3 yns∥∥∥s+λ− 1

3 xts+λ−
2
3 yns

∥∥∥ , ts
〉

where ρs and θs are two functions of λ, x and y, and a Jacobian given by

rdrdθ
dxdy = λ−1.
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Consequently, we deduce that

(3.21) E
(
ϕ
(
λ

1
3Xs,λ, λ

2
3Ys,λ

))
= 16

∫
R×R+

exp (−∆s(λ, x, y))ϕ(x, y)ρ2
s(λ, x, y)J supp

s (λ, x, y)dxdy

where

∆s(λ, x, y) = 4λA
(
B ρs

2

(
ρsuθs

2

)
\ Fo(K)

)
and

J supp
s (λ, x, y) = λ

∫
Esupp
s,x,y

J(θs(λ, x, y), θ1, θ2)dθ1dθ2

where E supp
s,x,y stands for the set of couples (θ1, θ2) which satisfy that cx1,x2 is extremal

in the direction of ns and that the two bisecting lines of [o, x1] and [o, x2] do not
intersect K.
Let us make the set E supp

s,x,y explicit. Let sc be the orthogonal projection of cx1,x2

onto K and tsc be the unit outer normal vector of ∂K at sc. We introduce the angles
θ+
s (λ, x, y), θ−s (λ, x, y) and θ̃s(λ, x, y) as, respectively, the angle of aperture at the
point cx1,x2 = s + λ−

1
3xts + λ−

2
3yns on the right, the angle of aperture at cx1,x2 on

the left and the angle between the vectors ns and nsc (see Figure 3.2). We obtain

(3.22) (θ1, θ2) ∈ E supp
s,x,y ⇐⇒ −θ+

s (λ, x, y)− θ̃s(λ, x, y)
< θ1 < 0 < θ2 < θ−s (λ, x, y)− θ̃s(λ, x, y).

In order to show the required convergence in distribution, we are going to use
Lebesgue’s dominated convergence theorem. To do so, we need to prove the conver-
gence of the integrand in (3.21) and that it is dominated.
− Convergence and domination of ρs(λ, x, y).
We deduce from (3.20) that

(3.23) ρs(λ, x, y) −→
λ→∞

‖s‖.

Moreover, by triangular inequality, we get for all λ > 1,

(3.24) ρs(λ, x, y) 6 ‖s‖+
(
λ−

2
3x2 + λ−

4
3y2

) 1
2 6 ‖s‖+ ‖(x, y)‖.

− Convergence and domination of exp(−∆s(λ, x, y)).
We denote by h the distance from cx1,x2 = s + λ−

1
3xts + λ−

2
3yns to K. Then the

following relation holds, uniformly in s,

(3.25) h =
λ→∞

λ−
2
3

(
x2

2rs
+ y

)
+ O

(
λ−

4
3
)
.

Moreover, there exists C > 0 such that for every s ∈ ∂K and all λ > 1,
(3.26)

C−1 min
(
λ−

1
3
(
x2 + 2yrs

) 1
2 , λ−

2
3

(
x2

rs
+ 2y

))
6 h 6 Cλ−

2
3

(
x2

2rs
+ y + y2

2rs

)
.
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Indeed, let us prove first (3.25) and (3.26) when K is a disk of radius rs. We find
on the one hand by Pythagoras’ theorem

‖cx1,x2‖
2 − r2

s =
(
rs + λ−

2
3y
)2

+ λ−
2
3x2 − r2

s = λ−
2
3
(
x2 + λ−

2
3y2 + 2rsy

)
and on the other hand

‖cx1,x2‖2 − r2
s = (‖cx1,x2‖ − rs)(‖cx1,x2‖+ rs) = h(2rs + h).

Combining these two equalities, we get

h = rs

(
1 + λ−

2
3

(
x2

r2
s

+ 2y
rs

+ λ−
2
3
y2

r2
s

)) 1
2

− rs.

Using the estimate 1
4 min(u, u 1

2 ) 6 (1 +u) 1
2 − 1 6 u

2 for every u > 0 we obtain that
the previous equality implies both (3.25) and (3.26) when K is a disk.
When K is a smooth convex body, we sandwich its boundary between two disks of

radii rs +C ′λ−
2
3 and rs −C ′λ−

2
3 for a fixed positive constant C ′ > 0 and we deduce

from the previous case both (3.25) and (3.26) for K.
Moreover, using the regularity assumptions on the boundary ∂K, we get, uniformly

in s,

(3.27) |〈sc, nsc〉 − 〈s, ns〉| =
λ→∞

O
(
λ−

1
3
)
.

Thanks to Lemma 3.1, (3.25) and (3.27), we get, uniformly in s,

∆s(λ, x, y) ∼
λ→∞

2 9
2 3−1r

− 1
2

s 〈s, ns〉
(
x2

2rs
+ y

) 3
2

.(3.28)

In particular, thanks to Lemma 3.1(ii) and (3.26), there exists C > 0, uniform
in s, such that ∆s(x, y) satisfies, for all λ > 1:

(3.29) ∆s(λ, x, y) > C min
(x2 + 2rsy

) 3
4 ,

(
x2

2rs
+ y

) 3
2
 .

− Convergence and domination of J supp
s (λ, x, y).

We start by estimating the function θs(λ, x, y). We get

(3.30) θs(λ, x, y) =
λ→∞

arcsin
(〈

s

‖s‖
, ns

〉)
+ O

(
λ−

1
3
)
.

We now estimate the three angles θ+
s (λ, x, y), θ−s (λ, x, y) and θ̃s(λ, x, y). Using (3.6)

and (3.25), we get

(3.31) θ+
s (λ, x, y) =

λ→∞
θ−s (λ, x, y)+o

(
λ−

1
3
)

=
λ→∞

λ−
1
3 2 1

2 r
− 1

2
s

(
x2

2rs
+ y

) 1
2

+o
(
λ−

1
3
)
.

Thanks to (3.7) and (3.26), we have additionally the inequality, for some C > 0,

(3.32) θ+
s (λ, x, y) 6 2 1

2 r
− 1

2
s h

1
2 6 Crsλ

− 1
3

(
x2

2rs
+ y + y2

2rs

) 1
2

.
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The same inequality holds for θ+
s (λ, x, y). We turn now our attention to θ̃s(λ, x, y).

When K is a disk we get

θ̃s(λ, x, y) = arctan
 λ−

1
3x

rs + λ−
2
3y

 =
λ→∞

λ−
1
3 r−1
s x+ o

(
λ−

1
3
)
.

When K is a smooth convex body, we sandwich again its boundary between two
disks of radii rs + Cλ−

2
3 and rs − Cλ−

2
3 and we obtain

θ̃s(λ, x, y) =
λ→∞

λ−
1
3 r−1
s x+ o

(
λ−

1
3
)
.

Consequently, we deduce from (3.30), (3.22) and (3.31) that
J supp
s (λ, x, y)

∼
λ→∞

λ
∫
Esupp
s,x,y

|sin(θ2 − θ1) sin(θs(λ, x, y)− θ2) sin(θs(λ, x, y)− θ1)| dθ1dθ2

∼
λ→∞

λ sin2
(

arcsin
(〈

s

‖s‖
, ns

〉))

·
∫ 0

θ1=−θ+
s (λ,x,y)−θ̃s(λ,x,y)

∫ θ−s (λ,x,y)−θ̃s(λ,x,y)

θ2=0
(θ2 − θ1)dθ1dθ2

∼
λ→∞

λ

〈
s

‖s‖
, ns

〉2

θ+
s (λ, x, y)

(
θ+
s (λ, x, y)2 − θ̃s(λ, x, y)2

)

∼
λ→∞

〈
s

‖s‖
, ns

〉2

2 3
2 r
− 3

2
s y

(
x2

2rs
+ y

) 1
2

.(3.33)

Moreover, thanks to (3.32), we get for some C > 0,

(3.34) J supp
s (λ, x, y) 6 Cr3

s

(
x2

2rs
+ y + y2

2rs

) 3
2

.

− Conclusion.
Combining (3.23), (3.28) and (3.33), we obtain that the integrand in (3.21) con-

verges to

8‖s‖2ϕ(x, y) exp
−2− 9

2 3−1r
− 1

2
s 〈s, ns〉

(
x2

2rs
+ y

) 3
2
〈 s

‖s‖
, ns

〉2

2 3
2 r
− 3

2
s y

(
x2

2rs
+ y

) 1
2

.

Now the estimates (3.24), (3.29) and (3.34) show that we can apply Lebesgue’s
dominated convergence theorem for any function ϕ bounded by a polynomial of x
and y, say. This proves assertion (i) of Proposition 3.3.
Proof of (ii). — We start by rewriting (3.21) when ϕ(x, y) = y:

(3.35) λ
2
3E(Ys,λ) = 16λ 2

3

∫
R×R+

exp(−∆s(λ, x, y))ρ2
s(λ, x, y)J supp

s (λ, x, y)ydxdy.

Thanks to (i) applied to ϕ(x, y) = y, we can apply Lebesgue’s dominated convergence
theorem to get that

λ
2
3E(Ys, λ) −→

λ→∞
2 11

2 r
− 3

2
s 〈s, ns〉2Is
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where

Is =
∫
R×R+

exp
−2 9

2 3−1r
− 1

2
s 〈s, ns〉

(
x2

2rs
+ y

) 3
2
( x2

2rs
+ y

) 1
2

y2dxdy.

It remains to make the integral Is explicit. Recalling that Cs = 2 9
2 3−1r

− 1
2

s 〈s, ns〉,
we get

Is = 4
3Cs

∫ ∞
0

∫ ∞
0

e−u

 u 2
3

C
2
3
s

− x2

2rs

2

1I{
0<x< 2

1
2 r

1
2
s C
− 1

3
s u

1
3
}dx

 du = I(1)
s + I(2)

s − I(3)
s

where

I(1)
s = 4

3Cs

∫ ∞
0

e−uC
− 4

3
s u

4
3 2 1

2 r
1
2
s C
− 1

3
s u

1
3 du = 2 5

2 3−25C−
8
3

s r
1
2
s Γ

(5
3

)
,

I(2)
s = 4

3Cs

∫ ∞
0

e−u20−1r−2
s

(
2 1

2 r
1
2
s C
− 1

3
s u

1
3

)5
du = 2 5

2 3−2C
− 8

3
s r

1
2
s Γ

(5
3

)
,

and

I(3)
s = 4

3Cs

∫ ∞
0

e−uC
− 2

3
s r−1

s 3−1u
2
3

(
2 1

2 r
1
2
s C
− 1

3
s u

1
3

)3
du = 2 7

2 3−35C−
8
3

s r
1
2
s Γ

(5
3

)
.

Finally, inserting these equalities into Is yields the required result. �

Proof of Theorem 1.1(ii). — We go back to the exact formula (3.35). Since K is a
compact convex set with bounded positive curvature and containing the origin in its
interior, the non-negative quantities ‖s‖ and rs are bounded from above and from
below. Consequently, the estimates (3.24), (3.29) and (3.34) imply that the integral
on the right-hand side of (3.35) is bounded independently of s, i.e. that there exists
C > 0 such that λ 2

3E(Ys,λ) 6 C for every s ∈ ∂K.
Consequently, we use Proposition 3.3(ii) and Lebesgue’s dominated convergence

theorem to get that∫
∂K

E(Ys,λ)r−1
s ds ∼

λ→∞
λ−

2
3 3− 4

3 Γ
(2

3

) ∫
∂K
r
− 2

3
s 〈s, ns〉−

2
3 ds.

The proof is completed thanks to Corollary 2.2(i). �

3.4. Proof of Theorem 1.1(iii): intensity and number of vertices

Proof of Theorem 1.1(iii). — Again, thanks to the convergence from Proposi-
tion 3.3(ii) and Lebesgue’s dominated convergence theorem, we obtain that

4λ
∫
∂K
〈s, ns〉E(Ys,λ)r−1

s ds ∼
λ→∞

λ
1
3 223− 4

3 Γ
(2

3

) ∫
∂K
r
− 2

3
s 〈s, ns〉

1
3 ds.

Looking at Corollary 2.2(ii), we observe that it is enough to show that

(3.36) lim
λ→∞

λ−
1
3Rλ = lim

λ→∞
2λ 2

3

∫
∂K

E
(
Y 2
s,λ

)
r−1
s ds = 0.
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Applying (3.21) to ϕ(x, y) = y2 and using the estimates (3.24), (3.29) and (3.34),
we get that there exists C > 0 such that λ 4

3E(Y 2
s,λ) 6 C for every s ∈ ∂K. This

implies (3.36) and completes the proof of Theorem 1.1(iii). �

Actually, we can provide a more precise result on the asymptotic intensity of
the point process of vertices of Ko

λ. This new result that we describe below could
alternatively be used to get Theorem 1.1(iii) via an integration of the intensity given
in the next proposition.

Proposition 3.4. — Let s ∈ ∂K and consider the point process (xv, yv) of the
Cartesian coordinates of the vertices v ∈ Vλ of Ko

λ in the Cartesian orthonormal
frame (s, ts, ns). Let A be a bounded Borel set of R2 \K and denote by Ns(A) the
number of points of the rescaled point process(

λ
1
3xv, λ

2
3yv

)
v ∈Vλ

belonging to the set A. Then

E(Ns(A)) −→
λ→∞

∫
A
σs(x, y)dxdy

where

σs(x, y) = 2 15
2 3−1 exp

−2 9
2 3−1

(
x2

2rs
+ y

) 3
2

r
− 1

2
s 〈s, ns〉

 〈s, ns〉2r− 3
2

s

(
x2

2rs
+ y

) 3
2

.

Proof of Proposition 3.4. — The strategy is very similar to the proof of Propo-
sition 3.3, i.e. it consists in applying Mecke–Slivnyak’s formula, then the change
of variables provided by Lemma 3.2 and finally Lebesgue’s dominated convergence
theorem.
Consequently, we deduce that

E(Ns(A)) = 16
∫
A

exp(−∆s(λ, x, y))ρ2
s(λ, x, y)J vert

s (λ, x, y)dxdy(3.37)

where

J vert
s (λ, x, y) = λ

∫
Evert
s,x,y

J(θs(λ, x, y), θ1, θ2)dθ1dθ2

and Evert
s, x, y is the set of couples (θ1, θ2) which satisfy that the two bisecting lines of

[o, x1] and [o, x2] do not intersect K.
Let us make the set Evert

s,x,y explicit:

(3.38) (θ1, θ2) ∈ Evert
s,x,y ⇐⇒ −θ+

s (λ, x, y) < θ1 < θ2 < θ−s (λ, x, y).

The convergence and domination of ρs(λ, x, y), exp(−∆s(λ, x, y)), θ+
s (λ, x, y) and

θ−s (λ, x, y) is identical to what has been done in the proof of Proposition 3.3. We
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turn our attention to the convergence of J vert
s (λ, x, y).

J vert
s (λ, x, y)

∼
λ→∞

λ
∫
Evert
s,x,y

|sin(θ1 − θ2) sin(θs(λ, x, y)− θ2) sin (θs(λ, x, y)− θ1)| dθ1dθ2

∼
λ→∞

λ sin2
(

arcsin
(〈

s

‖s‖
, ns

〉))∫ θ−s (λ, x, y)

θ1 =−θ+
s (λ, x, y)

∫ θ−s (λ,x,y)

θ2=θ1
(θ2 − θ1)dθ2dθ1

∼
λ→∞

4
3λ

〈
s

‖s‖
, ns

〉2

θ+
s (λ, x, y)3

∼
λ→∞

2 7
2 3−1

〈
s

‖s‖
, ns

〉2

r
− 3

2
s

(
x2

2rs
+ y

) 3
2

.(3.39)

Moreover, thanks to (3.32), we get for some positive constant C > 0,

(3.40) J vert
s (λ, x, y) 6 C

〈
s

‖s‖
, ns

〉2

r
− 3

2
s

(
x2

2rs
+ y

) 3
2

.

Combining (3.23), (3.28) and (3.39), we obtain that the integrand in (3.37) con-
verges to

2 15
2 3−1 exp

−2 9
2 3−1

(
x2

2rs
+ y

) 3
2

r
− 1

2
s 〈s, ns〉

 〈s, ns〉2r− 3
2

s

(
x2

2rs
+ y

) 3
2

.

Now the estimates (3.24), (3.29) and (3.40) show that we can apply Lebesgue’s
dominated convergence theorem. The result follows. �
Proposition 3.4 provides an extra valuable information on the point process of

vertices which is clearly not of Poisson type. To some extent, this is also reminiscent
of the description of the rescaled point process of vertices of random polytopes in
the unit-ball or random Gaussian polytopes, as a sub-product of a growth parabolic
process based on a Poisson point process, see e.g. [CSY13, Theorem 4.1]. We skip
the proof of Proposition 3.4 as it is in the same spirit as the proof of Proposition 3.3.

4. The polygonal case

In this section K is a convex polygon with vertices a1, a2, . . . , anK containing the
origin o in its interior. We denote by αi the interior angle at vertex ai and we recall
that oi is the orthogonal projection of o onto the line (ai, ai+1). A point outside K
will be located by its polar coordinates from one vertex ai (see Figure 4.1), i.e. we
consider a point sai,ρ,α = ai + ρuπ−α in the neighborhood of ai, with ρ > 0 and
α ∈ (0, αi).
The different proofs of the results of this Section will require to decompose the set

R2 \K into several regions, namely nK cones above the vertices of K and nK strips
above the edges of K. More precisely, for every 1 6 i 6 nK , let us define the cones

Gi =
{
sai,ρ,α : ρ > 0 and α ∈

(
π

2 ,
3π
2 − αi

)}
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and the strip

Si = {sai,ρ,α : ρ > 0 and ρ cosα ∈ (0, ‖ai+1 − ai‖)}
as the connected component of R2 \ (K ∪ (∪nKi=1Gi)) with (ai, ai+1) on its boundary.

4.1. Increase of the area of the Voronoi flower

First, the following geometric lemma provides accurate estimates of the area of
the set

∆Fai,ρ,α = Fo(K ∪ {sai,ρ,α}) \ Fo(K).

Lemma 4.1. — Assume that K is a convex polygon and let ai ∈ ∂K, 1 6 i 6 nK ,
be a fixed vertex of K.

(i) We get, uniformly in ρ > 0,

A(∆Fai,ρ,α)1I{sai,ρ,α ∈Si} ∼α→ 0
α2‖oi‖

2
ρ‖ai+1 − ai‖
‖ai+1 − ai‖ − ρ

.

(ii) Moreover, there exists C > 0 such that, for all (ρ, α) such that sai,ρ,α belongs
to Gi ∪ Si,

A (∆Fai,ρ,α) > C max(1, ρ)ρα2.

Proof of Lemma 4.1.
Proof of (i). — For α small enough, the set ∆Fai,ρ,α is nothing but

∆Fai,ρ,α = B 1
2‖sai,ρ,α‖

(1
2sai,ρ,α

)
\
(
B 1

2‖ai‖

(1
2ai

)
∪B 1

2‖ai+1‖

(1
2ai+1

))
,

that is a curvilinear triangle with vertices oi, a′i and a′i+1 where a′i and a′i+1 are
respectively the intersection of

∂B 1
2‖sai,ρ,α‖(

1
2sai,ρ,α) with ∂B 1

2‖ai‖

(1
2ai

)
and ∂B 1

2‖ai+1‖

(1
2ai+1

)
(see Figure 4.1).
We aim at computing estimates for the area A(∆Fai,ρ,α) of this curvilinear triangle.

To do this, we split it into the curvilinear triangles with vertices oi, s′ai,ρ,α, a
′
i and oi,

s′ai,ρ,α, a
′
i+1 respectively, where s′ai,ρ,α is the intersection of the line (o, oi) with the

circle
∂B 1

2‖sai,ρ,α‖
(1

2sai,ρ,α
)
.

Let us focus on the first curvilinear triangle. As α → 0, it tends to a straight
triangle whose area is given by

A
(
ois
′
ai,ρ,α

a′i
)
∼
α→0

1
2
∥∥∥s′ai,ρ,α − oi∥∥∥

(∥∥∥∥ _

a′ioi

∥∥∥∥ sin βi
)

where βi is the angle between the line (oi, s′ai,ρ,α) and the tangent line to the disk
B1

2ai
(1

2‖ai‖) at oi.
Observe first that we get by symmetry ‖s′ai,ρ,α − oi‖ = ρ sinα.
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ai
ai+1

o

‖oi‖

sai,ρ,α

ρ cosα

∂K

oi α
ρ

s′ai,ρ,α

1
2
ai

a′i+1

a′i

1
2ai+1

1
2
sai,ρ,α

Si

GiGi+1

Figure 4.1. The influence on the Voronoi flower of K of adding an extra point
sai,ρ,α in a neighborhood of its boundary viewed from the origin o.

Let us now compute the length of the arc
_

a′ioi. Observe now that the lines (sai,ρ,α, a′i)
and (ai, a′i) are both perpendicular to (o, a′i). Therefore the points ai, sai,ρ,α and a′i
are aligned. It follows that the angle between the lines (ai, ai+1) and (ai, a′i) is the
same as the angle between (ai, ai+1) and (ai, sai,ρ,α) which is nothing but α. Thus
the central angle between the lines (1

2ai, a
′
i) and (1

2ai, oi) is 2α. Since the arc
_

a′ioi
belongs to the circle with center 1

2ai and diameter ‖ai‖ we get

‖
_

a′ioi‖ = 1
2‖ai‖(2α) = ‖ai‖α.

Finally, observing that βi is equal to the angle between (ai, oi) and (ai, o) by the
inscribed angle theorem, we deduce that

A
(
ois
′
ai,ρ,α

a′i
)
∼
α→0

1
2 (ρ sinα) (‖ai‖α sin βi)

= 1
2 (ρ sinα)

(
‖ai‖α

‖oi‖
‖ai‖

)
∼
α→0

1
2ρα

2‖oi‖.

Now, computing similarly the area A(ois′ai,ρ,αa
′
i+1) of the other curvilinear triangle,

we obtain
A
(
ois
′
ai,ρ,α

a′i+1

)
= 1

2ρ
′α′2‖oi‖

where 
ρ′ =

(
(‖ai+1 − ai‖ − ρ cosα)2 + (ρ sinα)2

) 1
2
∼
α→0
‖ai+1 − ai‖ − ρ

α′ = arctan
(

ρ sinα
‖ai+1−ai‖−ρ cosα

)
∼
α→0

ρα
‖ai+1−ai‖−ρ
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Therefore,

A
(
ois
′
ai,ρ,α

a′i+1

)
∼
α→0

1
2

ρ2α2‖oi‖
‖ai+1 − ai‖ − ρ

.

Finally, summing the areas of each triangle, we obtain

A (∆Fai,ρ,α) ∼
α→0

1
2ρα

2‖oi‖
(

1 + ρ

‖ai+1 − ai‖ − ρ

)
∼
α→0

1
2ρα

2‖oi‖
‖ai+1 − ai‖
‖ai+1 − ai‖ − ρ

so that (i) holds.
Proof of (ii). — We first assume that sai,ρ,α ∈ Si. Because of point (i), there exists

α0 ∈ (0, π2 ) such that for every α < α0, A(∆Fai,ρ,α) > ‖oi‖
4 ρα2 and ρ 6 ‖ai+1−ai‖

cosα0
.

This proves the result as soon as α < α0. When α > α0, it is enough to show that
A(∆Fai,ρ,α) > C max(ρ, ρ2) for some positive constant C. This last inequality comes
now from the fact that ∆Fai,ρ,α contains both a disk of radius proportional to ρ and
an angular sector with thickness ρ and constant angular width. Finally, the exact
same argument holds when sai,ρ,α ∈ Gi so this completes the proof. �

4.2. Proof of Theorem 1.2(i): the defect area

Proof of Theorem 1.2(i). — Recalling the notation of Section 4.1 and using (2.3),
we can write E(A(Ko

λ))−A(K) as
nK∑
i=1

(∫
Si

exp (−4λA (∆Fai,ρ,α)) ρdρdα +
∫
Gi

exp (−4λA (∆Fai,ρ,α)) ρdρdα
)
.

It is then enough to show that, for every 1 6 i 6 nK ,

(4.1) λ
1
2

∫
Si

exp (−4λA (∆Fai,ρ,α)) ρdρdα −→
λ→∞

2− 9
2π

3
2‖oi‖−

1
2‖ai+1 − ai‖

3
2

and

(4.2) λ
1
2

∫
Gi

exp (−4λA (∆Fai,ρ,α)) ρdρdα −→
λ→∞

0.

Let us prove (4.1) first. Let us fix 1 6 i 6 nK . The change of variables β = λ
1
2α

yields

λ
1
2

∫
Si

exp (−4λA (∆Fai,ρ,α)) ρdρdα

=
∫ ρi(λ−1/2β)

0

∫ λ1/2 π
2

0
exp

(
−4λA

(
∆Fai,ρ,λ−1/2β

))
ρdρdβ

where ρi(·) denotes the equation of the line containing ai+1 and orthogonal to (ai, ai+1)
with respect to the polar coordinates (ρ, α), i.e. ρi(α) is the distance from the origin
to the intersection between that line and R+uα.
Thanks to Lemma 4.1, we have

4λA
(
∆Fai,ρ,λ−1/2β

)
−→
λ→∞

2‖oi‖
ρ‖ai+1 − ai‖
‖ai+1 − ai‖ − ρ

β2
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and, for all λ > 0,
λA

(
∆Fai,ρ,λ−1/2β

)
> C max(1, ρ)ρβ2

where C is a positive constant.
Consequently, we can apply Lebesgue’s dominated convergence theorem to obtain∫ ρi(λ−1/2β)

0

∫ λ1/2 π
2

0
exp

(
−4λA

(
∆Fai,ρ,λ−1/2β

))
ρdρdβ

−→
λ→∞

∫ ‖ai+1−ai‖

0

∫ ∞
0

exp
(
−2‖oi‖

ρ‖ai+1 − ai‖
‖ai+1 − ai‖ − ρ

β2
)
ρdρdβ

= ‖ai+1 − ai‖2
∫ 1

0

(∫ ∞
0

exp
(
−2‖oi‖

l‖ai+1 − ai‖
1− l β2

)
dβ
)
ldl

= ‖ai+1 − ai‖
3
2π

1
2 2− 3

2‖oi‖−
1
2

∫ 1

0
(l(1− l)) 1

2 dl

= ‖ai+1 − ai‖
3
2π

3
2 2− 9

2‖oi‖−
1
2 .

Let us turn to the proof of (4.2). Using the second part of Lemma 4.1 we have
successively, for all λ > 0,∫

Gi
exp (−4λA (∆Fai,ρ,α)) ρdρdα

6
∫ ∞

0

∫ 3π
2 −αi

π
2

exp
(
−Cλmax(1, ρ)ρα2

)
ρdρdα

=
∫ 3π

2 −αi

π
2

(∫ 1

0
exp

(
−Cλρα2

)
ρdρ

)
dα +

∫ 3π
2 −αi

π
2

(∫ ∞
1

exp
(
−Cλρ2α2

)
ρdρ

)
dα

6
∫ 3π

2 −αi

π
2

λ−2α−4dα +
∫ 3π

2 −αi

π
2

λ−1α−2dα

6 Cλ−1.

That implies (4.2) and completes the proof of Theorem 1.2(i). �

4.3. Proof of Theorem 1.2(ii): support points and defect perimeter

As in the smooth case, the strategy consists in using Corollary 2.3 and estimating
the defect support function

Zi,γ,λ,− = po
(
Ko
λ, δi − λ−γ

)
− po

(
K, δi − λ−γ

)
of Ko

λ in a fixed direction δi − λ−γ, 1 6 i 6 nK . As emphasized in the proof of
point (ii) of Theorem 1.2, we will treat separately the cases γ ∈ (0, 1

2) and γ > 1
2 .

More precisely, let us introduce the support point mλ−γ on ∂Ko
λ which satisfies

〈mλ−γ , uδi−λ−γ〉 = po
(
Ko
λ, δi − λ−γ

)
and let us denote by (Rλ−γ , Aλ−γ ) the polar coordinates of mλ−γ with respect to the
coordinate system with origin ai and first axis (ai, ai+1). In particular, we notice that
Aλ−γ > λ−γ almost surely since po(Ko

λ, δi − λ−γ) > po(K, δi − λ−γ) > 〈ai, uδi−λ−γ〉.
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The next Proposition investigates the asymptotic distribution of the couple (Rλ−γ ,
Aλ−γ ) for γ ∈ (0, 1

2).
Proposition 4.2. — Let ai ∈ ∂K, 1 6 i 6 nK , be a fixed vertex of K.
(i) For every γ ∈ (0, 1

2), the couple (λ1−2γRλ−γ , λ
γAλ−γ ) converges in distribution

when λ→∞ to the distribution with density function fi given by
fi(ρ, α) = 8‖oi‖2 exp

(
−2‖oi‖ρα2

)
α(α− 1)ρ1I{ρ> 0}1I{α> 1}.

(ii) There exists C > 0 such that for every γ ∈ (0, 1
2) and λ > 0,

λ1−γE
(
Rλ−γ sin

(
Aλ−γ − λ−γ

))
6 C.

(iii) Moreover, for every γ ∈ (0, 1
2),

E (Zi, γ, λ,−) = E
(
Rλ−γ sin

(
Aλ−γ − λ−γ

))
∼

λ→∞
λγ−1 1

6‖oi‖
.

Proof of Proposition 4.2.
Proof of (i). — Without loss of generality, we can assume in the proof that δi = π

2 .
Once again, the strategy of the proof consists in going along the same lines as for the
smooth case. We start with the same identity but written in polar coordinates, that
is cx1,x2 = mλ−γ = ai + ruθ (see Figure 4.2). Notice that (r, θ) ∈ Si when λ→∞.

ai← towards ai+1

o

‖oi‖

∂K

oi

λ−γ

λ−γ

mλ−γλ−γnegligible in front of λ−γ

ρλ−γ

αλ−γ

Figure 4.2. The analogue of Figure 3.2 in the polygonal case: mλ−γ denotes the
support point in the direction π

2 − λ
−γ.

We then proceed with two consecutive changes of variables. First, denoting by θ1
and θ2 the angles between the two bisecting lines emanating from cx1,x2 corresponding
to the right and left neighbor of o respectively, we use Lemma 3.2. Secondly, we
replace the couple (r, θ) by (ρ, α) defined by

ρ = λ1−2γr and α = λγθ.
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We get in particular
r = ri(λ, ρ, α) = ‖sai,λ2γ−1ρ,λ−γα‖

θ = θi(λ, ρ, α) = arcsin
〈 sai,λ2γ−1ρ, λ−γα∥∥∥sai,λ2γ−1ρ,λ−γα

∥∥∥ , oi
‖oi‖

〉
and a Jacobian given by rdrdθ

ρdρdα = λ3γ−2. Consequently, as in the proof of point (i)
of Proposition 3.3, we deduce that for every positive and measurable function ϕ :
R2 −→ R+

E
(
ϕ
(
λ1−2γRλ−γ , λ

γAλ−γ
))

= 16
∫ λγπ+1

1

∫ λ1−2γρi(α)

0
exp (−∆i (λ, ρ, α)) r2

i (λ, ρ, α)J supp
i (λ, ρ, α)ϕ(ρ, α)ρdαdρ

where

∆i(λ, ρ, α)

= 4λA
B∥∥∥sai,λ2γ−1ρ,λ−γα

∥∥∥ (sai,λ2γ−1ρ,λ−γα) \ Fo(K)
 = 4λA (∆Fai,λ2γ−1ρ,λ−γα)

and
J supp
i (λ, ρ, α) = λ3γ

∫
Ei(λ,ρ,α)

J (θi(λ, ρ, α), θ1, θ2) dθ1dθ2

where E supp
i (λ, ρ, α) stands for the set of couples (θ1, θ2) which satisfy that the two

bisecting lines of [o, x1] and [o, x2] do not intersect K.
Thanks to Lemma 4.1, we have

∆i(λ, ρ, α) −→
λ→∞

2‖oi‖ρα2

as soon as λ2γ−1ρ cos(λ−γα) 6 ‖ai+1 − ai‖ and

(4.3) ∆i(λ, ρ, α) > Cρα2

for some constant C > 0. Moreover,

ri(λ, ρ, α) −→
λ→∞

‖ai‖

and for λ > 1,

(4.4) ri(λ, ρ, α) 6 ‖ai‖+ λ2γ−1ρ 6 ‖ai‖+ ρ.

Let us now turn on the term J supp
i (λ, ρ, α). Using the convergence

sin(θi(λ, ρ, α)) −→
λ→∞

‖oi‖
‖ai‖

,
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we get successively

J supp
i (λ, ρ, α)

∼
λ→∞

λ3γ
∫
Ei(λ,ρ,α)

J(θi(λ, ρ, α), θ1, θ2)dθ1dθ2

∼
λ→∞

λ3γ
∫

(0,(α−1)λ−γ)×(0,λ−γ)
|sin(θi(λ, ρ, α)− θ1) sin(θi(λ, ρ, α)− θ2) sin(θ2 − θ1)|dθ1dθ2

∼
λ→∞

λ3γ
(
‖oi‖
‖ai‖

)2(1
2λ
−3γα(α− 1)

)

= 1
2

(
‖oi‖
‖ai‖

)2

α(α− 1).

Finally, we notice that any couple (θ1, θ2) ∈ Ei(λ, ρ, α) satisfies that one of the
two angles is at most equal to α and the other to ρα up to a multiplicative constant.
Consequently, we can show that for some constant C > 0,

(4.5) J supp
i (λ, ρ, α) 6 Cρα2.

A method based on Lebesgue’s dominated convergence theorem and analogous to
the proof of Proposition 3.3 will show that

E
(
ϕ
(
λ1−2γRλ−γ , λ

γAλ−γ
))

∼
λ→∞

16
∫

(0,∞)2
exp

(
2‖oi‖ρα2

)
‖ai‖2

1
2

(
‖oi‖
‖ai‖

)2

α(α− 1)1I{α> 1}

ϕ(ρ, α)ρdρdα.

This implies the required result.
Proof of (ii). — This is a direct consequence of the convergence in distribution

proved in (i) and of the equality

po
(
Ko
λ, δi − λ−γ

)
− po

(
K, δi − λ−γ

)
= Rλ−γ sin

(
Aλ−γ − λ−γ

)
.

Indeed, applying the method used in (i) to ϕ(ρ, α) = ρ(α− 1), we get the estimate
in (ii) from (4.3), (4.4), (4.5) and the inequality sin(x) 6 x for x > 0.
Proof of (iii). — Finally, it also follows from (i) that

λ1−γ
(
E
(
po

(
Ko
λ,
π

2 − λ
−γ
)
− po

(
K,

π

2 − λ
−γ
)))

∼
λ→∞

E
(
λ1−2γRλ−γ (λγAλ−γ − 1)

)
=
∫
R2
ρ(α− 1)fi(ρ, α)dρdα = 1

6‖oi‖
.

which completes the proof of Proposition 4.2. �

We will need an analogous result for the support function of K with respect to o
in a direction of the form τλ−

1
2 , for τ > 0. Let us introduce the point mτλ−1/2 on

∂Ko
λ which satisfies〈

mτ λ−1/2 , uπ
2−τλ

−1/2

〉
= po

(
Ko
λ,
π

2 − τλ
−1/2

)
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and denote by Rτλ−1/2 and Aτλ−1/2 the polar coordinates of mτλ−1/2 with respect to
ai.
The next proposition provides the limit distribution of the couple (Rτλ−1/2 , Aτλ−1/2).

Since it is very similar to Proposition 4.2, the proof is omitted.

Proposition 4.3. — Let ai ∈ ∂K, 1 6 i 6 nK , be a fixed vertex of K.
(i) Let τ > 0. The couple (Rτλ−1/2 , λ−

1
2Aτλ−1/2) converges in distribution when

λ→∞ to the distribution with density function gi given by

gi(ρ, α) = 8‖oi‖2 ρ‖ai+1 − ai‖
‖ai+1 − ai‖ − ρ

exp
(
−2‖oi‖

ρ‖ai+1 − ai‖
‖ai+1 − ai‖ − ρ

α2
)

× (α− τ)
(

ρα

‖ai+1 − ai‖ − ρ
+ τ

)
1I{ρ∈ (0,‖ai+1−ai‖)}1I{α>τ}.

(ii) There exists a positive constant τ > 0 such that, for every γ > 1
2 ,

E (Zi,γ,λ,−) = E
(
po
(
Ko
λ, δi − λ−γ

)
− po

(
K, δi − λ−γ

))
6 τλ−

1
2 .

Let us notice that the special case τ = 0 provides the asymptotic distribution of
the highest point of Ko

λ above the edge (ai, ai+1). Straightforward computation show
that the asymptotic distribution of R0 admits the simple density function

ρ 7−→ 1
‖ai+1 − ai‖

1I{ρ∈ (0,‖ai+1−ai‖)}

that is the highest point is asymptotically uniformly distributed along the edge
(ai, ai+1).
Proof of Theorem 1.2(ii). — Looking at the right hand side in the identity from

Corollary 2.3(i), we concentrate on the estimation of the integral
∫∞
ηi,λ

E(Zi,γ,λ,−)
(λ−γ log λ)dγ as the other estimates will follow analogously.
First, thanks to Proposition 4.2(ii), we obtain that there exists C > 0 such that

(4.6) λ

log λ

∫ ηi,λ

0
E (Zi,γ,λ,−)

(
λ−γ log λ

)
dγ 6 Cηi,λ →

λ→∞
0.

Thanks to (4.6), it is then enough to show that the integral
∫∞

0 E(Zi,γ,λ,−)(λ−γ log λ)
dγ is equivalent to (λ−1 log λ) up to a multiplicative constant. It is a consequence of
the two previous Propositions that only directions δi − λ−γ up to the critical value
γ = 1

2 will contribute. Precisely, we deduce from point (ii) of Proposition 4.2 below
combined with Lebesgue’s dominated convergence theorem that

λ

log λ

∫ 1
2

0
E (Zi,γ,λ,−) (λ−γ log λ)dγ −→

λ→∞

1
12‖oi‖

and from point (ii) of Proposition 4.3 that

λ
∫ ∞

1
2

E (Zi,γ,λ,−)λ−γdγ 6 λ
∫ ∞

1
2

Cλ−
1
2λ−γdγ −→

λ→∞
0.

It follows that
λ

log λ

∫ ∞
0

E (Zi,γ,λ,−) (λ−γ log λ)dγ ∼
λ→∞

1
12‖oi‖

.
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Showing the same estimate when Zi,γ,λ,− is replaced by Zi,γ,λ,+ and summing over
the vertices of K provide then the required result. �

4.4. Proof of Theorem 1.2(iii): intensity and number of vertices

Proof of Theorem 1.2(iii). — Considering Corollary 2.3(ii), we aim at determin-
ing a precise estimate for the integral

∫∞
ηi,λ

po (K, δi + ελ−γ)E (Zi,γ,λ,ε) (λ−γ log λ) dγ
where ε ∈ {+,−}. Naturally, it is enough to do it for ε = − as the case ε = + will
follow by analogous methods. Again, thanks to Proposition 4.2(ii), we obtain that
there exists C > 0 such that

λ

log λ

∫ ηi,λ

0
po(K, δi − λ−γ)E(Zi,γ,λ,−)(λ−γ log λ)dγ 6 Cηi,λ →

λ→∞
0.

We now use the following decomposition:∫ ∞
0

po(K, δi − λ−γ)E(Zi,γ,λ,−)(λ−γ log λ)dγ = I
(1)
i (λ) + I

(2)
i (λ)

where
I

(1)
i (λ) =

∫ 1
2

0
po(K, δi − λ−γ)E(Zi,γ,λ,−)(λ−γ log λ)dγ

and
I

(2)
i (λ) =

∫ ∞
1
2

po(K, δi − λ−γ)E(Zi,γ,λ,−)(λ−γ log λ)dγ.

Because of point (iii) of Proposition 4.2, the integrand of I(1)
i (λ) satisfies

λ1−γpo(K, δi − λ−γ)E(Zi,γ,λ,−)(λ−γ log λ) ∼
λ→∞

‖oi‖ ×
1

6‖oi‖
= 1

6
and we may apply Lebesgue’s dominated convergence theorem. Now point (ii) of
Proposition 4.3 shows that I(2)

i (λ) is negligible. Consequently, we have obtained that

(4.7) 4λ
∫ ∞
ηi,λ

po(K, δi − λ−γ)E(Zi,γ,λ,−)(λ−γ log λ)dγ ∼
λ→∞

(log λ) · 3−1.

We conclude by stating that the term Rλ given at (2.7) is negligible in front of log λ.
This follows by extending verbatim Proposition 4.2(ii) and Proposition 4.3 to the
second moment of Zi,γ,λ,−, i.e. there exists C > 0 such that

(4.8) E(Z2
i,γ,λ,−) 6 Cλmin(2(γ−1),−1).

Summing over i the result (4.7) then implies Theorem 1.2(iii). �

We now aim at being more specific on the localization of the vertices of Ko
λ. The

following statement shows a striking self-similarity of the limiting intensity of the
point process of vertices around a fixed vertex of K.

Proposition 4.4. — Let ai ∈ ∂K, 1 6 i 6 nK , be a fixed vertex of K. Consider
the point process (ρv, αv)v ∈Vi of the polar coordinates of the vertices of Ko

λ belonging
to Si. Let R × A be a bounded Borel set of (0,∞)2 and denote by Ni(R × A) the
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number of points in R × A of the rescaled point process (λ1−2γρv, λ
γαv)v ∈Vi . Then

we get
E(Ni(R× A)) −→

λ→∞

∫
A
σi(ρ, α)dρdα

where
σi(ρ, α) = 8

3‖oi‖
2ρα3 exp

(
−2‖oi‖ρα2

)
1I{ρ> 0}1I{α> 0}.

Proof of Proposition 4.4. — The strategy of the proof consists in going along
the same lines as for the smooth case and proceeding exactly like for the proof of
Proposition 4.2. Precisely, we obtain that

E(Ni(R× A)) = 8
∫
R×A

exp (−∆i(λ, ρ, α)) r2
i (λ, ρ, α)J supp

i (λ, ρ, α)ρdρdα

where

∆i(λ, ρ, α) = 4λA
B∥∥∥sai,λ2γ−1ρ,λ−γα

∥∥∥ (sai,λ2γ−1ρ,λ−γα) \ Fo(K)


= 4λA (∆Fai,λ2γ−1ρ,λ−γα)

and

J supp
i (λ, ρ, α) = λ3γ

∫
Ei(λ,ρ,α)

J(θi(λ, ρ, α), θ1, θ2)dθ1dθ2

where Ei(λ, ρ, α) stands for the set of couples (θ1, θ2) which satisfy that the two
bisecting lines of [o, x1] and [o, x2] do not intersect K (see Figure 4.3).

aiai+1

o

‖oi‖

∂K

oi

v

ρvαv

αv

Figure 4.3. Intensity of the point process of vertices near a fixed vertex ai of K.
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Thanks to Lemma 4.1, we get
∆i(λ, ρ, α) −→

λ→∞
2‖oi‖ρα2.

Moreover,
ri(λ, ρ, α) −→

λ→∞
‖ai‖ and sin(θi(λ, ρ, α)) −→

λ→∞

‖oi‖
‖ai‖

.

Let us now turn on the term J supp
i (λ, ρ, α). We get successively

J supp
i (λ, ρ, α)

∼
λ→∞

λ3γ
∫

(0,λ−γα)2
|sin(θi(λ, ρ, α)− θ1) sin(θi(λ, ρ, α)− θ2) sin(θ2 − θ1)| dθ1dθ2

∼
λ→∞

λ3γ
(
‖oi‖
‖ai‖

)2 (1
3
(
λ−γα

)3
)

= 1
3

(
‖oi‖
‖ai‖

)2

α3.

We apply now again Lebesgue’s dominated convergence theorem, omitting the
domination step which is very similar to what we did in the proof of Proposition 4.2.
It follows that

E(Ni(R× A)) −→
λ→∞

8
∫
R×A

exp
(
−2‖oi‖ρα2

)
‖ai‖2 × 1

3

(
‖oi‖
‖ai‖

)2

α3ρdρdα

which implies the required result. �

5. Proof of Theorem 1.3: the role of the Steiner point

In the two previous sections, the cell that we considered is associated with a
deterministic nucleus at the origin which is added to the Poisson point process. In
particular, the asymptotic shape of the cell depends on both the choice of the convex
body K and the position of the origin o inside K. In this section, we investigate a
modified question which is intrinsic in K, i.e. we ask for the behavior of the cell Kλ

containing K when the Poisson point process is conditioned on its associated Voronoi
tessellation to not intersect K. Since the problem is invariant under translation, we
are allowed to assume that the Steiner point of K coincides with the origin, without
it being a nucleus of the tessellation. More precisely, the Steiner point of K denoted
by st(K) is defined by the equality

st(K) = 1
π

∫ 2π

0
po(K, θ)uθdθ.

When K is smooth, st(K) can be rewritten as

st(K) = 1
π

∫
∂K
r−1
s 〈s, ns〉nsds.

In particular, st(K) is included in the relative interior of K, see e.g. [Sch93, Sec-
tion 1.7] for the definition and the general properties of st(K). Note in particular that
its definition is intrinsic to K, i.e. is independent of the choice of the origin o. We
show as a byproduct of the proof of Proposition 5.2 the alternative characterization
of the Steiner point given in Proposition 5.1 below.
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Proposition 5.1. — The Steiner point st(K) is the unique point x in R2 which
minimises the function x 7−→ A(Fx(K)).

Let Sλ be the event such that there is one cell K̂λ of the Poisson–Voronoi tes-
sellation associated with Pλ which contains K. We are interested in showing that
conditional on Sλ, the nucleus of K̂λ, denoted by Zλ, is close to the Steiner point
st(K).
The next proposition is an intermediary result which provides a precise description

of the conditional distribution of Pλ given Sλ as well as the explicit and limit
distributions for the rescaled nucleus of Kλ. Note that Proposition 5.2 combined
with Theorem 1.1 will be the key tool for proving Theorem 1.3.
Proposition 5.2. —
(i) The conditional distribution of Pλ given Sλ is equal in distribution to
{Zλ} ∪ P(Zλ)

λ where Zλ is a random variable distributed according to a den-
sity function proportional to x 7−→ exp(−4λA(Fx(K))) and, given {Zλ = x},
P(Zλ)
λ is a Poisson point process of intensity λ1IR2\2Fx(K).

(ii) Conditional on Sλ, the rescaled nucleus λ 1
2Zλ converges in distribution as

λ→∞ to the centered Gaussian distribution with covariance matrix (4π)−1

times the identity matrix.

Proof of Proposition 5.2.
Proof of (i). — Let L be a fixed compact set in R2. Using Mecke–Slivnyak’s

formula and denoting by Cx the Voronoi cell associated with x ∈ R2, we get succes-
sively

E
(
1ISλ

1I{Pλ∩L=∅}
)

= E

 ∑
x∈Pλ

1I{K⊂Cx}1I{Pλ∩L= ∅}


=
∫
R2

P (K ⊂ Cx, (Pλ ∪ {x}) ∩ L = ∅) dx

=
∫
R2\L

P (Pλ ∩ (L ∪ 2Fx(K)) = ∅) dx

=
∫
R2\L

exp
(
− λA(L \ 2Fx(K))

)
exp

(
− 4λA(Fx(K))

)
dx.

Dividing the last equality by P(Sλ), we get the required result.
Proof of (ii). — We start by calculating both P(Sλ) and the density of Zλ

conditional on Sλ. For any bounded and measurable function ϕ : R2 −→ R, we
deduce from Mecke–Slivnyak’s formula that

E

 ∑
x∈Pλ

1I{K⊂Cx}ϕ(x)
 = λ

∫
R2

P(K ⊂ Cx)ϕ(x)dx

= λ
∫
R2

exp
(
− 4λA(Fx(K))

)
ϕ(x)dx.

Taking ϕ = 1 in the last equality above, we obtain that

P(Sλ) = λ
∫
R2

exp
(
− 4λA(Fx(K))

)
dx
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and that the conditional density fλ of λ 1
2Zλ is proportional to

x 7−→ exp
(
− 4λA(Fλ−1/2x(K))

)
.

We now turn our attention to the calculation of A(Fx(K)). For any x ∈ R2, we
denote by E(x) ⊂ [0, 2π] the set of all directions such that px(K, θ) > 0. Denoting
by

T (x) = 1
2

∫
[0,2π]\E(x)

p2
x(K, θ)dθ,

we rewrite A(Fx(K)) as

A(Fx(K)) = 1
2

∫ 2π

0
p2
x(K, θ)dθ − T (x).

We notice that
(5.1) px(K, θ)− po(K, θ) = −〈x, uθ〉.
Consequently, we get

A(Fx(K)) = 1
2

∫ 2π

0
(po(K, θ)− 〈x, uθ〉)2 dθ − T (x)

= A(Fo(K))−
〈
x,
∫ 2π

0
po(K, θ)uθdθ

〉
+ 1

2

∫ 2π

0
〈x, uθ〉2dθ − T (x)

= A(Fo(K)) + π

2 ‖x‖
2 − T (x)(5.2)

where we have used both the fact that o is the Steiner point of K and the equality∫ 2π

0
〈x, uθ〉2dθ =

∫ 2π

0
(cos θ)2‖x‖2dθ = π‖x‖2.

Let us show two basic properties of the rest T (x).
- When x is in the interior of K, E(x) = [0, 2π] and T (x) = 0.
- When x is not in the interior of K, because of (5.1), 0 < po(K, θ) 6 〈x, uθ〉
as soon as θ ∈ [0, 2π] \ E(x) and consequently, for any θ ∈ [0, 2π] \ E(x),

px(K, θ)2 = 〈x, uθ〉2 − po(K, θ)(2〈x, uθ〉 − po(K, θ)) 6 〈x, uθ〉2.
Combining this inequality with the fact that [0, 2π] \ E(x) is an interval of length

at most π implies in turn that

0 6 T (x) 6 1
2

∫
[0,2π]\E(x)

〈x, uθ〉2dθ 6 π

4 ‖x‖
2.

In view of (5.2), this means in particular that o is the unique minimum of the
function x 7−→ A(Fx(K)).
Now, inserting (5.2) into the conditional density function fλ of λ 1

2Zλ, we obtain
that fλ(x) is proportional to exp(−2π‖x‖2 + 4λT (λ− 1

2x)). Using the properties of
T detailed above and the fact that λ− 1

2x lies in the interior of K for λ large enough,
we get that for every x ∈ R2, fλ(x) converges to 2 exp(−2π‖x‖2) and

exp
(
−2π‖x‖2 + 4λT

(
λ−

1
2x
))
6 exp

(
−π‖x‖2

)
.
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Consequently, an application of Lebesgue’s dominated convergence theorem shows
that for any measurable function g : R2 −→ R which is bounded by a polynomial
of ‖x‖, ∫

R2
g(x)fλ(x)dx −→

λ→∞
2
∫
R2
g(x) exp(−2π‖x‖2)dx

which completes the proof of Proposition 5.2. �

We are now ready to prove Theorem 1.3.
Proof of Theorem 1.3. — We prove the result for E(A(Kλ))−A(K) and explain

at the end how to adapt the arguments for E((U(Kλ))− U(K) and E(N (Kλ)).
Let Co be the Voronoi cell associated with the origin when o is added to the set

of nuclei Pλ. The cell Kλ containing K is distributed, up to a translation, as Co
conditional on (K + Zλ) ⊂ Co, where Zλ is distributed as in Proposition 5.2(i).
Recalling that fλ is the density function of λ 1

2Zλ, we obtain

E(A(Kλ)−A(K)) =
∫
R2

E
(
A((K + λ−

1
2x)oλ)−A(K)

)
fλ(x)dx = I1(λ) + I2(λ)

where

I1(λ) =
∫
λ

1
4K

E
(
A((K + λ−

1
2x)oλ)−A(K)

)
fλ(x)dx

and

I2(λ) =
∫
R2\λ

1
4K

E
(
A((K + λ−

1
2x)oλ)−A(K)

)
fλ(x)dx .

We start by showing that
(5.3) I1(λ) ∼

λ→∞
E (A(Ko

λ)−A(K)) .

Indeed, a method similar to what has been done in Sections 3.2 and 4.2 shows that,
uniformly in x ∈ R2,

E
(
A((K + λ−

1
2x)oλ)−A(K)

)
1I{

x∈λ
1
4K

} ∼
λ→∞

E (A(Ko
λ)−A(K)) .

Combining this with the convergence and domination of the function fλ showed in
the proof of Proposition 5.2(ii), we get (5.3).
Let us show now that the integral I2(λ) is negligible in front of I1(λ). To do so, we

denote by Rx the maximal distance from o to the farthest point in (K +λ−
1
2x)oλ. We

notice in particular that A((K + λ−
1
2x)oλ) 6 πR2

x. Moreover, by a method similar to
Lemma 1 in [FZ96], we obtain that, for any r > 0,

P (Rx > r) 6 C ′ exp
(
−Cr2 + C ′λ−1‖x‖2

)
,

for some positive constants C,C ′ > 0.
Consequently, E(A((K + λ−

1
2x)oλ) − A(K)) is bounded by 1 + λ−1‖x‖2 up to a

multiplicative constant. Using the domination of fλ showed in Proposition 5.2(ii),
we get that I2(λ) → 0 exponentially fast as λ → ∞. Combining this last result
with (5.3), we obtain the required convergence for the mean defect area of Kλ.
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Finally, the estimates for E(U(Kλ) − U(K)) and E(N (Kλ)) follow from similar
arguments, as soon as we are able to get bounds for E(U((K+λ−

1
2x)oλ)−U(K)) and

E(N ((K + λ−
1
2x)oλ)). Using the inclusion (K + λ−

1
2x)oλ ⊂ Bo(Rx), we get that, up to

a multiplicative constant, λ− 1
2‖x‖ is an upper-bound of E(U((K+λ−

1
2x)oλ))−U(K)).

A use of Proposition 2.1(i) combined with the same inclusion finally shows that, up
to a multiplicative constant, λ−1‖x‖2 is an upper-bound of E(N ((K +λ−

1
2x)oλ)). �

6. Proof of Theorem 1.5: the question of the variance

In this section, we explain how a general method based on the application of an
inversion with respect to the osculating disk at s for any s ∈ ∂K provides an explicit
calculation of the limiting variance of the defect area and the number of vertices in
the smooth case. As in Theorem 1.3, these results extend to Kλ.

Proof of Theorem 1.5. — Compared to the direct calculations done in the previous
sections, the method used in this proof is clearly more technical and relies on previous
works for random convex hulls. Similar arguments could have also led to Theorem 1.1
but we had chosen to keep the discussion as plain as possible for the expectation
asymptotics, which seems to be no longer possible for the variance asymptotics. The
technique described below is reminiscent of both [CS05] for the idea of transforming
through the action of an inversion a Voronoi cell into a convex hull and [CY14] for
the rewriting of the variance as an integral over ∂K of a covariance of so-called
scores and the replacement of K by a disk in the calculation of these scores. Though
it is specific to the smooth case and can hardly be extended to the variance of the
perimeter, it may also reinforce the parallel with Rényi and Sulanke’s work and
explain to some extent why these particular functionals of K appear in the limiting
expectations and variances.
We describe in detail the technique in the case of N (Ko

λ) and explain at the end
how to extend it for the defect area. The first step consists in associating to any
x ∈ Pλ \ 2Fo(K) the point y which is the closest point to ∂K on the bisecting
line of the segment [0, x]. We denote by Qλ the point process constituted of the
coordinates (s, h) of such points y. In particular, Qλ is a Poisson point process on
∂K × (0,∞) and its intensity with respect to the measure dsdh has a density equal
to qλ(s, h) = 4λr−1

s (〈s, ns〉 + h) thanks to the equalities ‖x‖ = 2(〈s, ns〉 + h) and
ds
dθ = rs (see also Figure 6.1).
For every (s, h) ∈ Qλ, we denote by ξ((s, h),Qλ) the score of (s, h), equal to either

1 if its ancestor in Pλ is a Voronoi neighbor of o and 0 otherwise. In particular,

N (Ko
λ) =

∑
(s,h)∈Qλ

ξ ((s, h),Qλ) .
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o

x

s

h

ns

〈s, ns〉

(〈s, ns〉+ h)

y

∂K

Figure 6.1. The construction of the point y ∈ Qλ associated with x ∈ Pλ

Consequently, using the Mecke–Slivnyak’s formula, we get that

λ−
1
3 Var(N (Ko

λ))

=λ− 1
3E

 ∑
(s,h)∈Qλ

ξ2((s, h),Qλ) +
∑

(s,h) 6= (s′,h′)∈Qλ

ξ ((s, h),Qλ) ξ ((s′, h′),Qλ)


−λ−
1
3 (E(N (Ko

λ)))2 = I1,λ + I2,λ(6.1)
where

I1,λ = λ−
1
3

∫
∂K×(0,∞)

E
(
ξ2((s, h),Qλ)

)
qλ(s, h)dsdh,

I2,λ = λ−
1
3

∫∫
(∂K×(0,∞))2

c ((s, h), (s′, h′),Qλ) qλ(s, h)qλ(s′, h′)dsdhds′dh′

and c denotes the pair correlation function defined as

c ((s, h), (s′, h′),Pλ) = E
(
ξ
(
(s, h),Qλ ∪ {(s′, h′)}

)
ξ
(
(s′, h′),Qλ ∪ {(s, h)}

))
− E

(
ξ((s, h),Qλ)

)
E
(
ξ((s′, h′),Qλ)

)
.

Let us denote by Is the renormalized inversion with respect to the center of
curvature ωs defined by the identity

Is(y) = ωs + rs
y − ωs
‖y − ωs‖2 , y 6= ωs.

The image Q̃λ, s = Is(Qλ) is a Poisson point process in the osculating disk Brs(ωs) at
s, which has a density q̃λ,s(r, θ) with respect to the polar coordinates, equivalent to
4λrs〈s, ns〉 when (r, θ)→ (1, 0). Moreover, the same arguments as in [CS05, Lemma 1]
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show that the new score ξ̃((r, θ), Q̃λ,s) = ξ(I−1
s (ωs+ruθ),Qλ), (r, θ) ∈ (0, 1)×(0, 2π),

is equal to 1 if (r, θ) is an extreme point of Q̃λ, s∪{(r, θ)} and 0 otherwise. In the same
way, we define the new pair correlation function c̃((r, θ), (r′, θ′), Q̃λ,s). Applying the
change of variables r = rs

rs+h in I1, λ which means taking r for the distance between
ωs and the image by Is of (s, h), we obtain that

I1,λ = λ−
1
3

∫
∂K

∫
r∈ (0,1)

E
(
ξ̃2
(
(r, 0), Q̃λ,s

))
4λr−1

s

(
〈s, ns〉+ rs

r
− rs

)
rs
r2 drds.

Let us define ελ = ( log λ
λ

)− 1
3 . We claim that with high probability, only the values

of r close to 1 up to a distance of order O(ε2
λ) will contribute significantly to the

integral above and moreover, that only the points of Q̃λ,s at a distance O(ελ) will
be needed for the computation of the scores. Indeed, this is due to a result which
can be proved analogously to [CY14, Lemma 4.1(a), Lemma 4.2] and which says the
following: there exists a positive constant C such that with probability (1−O(λ−8)),

ξ̃
(
(r, 0), Q̃λ,s

)
=

ξ̃
(
(r, 0), Q̃λ,s ∩BCελ(s)

)
if r > 1− Cε2

λ

0 otherwise.

Note that [CY14] assumes a C3-smooth boundary but that in particular, Lemmas 4.1
and 4.2 therein still hold with the weaker assumption of C2-regularity. Recalling now
that when (r, θ)→ (1, 0), the intensity of Q̃λ,s goes to 4λrs〈s, ns〉, we obtain that

(6.2) I1, λ ∼
λ→∞

λ−
1
3

∫
∂K
r−1
s · 4λrs〈s, ns〉

∫ 1

0
E
(
ξ̃2
(
(r, 0),P4λrs〈s,ns〉 ∩B1(o)

))
drds.

We proceed analogously for I2,λ, i.e. we apply the two changes of variables r = rs
rs+h

and (r′, θ′) as the polar coordinates with respect to ωs of the image by Is of the
point (s′, h′). Using that with high probability ξ̃((r, 0), Q̃λ,s) = 0 as soon as r exceeds
O(( log λ

λ
)− 2

3 ) and that c̃((r, 0), (r′, θ′), Q̃λ,s) = 0 as soon as the distance between the
two points with polar coordinates (r, 0) and (r′, θ′) exceeds O(( log λ

λ
)− 2

3 ), see [CY14,
Lemma 4.1], we obtain that

(6.3)

λ
1
3 I2,λ =

∫
∂K

∫
r,r′ ∈ (0,1),θ′∈(0,2π)

c̃
(
(r, 0), (r′, θ′), Q̃λ,s

)
4λ
(
〈s, ns〉+ rs

r
− rs

)
q̃λ,s(r′, θ′)

dr
r2 dr′dθ′ds ∼

λ→∞

∫
∂K
r−1
s · (4λrs〈s, ns〉)

2

∫
r,r′ ∈ (0,1),θ′ ∈ (0,2π)

c̃
(
(r, 0), (r′, θ′),P4λrs〈s, ns〉 ∩B1(o)

)
drdr′dθ′ds.

Using [CSY13, Theorem 7.1], we have for fixed s ∈ ∂K

(6.4) lim
λ→∞

(4λrs〈s, ns〉)−
1
3

(
4λrs〈s, ns〉

∫ 1

0
E
(
ξ̃2((r, 0),P4λrs〈s,ns〉 ∩B1(o))

)
dr

+(4λrs〈s, ns〉)2
∫
r,r′ ∈ (0,1),θ′ ∈ (0,2π)

c̃
(
(r, 0), (r′, θ′),P4λrs〈s,ns〉 ∩B1(o)

)
drdr′dθ′

)
= cN

2π
where cN is the positive limiting variance of the number of extreme points of a
homogeneous Poisson point process inside the unit disk. Combining (6.4) with (6.1),
(6.2) and (6.3), we obtain Theorem 1.5(ii).
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s

∂K

ωs

y = (s, h)

∂Kλ

∂K

ωs

∂Kλ

s

(a) (b)

Figure 6.2. The two scores ξ (a) and ξ̃ (b) for the variance of A(Ko
λ)

Regarding the variance of A(Ko
λ), we proceed in the exact same way, the only

notable difference being that we take ξ((s, h),Qλ) equal to the area between ∂K and
the Voronoi edge contained in the bisecting line that (s, h) belongs to if such Voronoi
edge exists and 0 otherwise, see the hatched region in Figure 6.2(a). Denoting by
µs the image of the Lebesgue measure by Is, is also equal to the µs-measure of
the hatched region on Figure 6.2(b) when (r, 0) is an extreme point of Q̃λ,s ∩B1(o)
and 0 otherwise. Since with high probability this hatched region is very close to
the boundary of B1(o), the µs-measure is almost equal to r2

s times the Lebesgue
measure. Consequently, we choose for ξ̃((r, 0), Q̃λ,s) the Lebesgue measure of the
hatched region and define c̃ accordingly.
Thanks to [CSY13, Theorem 7.1], we get that

(6.5) lim
λ→∞

(4λrs〈s, ns〉)
5
3

(
4λrs〈s, ns〉

∫ 1

0
E
(
ξ̃2((r, 0),P4λrs〈s,ns〉 ∩B1(o))

)
dr

+(4λrs〈s, ns〉)2
∫
r,r′ ∈ (0,1),θ′ ∈ (0,2π)

c̃((r, 0), (r′, θ′),P4λrs〈s,ns〉 ∩B1(o))drdr′dθ′
)

= cA
2π

where cA is the positive limiting variance of the area between the boundary of B1(o)
and the Voronoi flower of a homogeneous Poisson point process inside the unit disk.
Incidentally, this quantity is also the limiting variance of π times the mean width
of the convex hull of the same homogeneous Poisson point process. Finally, (6.5)
combined with the fact that Var(A(Ko

λ)) is equivalent to the integral over ∂K of
r3
s times the quantity inside the brackets in (6.5) implies Theorem 1.5(i). �

A byproduct of the method developed in the proof of Theorem 1.5 is that

E(A(Ko
λ))−A(K) ∼

λ→∞
λ−

2
3 2− 7

3a∞

∫
∂K
r

1
3
s 〈s, ns〉−

2
3 ds

and

E(N (Ko
λ)) ∼

λ→∞
λ

1
3 2− 1

3π−1n∞

∫
∂K
r
− 2

3
s 〈s, ns〉

1
3 ds
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where a∞ (resp. n∞) is the normalized limiting expectation of the defect mean width
(resp. number of vertices) of the convex hull of a homogeneous Poisson point process
in the unit disk.
Using [RS63, Satz 3] and [RS64, Satz 1], the two equalities above imply points (i)

and (iii) of Theorem 1.1. Nevertheless, we have chosen to prove them in Section 3
through a direct calculation instead because it is more natural and self-contained on
one hand and easier to extend to the defect perimeter and to the polygonal case on
the other hand. Besides, the method used in Section 3 implies Proposition 3.3 on
the support points which is new to the best of our knowledge and interesting on its
own.
The extension of the method from Section 6 to the case of the perimeter is indeed

problematic. This comes from the fact that it relies in particular on the application
of an inversion with respect to an osculating circle of K and the use of the known
asymptotics for a random convex hull inside a disk. There have been in the past
successful uses of the polarisation of a convex body in order to derive asymptotics for
the perimeter or mean width of random convex hulls, see e.g. [GG97, BR04]. Only
understanding how this transition to the polar body would impact the construction
of the Poisson–Voronoi cell seems non-trivial. This could suggest that we should
adapt the technique of [CY14] without any use of an inversion or a polarisation, i.e.
show the existence of a scaling limit of the boundary of the Voronoi tessellation in the
osculating disk and define limiting scores associated with the defect perimeter in the
rescaled space. This program seems reachable for both the limiting expectation and
limiting variance of the defect perimeter, though it would not provide any explicit
calculation of the constants involved, contrary to Theorem 1.1(ii). We leave it for
future research.
We believe that the extension to higher dimension of the method from Section 6 is

delicate and would require a non-trivial input which is still unclear up to now. Indeed,
the technique relies on the approximation of the boundary of K near a boundary
point by an osculating circle, then on the use of the inversion transformation and the
required asymptotic result for the convex hull of a random set of points in the disk.
In higher dimension, the boundary of K is locally approximated by an ellipsoid. In
the case of the convex hull of a Poisson point process, [CY14] settles that problem by
applying a volume-preserving affine transformation so that the principal curvatures
of K at a fixed boundary point are all equal. This does not modify the set of extreme
points, as well as the defect volume of the random convex hull. The considered
functionals, number of k-dimensional faces and defect volume, are then estimated
inside an osculating ball where there are an available global scaling transformation
and asymptotics ready for use, see e.g. [CSY13, CY14]. But in our case, the Voronoi
construction is not preserved by the application of an affine transformation which is
not isometric. Up to now, we have not been able to overcome this new difficulty.
Regarding the polygonal case, there is no easy transformation which could play the

role of the inversion, i.e. send the Voronoi cell to the convex hull of a random set of
points inside the polygon and allow us then to use the known results on the random
convex hull. A direct proof designed to mimic the strategy of [CY17] would induce
many technical results currently missing (negligibility of the flat parts, decorrelation
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of the parts around the vertices of the polygon). Moreover, it could very well crash
into the problem of defining a universal scaling transformation in the vicinity of a
vertex of the polygon since the affine transformations do not preserve the Voronoi
construction.

7. The Crofton cell

The main issues of the paper prove to be equally appealing when the Poisson–
Voronoi tessellation is replaced by any random line tessellation in the plane and in
particular by the stationary and isotropic Poisson line tessellation, see e.g. [SW08,
Section 10.3]. This tessellation is obtained by taking a Poisson point process Pλ
of intensity measure λ‖x‖−1dx in R2 and constructing for every x in the point
process, the line Lx containing x and with normal vector x. The cell containing the
origin is the so-called Crofton cell and is defined as the intersection of all closed
half-planes containing the origin and delimited by lines Lx. We denote by Kλ a cell
distributed as the Crofton cell conditional on the event that no line crosses K, which
is equivalent to say that no point from Pλ meets Fo(K). We recall that thanks to
the Cauchy-Crofton formula, this event has probability

exp
(
−λ

∫
Fo(K)

‖x‖−1dx
)

= exp
(
−λ

∫ 2π

0

∫ po(K,θ)

0
r−1rdrdθ

)

= exp
(
−λ

∫ 2π

0
po(K, θ)dθ

)
= exp(−λU(K)).(7.1)

This new random polygonKλ satisfies (2.5) and its rewritings given in Corollary 2.2
(i) for the smooth case and in Corollary 2.3 for the polygonal case. The identity (2.3)
is replaced by

E(A(Kλ))−A(K) =
∫
R2\K

exp
(
− λ(U(conv(K ∪ {x}))− U(K))

)
dx.(7.2)

We state below the direct analogues for Kλ of Proposition 2.1, Theorems 1.1
and 1.2 with the same notation. In particular, the Efron-type identity given at (a)
can be seen as a consequence of [Sch09, penultimate display on page 693].

Theorem 7.1. —
(a) For every λ > 0, the following identity holds

E(N (Kλ)) = λ(E(U(Kλ))− U(K)) .
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(b) Let K be a smooth convex body containing o in its interior. The mean defect
area, defect perimeter and number of vertices of Ko

λ have respectively the
following asymptotics when the intensity λ→∞:

E(A(Kλ))−A(K) ∼
λ→∞

λ−
2
3 2− 2

3 3− 1
3 Γ
(

2
3

) ∫
∂K
r

1
3
s ds(i)

E(U(Kλ))− U(K) ∼
λ→∞

λ−
2
3 2 4

3 3− 4
3 Γ
(

2
3

) ∫
∂K
r
− 2

3
s ds(ii)

E(N (Kλ)) ∼
λ→∞

λ
1
3 2 4

3 3− 4
3 Γ
(

2
3

) ∫
∂K
r
− 2

3
s ds.(iii)

(c) Let K be a convex polygon containing o in its interior. The mean defect area,
defect perimeter and number of vertices of Ko

λ have respectively the following
asymptotics when the intensity λ→∞ :

E(A(Kλ))−A(K) ∼
λ→∞

λ−
1
2 2− 5

2π
3
2

nK∑
i=1
‖ai+1 − ai‖

3
2(i)

E(U(Kλ))− U(K) ∼
λ→∞

(λ−1 log λ) · 2 · 3−1nK(ii)

E(N (Kλ)) ∼
λ→∞

(log λ) · 2 · 3−1nK .(iii)

Proof of Theorem 7.1. — As all these results can be derived in a very similar way
to what we did in the previous sections, we only sketch the proof below.

(a) As in Proposition 2.1, we observe that x ∈ Pλ gives birth to a side of the
Crofton cell Kλ if and only if Lx intersects the Crofton cell Cx corresponding
to the point process (Pλ \ Fo(K)) \ {x}. This is equivalent to saying that
x ∈ Fo(Cx) \ Fo(K). We then conclude by using Mecke–Slivnyak’s formula
combined with (7.1).

(b)(i) We need an analogue of Lemma 3.1 for the quantity U(K ∪ {sh}) − U(K)
where we recall that sh = s + hns for any s ∈ ∂K and h > 0. Using the
Cauchy–Crofton formula, we get with the same notation as in the proof of
Lemma 3.1

(7.3) U(K ∪ {sh})− U(K) =
∫ θ+

s,h

−θ−
s,h

∆pωs(θ)dθ =
h→0

2 5
2 3−1 r

− 1
2

s h
3
2 + o

(
h

3
2
)
.

We then insert (7.3) into (7.2) and apply Lebesgue’s dominated convergence
theorem.
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(b)(ii) We start by stating an analogue of Proposition 3.3: denoting by (Xs,λ, Y s,λ)
the support point of ∂Kλ in direction ns, we can show that the couple
(λ 1

3Xs,λ, λ
2
3Y s,λ) converges in distribution to the distribution with density

function equal to

2 3
2 r
− 3

2
s exp

−2 5
2 3−1r

− 1
2

s

(
x2

2rs
+ y

) 3
2
( x2

2rs
+ y

) 1
2

y1I{y > 0}.

In particular, this implies

(7.4) E(Y s,λ) ∼
λ→∞

λ−
2
3 2 4

3 3− 4
3 Γ
(

2
3

)
r

1
3
s .

Inserting (7.4) into the equality (i) from Corollary 2.2 applied to Kλ, we get
the required result.

(c)(i) We prove an analogue of Lemma 4.1 for the quantity U(K ∪{sai,ρ,α})−U(K)
for sai,ρ,α ∈ Si where we recall that sai,ρ,α = ai + ρuπ−α. We get

U(K ∪ {sai,ρ,α})− U(K)
= ‖ai − sai,ρ,α‖+ ‖ai+1 − sai,ρ,α‖ − ‖ai+1 − ai‖

= ρ+
(
ρ2 + ‖ai+1 − ai‖2 − 2ρ‖ai+1 − ai‖ cosα

) 1
2 − ‖ai+1 − ai‖

=
α→0

α2

2
ρ‖ai+1 − ai‖
‖ai+1 − ai‖ − ρ

+ o
(
α2
)
.(7.5)

Inserting (7.5) into (7.2), applying Lebesgue’s dominated convergence theorem
for the integrals over the regions Si and showing that the integrals over the
regions Gi are negligible, we obtain (c)(i).

(c)(ii) We need to derive an analogue of Proposition 4.2: let us denote by (Rλ−γ , Aλ−γ )
the polar coordinates of the support point of Kλ in direction δi − λ−γ with
respect to the coordinate system with origin ai and first axis (ai, ai+1). Then
for every γ ∈ (0, 1

2), the couple (λ1−2γRλ−γ , λ
γAλ−γ ) converges in distribution

to the distribution with density function fi given by
1
2 exp

(
−1

2ρα
2
)
α(α− 1)ρ1I{ρ> 0}1I{α> 1}.

In particular, this implies that the expectation of the defect support function
Zi, γ, λ,− in direction (δi − λ−γ) satisfies

(7.6) E(Zi,γ,λ,−) = E(Rλ−γ sin(Aλ−γ − λ−γ)) ∼
λ→∞

2
3λ

γ−1.

Inserting (7.6) into the equality (i) from Corollary 2.3 applied to Kλ and
showing that the integral over γ > 1

2 is negligible yields the desired estimate.
(b)(iii)&(c)(iii) These estimates are direct consequences of (a) combined with (b)(ii) and (c)

(ii) respectively. �
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In 1968, Rényi and Sulanke investigated a model close to the Crofton cell, save for
the fact that they did not use the notion of point process in the whole plane. Instead,
they fixed a domain B which includes K and they considered the polygon containing
K and delimited by n random lines which intersect B without crossing K. This is on
a par with the actual Crofton cell when the number of lines is Poissonized and the
set B goes to R2. In this context, they obtained the mean number of vertices in the
smooth and polygonal cases, see [RS68, Sätze 4 and 5]. Replacing n

b−l = n
U(B)−U(K)

by λ in their formulas provides the exact same results as ours. To the best of our
knowledge, they did not cover the calculations for the asymptotic mean area and
mean perimeter, nor did they establish an Efron-type relation. Let us also notice
that the asymptotics of Theorem 7.1(b) extend to any smooth convex body the
results for the defect area and number of vertices obtained in [CS05, Theorem 2]
when K is a disk. When K is any convex body, let us note that the very recent
preprint [HS19] provides bounds for the defect mean width in any dimension for a
more general model which includes the Crofton cell. Finally, it comes as no surprise
that contrary to the Voronoi case, the limiting expectations do not depend on the
position of K with respect to o. Indeed, by stationarity, the origin has no privileged
status among the points of the Crofton cell.
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