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760 L. RIFFORD & R. RUGGIERO

Résumé. — Nous étudions la conjecture de stabilité en topologie C2 du point de vue de
Mañé pour le flots géodésiques sans points conjugués sur les variétés compactes. La conjecture
de stabilité en topologie C1 pour les flots géodésiques est un problème ouvert car le C1-Closing
Lemma n’est pas connu dans ce contexte. Sans Closing Lemma, nous démontrons que la
théorie des variétés sans points conjugués et une version récente du Lemme de Franks du point
de vue de Mañé permettent d’obtenir une réponse positive à la conjecture dans le cas des
variétés compactes sans points conjugués de dimension 2 et 3 ayant un revêtement universel
quasi-convexe avec des rayons géodésiques divergents, ainsi que pour les variétés de dimension
n de rank un généralisées.

1. Introduction

The motivations for the main results in this article come from two sources. First of
all, the challenging problem of the C1 closing lemma for geodesic flows that remains
an open, very difficult problem. Recently, Rifford [Rif12] proved a C0 closing lemma
for geodesic flows applying ideas of geometric control theory. The high technical
difficulties involved in the proof of this fact give an idea of the considerable complexity
of the problem in the C1 level. However, C0 perturbations are considered too rough
by specialists in perturbative theory of dynamical systems. So the question of how
far we can go in proving the C1 stability conjecture for geodesic flows without a
C1 closing lemma is an interesting, appealing problem in Riemannian geometry and
dynamical systems.
Secondly, some important results about the topological dynamics of the geodesic

flow of compact manifolds without conjugate points and hyperbolic global geometry
are known for nonpositive curvature manifolds. Eberlein [Ebe72] shows the topolog-
ical transitivity of the geodesic flow of a visibility manifold, without restrictions on
the sectional curvatures. The density of the set of periodic orbits, another important
feature of topological dynamics, is known for visibility manifolds with nonpositive
sectional curvatures (see for instance [Bal95]). Notice that by one of the main results
of [LRR16], the C2 structural stability of the geodesic flow of a compact manifold
from Mañé’s viewpoint implies the hyperbolicity of the closure of the set of periodic
orbits. So it seems natural to ask whether the density of periodic orbits, a statement
with a flavor of topological dynamics, really needs some extra assumptions on the
geometry of the manifold (like nonpositive curvature) to hold. There are some known
results of course, Anosov geodesic flows have this property, as well as expansive ge-
odesic flows in compact manifolds without conjugate points [Rug97]. But visibility
manifolds of nonpositive curvature are examples of the so-called rank one manifolds,
which may have non Anosov geodesic flows because of the presence of flat strips.
The goal of the paper is to deal with the stability conjecture of geodesic flows of

compact manifolds without conjugate points, a geometric condition that is much
weaker than nonpositive curvature but still ensures many important properties for
the topological dynamics of the geodesic flow.
Theorem 1.1. — Let (M, g) be a compact C∞ manifold without conjugate points

that is one of the following:
(1) A surface.
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On the stability conjecture for geodesic flows 761

(2) A 3 dimensional manifold such that the universal covering is a quasi-convex
space where geodesic rays diverge.

Then, the geodesic flow is C2 structurally stable from Mañé’s viewpoint if and only
if the geodesic flow is Anosov.

Item (1) is probably known but we did not find any records in the literature
about the subject. The second result for higher dimensional manifolds introduces a
generalized version of the rank one notion for manifolds without conjugate points
and no restrictions on the sectional curvatures (Section 1).

Theorem 1.2. — Let (M, g) be a compact C∞ manifold without conjugate points
such that the universal covering is a quasi-convex space where geodesic rays diverge.
If the set of generalized rank one points is dense in T1M we have that the geodesic
flow is C2 structurally stable from Mañé’s viewpoint if and only if the geodesic flow
is Anosov.

The paper is organized as follows: Section 2 is concerned with some preliminaries
on manifolds without conjugate points. In Section 3, we investigate the strip issue
for manifolds without conjugate points. In Section 4, we study the stability and
hyperbolicity properties of the set of closed orbits. Section 5 is concerned with the
density of closed orbits on manifolds with Gromov hyperbolic fundamental group.
Sections 6 and 7 are devoted to the proof of Theorem 1.1 and the proof of Theorem 1.2
is given in Section 8.

2. Preliminaries

Let us give some notations and definitions that will be used through the article.
A pair (M, g) denotes a C∞ complete, connected, Riemannian manifold, TM will
denote its tangent space, T1M denotes its unit tangent bundle. Π : TM −→ M
denotes the canonical projection Π(p, v) = p, the coordinates (p, v) for TM will be
called canonical coordinates. The universal covering of M is M̃ , the covering map is
denoted by π : M̃ −→ M , the pullback of the metric g by π is denoted by g̃. The
geodesic γ(p,v) of (M, g) or (M̃, g̃) is the unique geodesic whose initial conditions are
γ(p,v)(0) = p, γ′(p,v)(0) = v. All geodesics will be parametrized by arc length unless
explicitly stated.
The fundamental group of M will be denoted by π1(M).The group π1(M) acts by

isometries in the universal covering (M̃, g̃). An element of the fundamental group
when identified with an isometry of (M̃, g̃) will be called a covering isometry.

Definition 2.1. — A Riemannian manifold (M, g) has no conjugate points if
the exponential map is nonsingular at every point.

Nonpositive curvature manifolds are well known examples of manifolds without
conjugate points, but there are of course many examples of manifolds without conju-
gate points having sectional curvatures of variable sign. A particular family of such
manifolds is the category of manifolds without focal points: a geodesic of (M, g) has
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762 L. RIFFORD & R. RUGGIERO

no focal points if every nontrivial Jacobi field vanishing somewhere has increasing
norm. The manifold (M, g) has no focal points if every geodesic has no focal points.
The fundamental group of manifolds without conjugate points has some special

algebraic properties similar to some properties of the fundamental group of manifolds
with nonpositive curvature. For instance, π1(M) has no torsion if (M, g) is compact
and has no conjugate points. Given a covering isometry h, there exists a geodesic
γθ ⊂ M̃ such that

h(γθ(t)) = γθ(t+ P )
for every t ∈ R, where P is a period of the periodic geodesic π(γθ). Such a geodesic
will be called an axis of (M̃, g̃). The set of axes coincides with the set of lifts by
the covering map of the closed geodesics of (M, g). We shall denote by A the set
of axes of (M̃, g̃). For a more detailed description of the algebraic properties of the
fundamental group of manifolds without conjugate points we refer to [CS86].

2.1. Divergence of geodesic rays in the universal covering, Busemann
functions and invariant foliations

We begin by recalling the following notion introduced by Eberlein [Ebe72].

Definition 2.2. — We say that geodesic rays diverge in (M̃, g̃) if for given
p ∈ M̃ , ε > 0, T > 0, there exists R = R(p, ε, T ) > 0 such that two different geodesic
rays γ : R −→ M̃ , β : R −→ M̃ with γ(0) = β(0) = p, subtending an angle at p
greater than ε, then d(γ(t), β(t)) > T for every t > R. We say that geodesic rays
diverge uniformly in (M̃, g̃) if the number R(p, ε, T ) is independent of p ∈ M̃ .

The divergence of geodesic rays is common to all known categories of manifolds
without conjugate points (nonpositive curvature, no focal points, bounded asymp-
tote [Esc77], compact surfaces without conjugate points), but it is a conjecture
whether it is satisfied for every compact manifold without conjugate points. There
are some partial results pointing towards a positive answer (see for instance [Rug08]).
One of the main basic features of manifolds without conjugate points is the exis-

tence of many asymptotic objects which describe the global geometry of (M̃, g̃). We
start by recalling the notion of Busemann function.

Definition 2.3. — Given θ = (p, v) ∈ T1M̃ , the Busemann function bθ : M̃ −→
R is given by

bθ(x) = lim
t→+∞

(d(x, γθ(t))− t).

Busemann functions of compact manifolds without conjugate points are C1+k,
namely, C1 functions with k-Lipschitz first derivatives where the constant k depends
on the minimum value of the sectional curvatures (see for instance [Pes77, Section 6]).
The level set

(bθ)−1(−t) = Hθ(t)
is called horosphere. For each θ ∈ T1M̃ , the collection of sets Hθ(t), t ∈ R, defines
a C1 foliation of M̃ by equidistant leaves. The gradient ∇bθ is a Lipschitz unit
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vector field and its flow ψθt : M̃ −→ M̃ that is always tangent to geodesics of (M̃, g̃)
preserves the foliation of the horospheres, namely

ψθs(Hθ(t)) = Hθ(t− s)
for every t, s ∈ R. The integral orbits of the Busemann flow are usually called
Busemann asymptotes of γθ. When the curvature is nonpositive, Busemann functions
and horospheres are C2 smooth [Esc77].

Definition 2.4. — For θ = (p, v) ∈ T1M̃ let

W̃ s(θ) =
{(
x,−∇xb

θ
)
, x ∈ Hθ(0)

}
W̃ u(θ) =

{(
x,∇xb

(p,−v)
)
, x ∈ H(p,−v)(0)

}
.

We shall denote by F̃ s the collection of the sets W̃ s(θ), and by F̃u the collection of
the sets W̃ u(θ), θ ∈ T1M̃ . If P : T1M̃ −→ T1M is projection P(p, v) = (π(p), dpπ(v)),
let

W s(θ) = P(W̃ s(θ))
W u(θ) = P(W̃ u(θ)).

Let us denote by F s the collection of the sets W s(θ), θ ∈ T1M , and by Fu the
collection of the sets W u(θ), θ ∈ T1M .
The setsW s(θ),W u(θ), are Lipschitz continuous, (m−1) dimensional submanifolds

of T1M , where m = dim(M), and of course they coincide with the stable and the
unstable sets of θ when the geodesic flow is Anosov. When (M, g) is a compact surface
without conjugate points, the collections F s, Fu, form continuous foliations. This is
a well known consequence of the divergence of geodesic rays in the universal covering
proved by Green [Gre54] and the quasi-convexity of (M̃, g̃) shown by Morse [Mor24].
The same holds for any compact manifold with nonpositive curvature, no focal points,
and for a rather more general category of manifolds satisfying a condition called
bounded asymptote (see [Esc77]).
The most general known result concerning the regularity of the above family of

invariant sets is proved in [Rug03].
Theorem 2.5. — Let (M, g) be a compact manifold without conjugate points.

Then geodesic rays diverge uniformly in M̃ if and only if F s, Fu, F̃ s, F̃u are contin-
uous foliations by Lipschitz leaves invariant by the geodesic flow (in (M, g), (M̃, g̃)
respectively).

2.2. Quasi-convexity

Definition 2.6. — The universal covering (M̃, g̃) of a complete Riemannian
manifold (M, g) is called a (K,C)-quasi-convex space, or simply a quasi-convex
space, if there exist constants K > 0, C > 0, such that given two pairs of points
x1, x2, y1, y2 in M̃ and two minimizing geodesics γ : [0, 1] −→ M̃ , β : [0, 1] −→ M̃
such that γ(0) = x1, γ(1) = y1, β(0) = x2, β(1) = y2, we have

dH(γ, β) 6 K max{d(x1, x2), d(y1, y2)}+ C
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764 L. RIFFORD & R. RUGGIERO

where dH is the Hausdorff distance.

The universal covering of manifold of nonpositive sectional curvature is (1, 0)-quasi-
convex. Most of the known categories of manifolds without conjugate points (no focal
points, bounded asymptote) have quasi-convex universal coverings. Moreover, by the
work of Gromov [Gro87], the universal covering of every compact manifold whose
fundamental group is hyperbolic is quasi-convex. Although geodesics in (M̃, g̃) behave
like hyperbolic geodesics when the dimension of M is 2, an example by Ballmann–
Brin–Burns [BBB87] shows that Jacobi fields may behave wildly compared with the
quasi-convex behavior of geodesics.
The link between quasi-convexity and the regularity of the families of sets F s, Fu

is the following result proved in [Rug07].

Theorem 2.7. — Let (M, g) be a compact manifold without conjugate points
such that (M̃, g̃) is quasi-convex and geodesic rays diverge. Then geodesic rays
diverge uniformly.

Theorems 2.5 and 2.7 then imply that the families F s, Fu form continuous invariant
foliations whenever (M̃, g̃) is quasi-convex and geodesic rays diverge.

2.3. Busemann asymptotes versus asymptotes

As we mentioned before, every orbit of the Busemann flow of bθ is called a Buse-
mann asymptote of γθ for θ ∈ T1M̃ . However, the usual definition of asymptoticity
is the following:

Definition 2.8. — A geodesic β ⊂ M̃ is forward asymptotic to γ ⊂ M̃ if there
exists L > 0 such that

dH (γ[0,+∞), β[0,+∞)) 6 L

where γ[0,+∞) = {γ(t), t > 0}. A geodesic σ ⊂ M̃ is backward asymptotic to γ if
there exists L > 0 such that

dH (γ(−∞, 0], β(−∞, 0]) 6 L.

Two geodesics γ, β in M̃ are bi-asymptotic if they are both forward and backward
asymptotic.

The quasi-convexity of (M̃, g̃) implies that the global behavior of Busemann asymp-
totes is a coarse version of the behavior of asymptotes in nonpositive curvature
(see [Rug07] for instance):

Lemma 2.9. — Let (M, g) be a compact manifold without conjugate points such
that (M̃, g̃) is K,C quasi-convex. Then for every θ ∈ T1M̃ , θ = (p, v), and every
(q, w) ∈ Hθ(0), we have

d
(
γθ(t), γ(q, w)(t)

)
6 Kd(p, q) + C

for every t > 0.
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However, a Busemann asymptote of γθ might not be asymptotic to γθ. What is
true is

Lemma 2.10. — Let (M, g) be compact without conjugate points such that geo-
desic rays diverge uniformly in M̃ . Then

(1) Any geodesic γη forward asymptotic to γθ is a Busemann asymptote of γθ.
Moreover, there exists c > 0 such that bη(x) = bθ(x) + c for every x ∈ M̃ .

(2) In particular, any geodesic γη that is bi-asymptotic to γθ is a Busemann
asymptote of γθ and γ−θ where θ = (p, v), −θ = (p,−v). In this case, if
γη(0) ∈ Hθ(0) then γη(0) ∈ Hθ(0) ∩H−θ(0).

Proof. — We follow the ideas in [Rug03], most of them are well known to specialists.
Item (1) follows from the fact that the horosphere Hθ(0) is the limit of spheres

St(γθ(t)) of radius t centered at γθ(t). Indeed, let x ∈ M̃ and consider the geodesics
[x, γθ(t)] joining x and γθ(t), and [x, γη(t)] joining x and γη(t). The angle subtended
by these geodesics at x tends to zero as t→ +∞ because of the uniform divergence of
geodesic rays. This yields that γη and γθ have the same Busemann asymptotes. Since
the Busemann asymptotes of γθ define a flow by geodesics that is always orthogonal
to the horospheres Hθ(s), we have that the horospheres Hθ(s) and Hη(r) give rise
to two foliations which are perpendicular to the same flow by geodesics. Hence the
functions bη and βθ have the same gradients and since they are C1 they differ by a
constant. This proves item (1).
To show item (2) we have to prove that if γη(0) ∈ Hθ(0) and γη is bi-asymptotic

to γθ, then γη(0) belongs to H−θ(0) as well. Item (1) implies that, since γ−η is
asymptotic to γ−θ, then both have the same Busemann flows and their Busemann
functions differ by a constant. This yields that there exists a > 0 such that

γη(0) = γ−η(0) ∈ H−θ(a),
and hence H−η(0) = H−θ(a). We must show that a = 0.
Let θ = (p, v), η = (q, w), we know that Hθ(0) and H−θ(0) are tangent at p, and

that M̃ −Hθ(0) consists of two disjoint open regions

O+
θ =

{
x ∈ M̃, bθ(x) > 0

}
O−θ =

{
x ∈ M̃, bθ(x) < 0

}
.

Moreover we have
O−−θ ⊂ O+

θ ,

H−θ(0) ⊂ O+
θ ∪ {p},

H−η(0) ⊂ O+
θ ∪ {q}

since Hη(0) = Hθ(0).
Assume that a > 0. Then b−θ(H−θ(a)) = −a and therefore H−θ(a) ⊂ O−−θ, that is

strictly contained in O+
θ . This contradicts the fact that q ∈ H−θ(a) ∩ {(bθ)−1(0)}.

If on the other hand, a < 0, then the horosphere H−θ(a) intersects the open set
O−θ which is again a contradiction since H−θ(a) = H−η(0) ⊂ O+

θ ∪ {q}. So a = 0
thus finishing the proof of the Lemma. �
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Combining the above two Lemmas 2.9 and 2.10 we get
Corollary 2.11. — Let (M, g) be a compact manifold without conjugate points

whose universal covering is quasi-convex where geodesic rays diverge. Then two
geodesics of (M̃, g̃) are asymptotic if and only if they are Busemann asymptotic (up
to reparametrization).

A natural question arises from the previous Lemma: Is there any connected set of
bi-asymptotic geodesics containing two given bi-asymptotic geodesics? This would
be in many respects an analogous to the flat strip theorem. What we know is the
following result proved by Croke–Schroeder [CS86].
Theorem 2.12. — Let (M, g) be a compact analytic manifold without conjugate

points. Then the set of closed geodesics in a given nontrivial homotopy class is a
connected, rectifiable set (each pair of points can be joined by a rectifiable curve in
the set) of closed geodesics in the same homotopy class and constant period.

2.4. Generalized rank one manifolds

Let us recall that a manifold with nonpositive curvature is called a rank one
manifold if there exists a geodesic where the dimension of parallel Jacobi fields along
this geodesic is one. Every compact surface with nonpositive curvature and genus
greater than one is a rank one manifold of course.
Theorem 2.5 leads naturally to the following extension of the notion of rank one

manifold.
Definition 2.13. — A generalized rank one manifold is a compact manifold

without conjugate points such that
(1) Geodesic rays diverge uniformly in (M̃, g̃).
(2) There exists θ ∈ T1M and an open neighborhood B(θ) of θ in T1M such

that for each η ∈ B(θ), the connected component W s
loc(η) of W s(η) ∩ B(η)

containing η and the connected componentW u
loc(η) ofW u(η)∩B(η) containing

η satisfy
W s
loc(η) ∩W u

loc(η) = η.

The point θ will be called a generalized rank one point for the geodesic flow.

Notice that by definition, if the set of generalized rank one points is non empty
then it is open. It is clear that rank one manifolds of nonpositive curvature are
generalized rank one manifolds since geodesic rays diverge uniformly in nonpositive
curvature and the tangent space of W s

loc(η) ∩W u
loc(η) is generated by parallel Jacobi

fields which are linearly independent from the geodesic vector field γ′η(0). So along
the orbit of a rank one point in a space of nonpositive curvature stable and unstable
sets intersect transversally, and since these sets form continuous foliations by C1

leaves the transversality between invariant submanifolds is an open property.
However, the set of generalized rank one points might include strictly the set of

rank one points of manifolds with nonpositive curvature. This is the case of surfaces
of nonpositive curvature where the curvature vanishes just at a finite set of closed
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geodesics. Every point of T1M is a generalized rank one point while the set of rank
one points is the complement of this finite set of flat geodesics. The expansivity
of the geodesic flows of a compact manifold without conjugate points implies that
every point in T1M is a generalized rank one point (see [Rug97]). We might expect
that the presence of generalized rank one points would imply some kind of local
expansivity, this will be the subject of the last section.
The study of the set of intersections W̃ s(η) ∩ W̃ u(η) is one of the most intriguing

problems in the theory of manifolds without conjugate points. In the case of compact
surfaces such a set is a connected compact curve with boundary (that might be a
single point of course). Manifolds without focal points satisfy the so-called flat
strip Theorem: every two bi-asymptotic geodesics in M̃ bound a flat, isometrically
embedded strip [0, a]× R in M̃ .
The convexity properties of spaces of nonpositive curvature yield that the set of

bi-asymptotic geodesics to a given one is a convex flat set (see for instance [BGS85]
and references about the subject)
Without restrictions on the sectional curvatures the intersections between invariant

submanifolds might be non-flat strips as shown by Burns (see [Bur92]), but still enjoy
good topological properties. In higher dimensions this problem is much more difficult,
this will be the subject of the next section.

3. The strip issue for manifolds without conjugate points

If we drop any assumption on the sectional curvatures or Jacobi fields, or even the
analytic hypothesis considered by Croke and Schroeder, we can show the following
result about the topology of the set of bi-asymptotic geodesics that is new in the
theory and interesting in itself.
Lemma 3.1. — Let (M, g) be a compact C∞ manifold without conjugate points

such that (M̃, g̃) is (K,C)-quasi-convex where geodesic rays diverge. Then given
θ = (p, v) ∈ T1M̃ , and a geodesic β = γη (with η ∈ T1M̃) bi-asymptotic to γ = γθ,
there exists a connected set Σ(γ, β) ⊂ Hθ(0) ∩H−θ(0) containing p and β ∩Hθ(0),
such that for every x ∈ Σ(γ, β), the geodesic with initial conditions (x,−∇xb

θ) is
bi-asymptotic to both of them. In particular, the set

S(γ, β) =
⋃

x∈Σ(γ, β), t∈R
γ(x,−∇x bθ)(t)

is homeomorphic to Σ(γ, β)× R.

Before proving Lemma 3.1, let us demonstrate the following elementary lemma.
Lemma 3.2. — Let (M, g) be a compact C∞ manifold without conjugate points

and θ = (p, v) ∈ T1M̃ be fixed. Then for every x ∈ M̃ , any u ∈ R such that
d(x, γ) := inf

t∈R
{d (x, γ(t))} = d(x, γ(u))

satisfies ∣∣∣u+ bθ(x)
∣∣∣ 6 d(x, γ).
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Proof. — Let x ∈ M̃ and u ∈ R be such that d(x, γ) = d(x, γ(u)), for every t > 0
the triangle inequality yields

d (x, γ(t)) 6 d (x, γ(u)) + d (γ(u), γ(t)) = d(x, γ) + |t− u|
and

|t− u| = d (γ(u), γ(t)) 6 d (γ(u), x) + d (x, γ(t)) = d(x, γ) + d (x, γ(t)) .

We conclude easily by letting t tend to +∞ and using the definition of bθ(x). �

Proof of Lemma 3.1. — We construct the set Σ(γ, β) by hand. For every t ∈ R, let
ct : [0, 1] −→ M̃ be the geodesic with ct(0) = γθ(t), ct(1) = β(t). For every positive
integer n and every s ∈ [0, 1], we consider the geodesic segment αsn : [0, 1] → M̃

joining c−n(s) to cn(s). Since geodesic rays diverge in M̃ , by Lemma 2.10, there is
c ∈ R such that bη = bθ + c. Thus, for every integer n if v, w ∈ R satisfy

d (β(n), γ) = d (β(n), γ(v)) and d (β(−n), γ) = d (β(−n), γ(w))
then by Lemma 3.2 there holds
|v − n− c| = |v + bη(β(n))− c| =

∣∣∣v + bθ(β(n))
∣∣∣ 6 d (β(n), γ) 6 dH (γ, β)

and
|v + n− c| = |v + bη(β(−n))− c| =

∣∣∣v + bθ(β(−n))
∣∣∣ 6 d (β(−n), γ) 6 dH (γ, β) ,

which shows that
d (β(n), γ(n)) 6 d (β(n), γ(v)) + d (γ(v), γ(n))

6 d (β(n), γ) + |v − n|
6 2dH (γ, β) + |c|,

and in the same way that d (β(−n), γ(−n)) 6 2dH (γ, β) + |c|. Let D := dH(γ, β)
and fix an integer n > 2D + |c| and s ∈ [0, 1], we have

d (αsn(1), γ(n)) 6 d (β(n), γ(n)) 6 2dH (γ, β) + |c|
and

d (αsn(0), γ(−n)) 6 d (β(−n), γ(−n)) 6 2dH (γ, β) + |c|.
So that for every t > 0

d (αsn(0), γ(t)) > d (γ(t), γ(−n))− d (αsn(0), γ(−n))
> t+ n− 2D − |c| > 0

and
d (αsn(1), γ(t)) 6 d (γ(t), γ(n)) + d (αsn(1), γ(n))

6 t− n+ 2D + |c| < 0.

Taking the limit as t tends to +∞, we infer that bθ(αsn(0)) > 0 and bθ(αsn(1)) < 0. As
a consequence, there is r ∈ (0, 1) such that αsn(r) belongs to Hθ(0). By Lemma 3.2,
there is u ∈ R such that

d (αsn(r), γ) = d (αsn(r), γ(u)) and |u| 6 d (αsn(r), γ) ,
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which by quasi-convexity together with the above inequalities gives
|u| 6 dH (αsn, γ) 6 K max {d (c−n(s), γ(−n)) , d (cn(s), γ(n))}+ C

6 K max {d (β(−n), γ(−n)) , d (β(n), γ(n))}+ C

6 2KD +K|c|+ C,

and in turn
d (αsn(r), p) 6 d (αsn(r), γ(u)) + d (γ(u), γ(0))

= d (αsn(r), γ) + |u|
6 4KD + 2K|c|+ 2C =: τ.

By the divergence of rays in M̃ , the geodesics [c−n(s), cn(s)] tend to be orthogonal
to Hθ(0) at their points of intersection. So for n large, there is a unique rsn ∈ (0, 1)
such that αsn(rsn) ∈ Hθ(0) and the mapping

Γn : s ∈ [0, 1] 7−→ αsn(rsn) ∈ Hθ(0) ∩Bτ (p)
is continuous (here Bτ (p) stands for the closed ball centered at p with radius τ).
Let Σ(γ, β) be the set of q ∈ M̃ for which there exists a sequence {nk}k of positive
integers tending to infinity such that

q = lim
k→∞

Γnk (snk) .

By construction, Σ(γ, β) is a closed subset of Hθ(0) contained in Bτ (p), which
contains p = γ(0) and q := β ∩ Hθ(0). We claim that Σ(γ, β) is connected. As
a matter of fact, if there are two disjoint open subsets A1, A2 of Hθ(0) such that
Σ(γ, β) ⊂ A1∪A2 with p ∈ A1, then all points of Σ(γ, β) must belong to A1 because
otherwise there is a sequence of continuous curves in Hθ(0) ∩ Bτ (p), given by the
restrictions of some Γn, which connects p to A2 that gives rise, by compactness, to
an accumulation point in Σ(γ, β) outside A1 ∪ A2, a contradiction.
To finish the proof of the Lemma 3.1, it remains to show that Σ(γ, β) is a subset

of Hθ(0) ∩H−θ(0).
Observe first that by quasi-convexity, for every integer n and every s ∈ [0, 1],

dH (γ, αsn) 6 2KD +K|c|+ C,

so any convergent subsequence of the points αnk(snk) → q ∈ Hθ(0) gives rise to a
geodesic σq(t) satisfying

dH(γθ, σq) 6 KdH(γθ, β) + C,

meaning that σq is bi-asymptotic to γθ. Moreover, the assumptions on the lemma
allow to apply Theorem 2.7: geodesic rays diverge uniformly in M̃ . Therefore,
Lemma 2.10 proceeds and we get Σ(γ, β) ⊂ Hθ(0) ∩H−θ(0). �

Corollary 3.3. — Let (M, g) be a compact manifold without conjugate points
such that (M̃, g̃) is quasi-convex where geodesic rays diverge. Then given a geodesic
γθ ⊂ M̃ the set S(γθ) of geodesics which are bi-asymptotic to γθ is homeomorphic
to a product Σ(γθ)× R where Σ(γθ) ⊂ Hθ(0) ∩H−θ(0) is a connected set.

Proof. — This is straightforward from Lemma 3.1. �
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Some remarks about Corollary 3.3. The set S(γ) is a natural candidate to be “the
strip” of γ. However, although it is homeomorphic to a product of the line and a
compact connected set like in nonpositive curvature, its geometry might be quite
wild.

4. Stability and hyperbolicity of the set of closed orbits

In this section we remind some of the main steps of the proof of the stability
conjecture for diffeomorphisms that can be extended to geodesic flows, notably after
a recent version of the Franks’ Lemma for the so-called Mañé perturbations of a
Riemannian metric.
We start by recalling some basic definitions concerning hyperbolic dynamics.

Definition 4.1. — Let ψt : N −→ N be a smooth flow without singularities
acting on a complete C∞ Riemannian manifold. An invariant set Y ⊂ N is called
hyperbolic if there exists C > 0, r > 0, and for every p ∈ Y there exist subspaces
Es(p), Eu(p) such that

(1) Es(p)⊕Eu(p)⊕X(p) = TpN where X(p) is the subspace tangent to the flow.
(2) ‖ dpψt(v) ‖6 Ce−rt ‖ v ‖ for every t > 0 and v ∈ Es(p).
(3) ‖ dpψt(v) ‖6 Cert ‖ v ‖ for every t 6 0 and v ∈ Eu(p).
The subspace Es(p) is called stable subspace, the subspace Eu(p) is called the

unstable subspace. When Y = N the flow ψt is called Anosov.
Replacing ψt by f t, where f : N −→ N is a diffeomorphism, t ∈ N, and erasing

X(p) from item (1) in the above definition, we get what is called a hyperbolic set
for the diffeomorphism f . If Y = N the diffeomorphism f is called an Anosov
diffeomorphism.

The theory of hyperbolic sets of flows and diffeomorphisms is very rich, one of
the main features of the dynamics is the existence of invariant submanifolds Ws(p),
Wu(p) for every p in the hyperbolic set where asymptotic properties of orbits are
counterparts of asymptotic properties of the differential of the system acting on
stable and unstable subspaces (see for instance [Ano69, HPS77]). The submanifold
Ws(p) is always tangent to the bundle Es, the submanifold Wu(p) is always tangent
to the bundle Eu.
By Lemma 2.10, the invariant submanifolds Ws(θ), Wu(θ) agree with the sets

W s(θ), W u(θ) locally when the geodesic flow of a manifold without conjugate points
is Anosov. This fact together with Corollary 3.3 imply

Lemma 4.2. — Let (M, g) be a compact manifold without conjugate points such
that (M̃, g̃) is quasi-convex and geodesic rays diverge. If the orbit of θ ∈ T1M is a
hyperbolic periodic orbit then for every lift γη ⊂ M̃ of the geodesic γθ we have

S(γη) = γη.

Proof. — The proof is straightforward from Corollary 3.3: The set S(γη) contains
the intersection Σ(γη) = Hη(0)∩H−η(0), which, according to the definition of W̃ s(η),
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W̃ u(η), is homeomorphic to W̃ s(η)∩ W̃ u(η) (with respect to the relative topology of
the sets). By the hyperbolicity of the periodic orbit and Lemma 2.10, we have that

W̃ s(η) ∩ W̃ u(η) = Ws(η) ∩Wu(η) = η

which yields the statement. �

Actually, if the geodesic flow of a compact Riemannian manifold is Anosov then the
manifold has no conjugate points by a celebrated theorem due to Klingenberg [Kli74]
(see also a nice generalization by R. Mañé [Mañ87]).
Systems with hyperbolic invariant sets are closely related to the theory of stable

systems.

Definition 4.3. — A smooth flow ψt : N −→ N acting on a smooth manifold
is Ck structurally stable if there exists ε > 0 such that every flow ρt in the ε-
neighborhood of ψt in the Ck topology is conjugate to ψt. Namely, there exists a
homeomorphism hρ : N −→ N such that

h(ψt(p)) = ρsp(t)(h(p))
for every t ∈ R, where sp(t) is a continuous injective function with sp(0) = 0.

A series of results in the 60’s, 70’s and 80’s characterize C1 structurally stable
systems (mainly [Mañ82, Mañ88, Rob70a, Rob70b]).

Theorem 4.4. — A diffeomorphism acting on a compact manifold is C1 struc-
turally stable if and only if it is Axiom A and the intersections between stable and
unstable manifolds of periodic orbits is always transversal.

Recall that a diffeomorphism f acting on a smooth manifold is called Axiom A if
the set Ω(f) of nonwandering points of f is a hyperbolic set and the set of periodic
orbits is dense in Ω(f).
Theorem 4.4 characterizes as well C1 structurally stable flows without singularities

on compact manifolds. Newhouse [New77] shows that a symplectic diffeomorphism
acting on a compact manifold is C1 structurally stable if and only if it is Anosov.
Newhouse’s proof extends to energy levels without singularities of Hamiltonian flows
defined on the cotangent space of a compact manifold.
To give a context to our results we need to explain in some detail the main ideas

of the proof of the so-called stability conjecture: C1 structurally stable diffeomor-
phisms are Axiom A and invariant submanifolds meet transversally, a result due to
Mañé [Mañ82].
One of the main steps of the proof is that the C1 structural stability implies that

the closure of the set of periodic orbits is a hyperbolic invariant set. The key tool
to prove this statement is the so-called Franks’ lemma, we shall give an improved
recent version of it for geodesic flows [LRR16]. Then, it is natural to expect that
under this condition, the set of nonwandering points, the set where the dynamics
is nontrivial, is exactly the closure of the set of periodic orbits. To show this the
essential tool is the C1 closing lemma proved by Pugh [PR83], that is not available
for geodesic flows up to date and is actually a very difficult problem in the theory
of geodesic flows as we already mentioned in the Introduction (see [Rif12]).
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The step concerning the hyperbolicity of periodic orbits under stability assumptions
has been extended and improved for geodesic flows in the context of the so-called
Mañé perturbations. Recall that a C∞ Hamiltonian H : T ∗M −→ R defined in the
cotangent bundle of M is called Tonelli if H is strictly convex and superlinear in
each tangent space TθT ∗M , θ ∈ T ∗M .

Definition 4.5. — A property P of the Hamiltonian flow of a Tonelli Hamil-
tonian H : T ∗M −→ R is called Ck generic from Mañé’s viewpoint if there exists a
Ck generic (from Baire’s viewpoint) set of real valued functions FP defined on M
such that the Hamiltonian flow of Hf (q, p) = H(q, p) + f(q) has the property P for
every f ∈ FP . If the Ck-norm of f is small, the Hamiltonian Hf is called a Ck Mañé
perturbation of the Hamiltonian H.

By the Maupertuis principle of classical mechanics. given a Riemannian metric
(M, g) defined in a compact manifold and a smooth scalar function f : M −→ R
such that | f(q) |< 1 for every q ∈M , the solutions of the Euler–Lagrange equation
of the mechanical Lagrangian

Lf (q, p) = 1
2gq(p.p)− f(q)

are the geodesics of the Riemannian metric

gfq (p, p) = 2(1− f(q))gq(p, p).

Therefore, by Legendre duality, every small Ck Mañé perturbation Hf = H(q, p) +
f(q) of the Hamiltonian H(q, p) = 1

2gq(p, p) defines the Riemannian Hamiltonian of
a metric gf that is conformal to g (see Arnold [Arn78] for instance).

Definition 4.6. — Given an integer k > 2, the geodesic flow φt of a compact
Riemannian manifold (M, g) is Ck structural stable from Mañé’s view point if there
exists a Ck small open neighborhood V of the function f0(p) = 0 for every p ∈ M
in the set of real valued functions defined on M , such that the geodesic flow of the
Hamiltonian Hf (q, p) = 1

2gq(p, p) + f(p) is conjugate to φt.

This notion of structural stability from Mañé’s viewpoint is stronger than the
usual one, since it requires persistence dynamics in a neighborhood of special type
of perturbations of the metric, not all perturbations of a metric are Mañé type
perturbations. As we commented above, perturbations of g which are not conformal
to g do not belong to the family of Mañé perturbations.
Applying techniques of control theory we obtain an extension of the hyperbolicity

of the set of periodic orbits just considering Mañé perturbations.

Theorem 4.7 (see [LRR16]). — Let (M, g) be a compact manifold whose geo-
desic flow is C2-structurally stable from Mañé’s viewpoint. Then the closure of the
set of periodic orbits is a hyperbolic set for the geodesic flow.

As for the closing lemma, we have to rely on other kind of assumptions on the
manifold to try to localize the set of periodic orbits. The natural domains to look
for these assumptions are topology and global geometry.
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5. On the density of periodic orbits for rank one manifolds
and manifolds with Gromov hyperbolic fundamental

groups
Let us recall that a metric space (X, d) is called geodesic if every pair of points xy

can be joined by an isometric continuous embedding of an interval c : [a, b] −→ X
with c(a) = x, c(b) = y. The curve c will be called a geodesic of the metric space,
it corresponds to minimizing geodesics if (X, d) is a Riemannian manifold. Let us
denote by [x, y] a minimizing geodesic joining x to y (there might be many).
Definition 5.1. — Given δ > 0 a complete geodesic metric space (X, d) is called

δ-hyperbolic or Gromov hyperbolic if for every geodesic triangle [x0, x1] ∪ [x1, x2] ∪
[x2, x0] we have that the distance from every point p ∈ [xi, xi+1] to [xi+1, xi+2] ∪
[xi+2, xi] is bounded above by δ for every i = 0, 1, 2 (the indices are taken mod 3).
Definition 5.2. — A complete Riemannian manifold (N, g) without conjugate

points is called a visibility manifold if given p ∈ N and ε > 0 there exists T > 0 such
that for every pair of points x, y in N , whenever the distance from p to the geodesic
[x, y] is larger than T , then the angle subtended by the geodesics [p, x] and [p, y] at
p is less than ε. If T does not depend on p the manifold (N, g) is called a uniform
visibility manifold.
The universal covering of a compact surface without conjugate points and genus

greater than one is a uniform visibility manifold, according to the work of Eber-
lein [Ebe72]. In higher dimensions, the link between visibility manifolds and Gromov
hyperbolic spaces is given in [Rug07, Rug94].
Theorem 5.3. — Let (M, g) be a compact manifold without conjugate points.

The universal covering is a uniform visibility manifold if and only if geodesic rays
diverge and the fundamental group is Gromov hyperbolic.
So the theory of Gromov hyperbolic spaces applies to visibility coverings of compact

manifolds without conjugate points. Let us mention some of these results concerning
the dynamics of the geodesic flow for the purposes of this article.
Theorem 5.4 (see [Ebe72]). — Let (M, g) be a compact manifold without con-

jugate points such that (M̃, g̃) is a visibility manifold. Then the geodesic flow is
topologically transitive, and given any geodesic γ ∈ M̃ there exists a geodesic β ∈ M̃
that is bi-asymptotic to γ having the following property:
There exists a sequence of axes βn ∈ M̃ , n→ +∞, such that for every t ∈ R,

lim
n→∞

βn(t) = β(t)

where this limit is uniform on compact subsets. Whenever a geodesic β is accumulated
by axes in this way, we say that β is in the closure Ā of the set of axes in the compact
open topology of the continuous functions from R to (M̃, g̃), or simply, the compact
open topology.
Theorem 5.5 (see [Ebe96]). — Let (M, g) be a rank one compact manifold with

nonpositive curvature. Then the set of periodic orbits of the geodesic flow is dense
in T1M .
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Combining Theorems 4.7 and 5.5 we get

Corollary 5.6. — Let (M, g) be a compact manifold with nonpositive curvature.
The geodesic flow is Anosov if and only if it is C2-structurally stable from Mañé’s
viewpoint.

Proof. — The nontrivial part of the proof is the converse of the statement. If the
geodesic flow is C2-structurally stable from Mañé’s viewpoint then by Theorem 4.7
the closure of the set of periodic orbits is hyperbolic. Since in manifolds with non-
positive curvature the intersections Hθ(0) ∩ H−θ(0) generate flat, convex subsets
of bi-asymptotic geodesics in (M̃, g̃), periodic geodesics have rank one. Therefore,
Theorem 5.5 yields that periodic orbits are dense and Theorem 4.7 then implies that
the geodesic flow is Anosov. �

6. The stability problem for surfaces and higher dimensional
visibility manifolds

The “easy” part of the proof of Theorem 1.1 is the converse, namely, if the geodesic
flow is Anosov then the geodesic flow is C1-structurally stable (which is precisely
Anosov’s work). In particular, the geodesic flow is C2 structurally stable from Mañé’s
viewpoint since the geodesic flows of small C2 neighborhoods of conformal metrics
are contained in C1 small neighborhoods the geodesic flow of (M, g).

6.1. Structural stability for surfaces

Let us start the proof of the direct part of Theorem 1.1 with the case of surfaces.
The main steps of the proof in the two dimensional case are a sort of paradigm of
what we would like to do in general dimensions. Let us summarize the main steps of
the argument.

Step 1. — The hyperbolicity of the closure of the set of periodic orbits determines
the topology of the manifold: the surface has genus greater than one.
To begin with, the compact surface (M, g) cannot be a sphere because the sphere

does not admit a Riemannian metric without conjugate points (otherwise its universal
covering would be diffeomorphic to R2).
Next, assume that the geodesic flow of the compact surface (M, g) without conju-

gate points is C2 structurally stable from Mañé’s viewpoint. By Theorem 4.7, every
closed orbit is a hyperbolic orbit of the geodesic flow. This implies that the surface
has genus greater than one, since a torus without conjugate points is flat by the
work of Hopf [Hop48].
Therefore, the surface (M, g) has genus greater than one, its fundamental group is

isomorphic to a Kleinian group and hence a Gromov hyperbolic group. This finishes
the proof of Step 1.
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Step 2. — The universal covering (M̃, g̃) is a visibility manifold.
Once we know that the compact surface (M, g) has genus greater than one we

apply Eberlein’s work [Ebe72] as mentioned in the previous section.
The next step is related to look at the obstructions to Anosov dynamics at the

level of the topological dynamics of the geodesic flow of (M, g). It is clear that
the existence of bi-asymptotic geodesics in the universal covering is an obstruction
to Anosov dynamics, since any Anosov geodesic flow is expansive and the only bi-
asymptotic geodesic to a given geodesic γθ ⊂ M̃ is γθ itself (see for instance [Rug97].
So now we focus on the structure of the sets S(γθ).

Step 3. — Let A be the union of the set of axes in (M̃, g̃), and let Ā be its
closure in the compact open topology. Then, given a geodesic γθ ⊂ (M̃, g̃) there
exists γθ̄ ∈ Ā such that

S(γθ) = S(γθ̄).
This follows from Theorem 5.4.
The last step of the proof follows from the hyperbolicity of the closure of the set

of closed orbits and the connectedness of S(γθ) (Corollary 3.3).
Step 4. — If the closure of the set of periodic orbits of the geodesic flow of (M, g)

is a hyperbolic set, then S(γθ) = γθ for every θ ∈ T1M̃ .
Indeed, the proof of this statement is an extension of the proof of Lemma 4.2. The

assumption implies that the invariant set of orbits of the geodesic flow of (M̃, g̃)
associated to the geodesics in Ā is a hyperbolic set. So let γθ ⊂ M̃ be a geodesic
having a bi-asymptotic geodesic γθ̄ in Ā. By the work of Morse [Mor24], the geodesics
γθ and γθ̄ bound a strip in M̃ that is foliated by geodesics, all of them obviously
bi-asymptotic to γθ.
By the divergence of geodesic rays for surfaces and Lemma 2.10, the intersection

Hθ(0) ∩H−θ(0) = Σ(γθ) consists of a connected compact curve with boundary that
contains γθ̄(0) (up to an affine reparametrization of the latter geodesic).
By definition, this implies that we have a curve I(θ̄) homeomorphic to an interval

in the intersection of W̃ s(θ̄)∩ W̃ u(θ̄), this curve contains the points θ and θ̄ in T1M̃ .
But we know by Lemma 2.10 that hyperbolicity implies that

W̃ s(θ̄) ∩ W̃ u(θ̄) = θ̄

since these invariant submanifolds intersect transversally at θ̄, and hence,
S(γθ̄) = γθ̄.

Consequently,
S(γθ) = S(γθ̄) = γθ̄ = γθ

for every θ ∈ T1M̃ .
The proof of Theorem 1.1 follows then from Step 4 and Theorem 4.7. The closure

of the set of orbits subtending axes is a hyperbolic set, and the claim in Step 4 tells
us that the orbit of every θ in T1M itself is in the closure of the set of periodic orbits.
Therefore, the whole set T1M is a hyperbolic set and the geodesic flow of (M, g)
is Anosov.
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6.2. Structural stability for visibility manifolds

From the proof of the structural stability for surfaces without conjugate points
we notice the relevance of the Gromov hyperbolicity of the fundamental group and
global geometry of the universal covering. So let (M, g) be a compact manifold
without conjugate points such that (M̃, g̃) is a visibility manifold (actually a uniform
visibility manifold by the compactness of M). Following the same line of reasoning
for the surface case, observe that we do not need Step 1 to prove Step 2, since
it is an assumption in this case. Step 3 follows from Theorem 5.3, which ensures
the quasi-convexity and the divergence of geodesic rays in (M, g), Theorem 2.7
to grant the uniform divergence of geodesic rays; and Theorem 5.4. The proof of
Step 4 mimics the proof for surfaces, replacing the work of Morse for surfaces
by Theorems 5.3, 2.7, and Corollary 3.3 that ensures the connectedness of the
intersection Hθ(0) ∩H−θ(0) = Σ(γθ). Therefore, we have

Theorem 6.1. — Let (M, g) be a compact manifold without conjugate points
such that (M̃, g̃)) is a visibility manifold. The geodesic flow is Anosov if and only if
it is C2-structurally stable from Mañé’s viewpoint.

7. The 3-dimensional case

We shall show that the proof of Theorem 1.1 in the three dimensional case follows
the same line of reasoning of the proof of the two dimensional case. The roles of
topology and hyperbolic global geometry of the manifold were crucial in the proof of
Theorem 1.1 item (1). This step of the proof for surfaces relies in their classification
theory, that will be replaced by Thurston’s geometrization theory in the case of three
dimensional manifolds.

7.1. Hyperbolic periodic orbits and the fundamental group

Let us start with the following result linking hyperbolic closed geodesics and a
special algebraic property of Gromov hyperbolic groups: the absence of higher rank
abelian subgroups:

Lemma 7.1. — Let (M, g) be a compact manifold without conjugate points such
that (M̃, g̃) is quasi-convex and geodesic rays diverge. Then, if every closed orbit is
hyperbolic the fundamental group is a Preissmann group, namely, every nontrivial
abelian subgroup is infinite cyclic.

Proof. — The proof relies on Lemma 4.2 and basic properties of the fundamental
group of manifolds without conjugate points. Let us remind such properties briefly.
Let Γ ⊂ π1(M) be an abelian subgroup of the fundamental group of M . The group

π1(M) has no torsion and hence Γ is isomorphic to the product of a finite number
of subgroups isomorphic to Z.
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Let h1, h2 be two nontrivial elements in Γ, and let γθ1 be an axis of h1, so
h1(γθ1(t)) = γθ1(t+ T1)

for every t ∈ R, where T1 is a period of π(γθ1).
Claim. — The geodesic h2(γ1(t)) is also an axis of h1.

This is a simple consequence of the fact that h1 ◦ h2 = h2 ◦ h1:
h1(h2(γθ1(t))) = h2(h1(γθ1(t))) = h2(γθ1(t+ T1))

so the geodesic h2(γθ1(t)) is preserved by h1 as well. This proves the claim.
Now, Corollary 3.3 and Lemma 4.2 imply that the geodesics γθ1 and h2(γθ1) must

coincide (as sets). Since π1(M) has no torsion, we deduce that h1 and h2 are powers
of a single element h0 in π1(M), preserving the geodesic γθ1 . This clearly yields that
the group Γ has to be infinite cyclic. �
The Preissmann property is satisfied by Gromov hyperbolic groups, but it is not

enough to characterize such groups.

7.2. Three dimensional manifolds without conjugate points and
Thurston’s geometrization

A challenging question is whether the Preissmann property is sufficient to charac-
terize the fundamental group of compact manifolds without conjugate points. The
next result proved in [Rug07, Chapter 8], is a partial positive answer to this question.
Theorem 7.2. — Let (M, g) be a compact Riemannian manifold without con-

jugate points with dimension 3. Suppose that the fundamental group satisfies the
Preissmann property. Then π1(M) is a Gromov hyperbolic group and M admits a
metric of constant negative curvature.

Now we can prove Theorem 1.1 item (2):
Let (M, g) satisfy the assumptions of Theorem 1.1. (M̃, g̃) is quasi-convex and

geodesic rays diverge. Moreover, the geodesic flow is C2 structurally stable from
Mañé´s viewpoint. By Theorem 4.7 the closure of the set of periodic orbits is a
hyperbolic set for the geodesic flow. In particular, every periodic orbit is hyperbolic
and by Lemma 7.1 the fundamental group is a Preissmann group. Therefore, by
Theorem 7.2 the fundamental group is Gromov hyperbolic, and hence Theorem 5.3
implies that the universal covering is a visibility manifold. Now, we deduce that the
geodesic flow of (M, g) is Anosov by Theorem 6.1.

8. The stability problem in higher dimensions

The study of the C2 structural stability from Mañé’s viewpoint in higher dimen-
sions without an appropriate closing lemma and no clue about the nature of the
fundamental group requires a different strategy. Theorem 1.2 will follow from the
extension of Theorem 5.5 to our context.
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Theorem 8.1. — Under the assumptions of Theorem 1.2 the set of periodic
orbits is dense in T1M .
Throughout the section, (M, g) will be a compact Riemannian manifold without

conjugate points whose universal covering is K,C-quasi-convex where geodesic rays
diverge, having a dense set of generalized rank one points.
We know that the set of recurrent orbits has total Liouville measure in T1M . Since

the set of points of T1M where W s
loc(θ) ∩W u

loc(θ) = {θ} contains an open and dense
set by the assumption of Theorem 1.2, the set of recurrent points with this property
is dense as well.
So let η be such a point, let B(η) ⊂ T1M be an open ball around η of generalized

rank one points.

8.1. Local product structure for the geodesic flow in neighborhoods of
generalized rank one points

The definition of the generalized rank one assumption implies the existence of a
special cross section Ση for the geodesic flow containing η foliated by local unstable
sets. Namely, given ε > 0 and θ = (p, v) ∈ T1M̃ , let Ψθ : Dε −→ Bh

ε (θ) be the
exponential map of the horosphere Hθ(0), where Dε is the open disk of radius ε
around 0 ∈ TpHθ(0), and Bh

ε (θ) is the geodesic ball of radius ε in Hθ(0) centered
at p, with respect to the restriction of g̃ to Hθ(0). By the continuity of Hθ(0) with
respect to θ (Theorem 2.5), we can choose ε > 0 such that Ψθ is a diffeomorphism
for every θ in a fundamental domain of T1M̃ . Let us define

W̃ s
ε(θ) =

{(
x,−∇xb

θ
)
, x ∈ Bh

ε (θ)
}
,

W̃ u
ε (θ) =

{(
x,∇xb

−θ
)
, x ∈ Bh

ε (−θ)
}
.

The above sets are homeomorphic to (m − 1) dimensional open balls for every
θ ∈ T1M̃.
There exists ε0 > 0 such that the projections

W s
ε0(θ) = Π

(
W̃ s

ε0(θ)
)
,

W u
ε0(θ) = Π

(
W̃ u

ε0(θ)
)

are embedded continuous submanifolds in T1M . Reducing ε0 if necessary, we can
suppose that W s

ε0(η) ⊂ B(η). To simplify notation we just identify ε0 with ε. Since
every point in B(η) is a generalized rank one point, the set

Σus
η =

⋃
θ∈W s

ε (η)
W u
ε (θ)

can be continuously parametrized as the homeomorphic image of the product Dm−1
ε ×

Dm−1
ε , where Dm−1

ε is the open disk of radius ε in Rm−1, m being the dimension of
M .
The set

Uus
ε (η) =

⋃
θ∈W s

ε (η), |t|<ε
φt (W u

ε (θ))
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that contains Σus
η , can be parametrized as the homeomorphic image ofDm−1

ε ×Dm−1
ε ×

{| t |< ε}. So by Brouwer’s open mapping theorem it is a (2m− 1)-dimensional open
subset of T1M and Σus

η is a continuous cross section for the geodesic flow (see
also [Rug97] for a very similar construction).
The same happens with the section

Σsu
η =

⋃
θ∈Wu

ε (η)
W s
ε (θ)

and the set
U su
ε (η) =

⋃
θ∈Wu

ε (η), |t|<ε
φt (W s

ε (θ))

that is an open neighborhood of η by the same above argument.

Lemma 8.2. — The open neighborhood of η given by
Uε(η) = Uus

ε (η) ∩ U su
ε (η)

has a local product structure in the following sense: for each point θ ∈ Uε(η) there
exist θs ∈ W s

ε (η), θu ∈ W u
ε (η), continuous real valued functions bs(θ), bu(θ) close to

zero such that
θ = W s

loc (φbu(θu) ∩W u
loc (φbs(θs)) .

Proof. — The statement is more or less self evident from the definitions of the sets.
Both Uus

ε (η), U su
ε (η) are open neighborhoods ofW s

ε (η)∪W u
ε (η) so their intersection is

obviously a nonempty open set. The statement follows then from the very definition
of these neighborhoods. �

8.2. Local expansiveness of the geodesic flow near generalized rank one
points

Since η is recurrent (meaning forward and backward recurrent) there exists a
sequence tn → +∞, with t0 = 0, such that φtn(η) ∈ Σus

η and converges to η. By the
smooth dependence of solutions of ordinary differential equations with respect to
initial conditions, there exist an open subset Σn

η of Σus
η (in the relative topology) and

a smooth function t̄n : Σn
η −→ R satisfying t̄n(η) = tn, such that the orbit of every

θ ∈ Σn
η hits Σus

η at φt̄n(θ)(θ).
So let Pn : Σn

η −→ Σus
η be the return map given by Pn(θ) = φt̄n(θ)(θ).

Let W s
loc(θ), W u

loc(θ), be the connected components of the intersections of W s(θ),
W u(θ) with Uus

ε (η) which contain θ ∈ Uus
ε (η).

By the above definitions we have that

Pn
(
W u
ε (θ) ∩ Σn

η

)
⊂ W u

loc

(
φt̄n(θ)(θ)

)
for every θ ∈ Σn

η and

Pn
(
W s
ε (η) ∩ Σn

η

)
⊂ W s

loc (φtn(η)) ,

for every n > 0.
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Lemma 8.3. — Under the assumptions of Theorem 1.2, let η, Pn, W s
ε (η), be

defined as above. Given 0 < δ < ε, there exists nδ > 0 such that for every n > nδ

(1) Pn is defined in W s
ε (η),

(2) Pn(W s
ε (η)) is strictly contained in W s

δ (φtn(η)).

Proof. — Indeed, otherwise there exists δ0 < ε such that for each k > 0 there exist
nk > k and a point τk ∈ W s

ε (η) such that Pnk(τk) is either not defined or defined
but outside W s

δ0(φtnk (η)). In any case the orbit of τk satisfies

φtnk (τk) ∈ W s
(
φtnk (η)

)
−W s

δ0

(
φtnk (η)

)
.

Let us consider a lift γη̄ of γη in M̃ , with η̄ = (p, v), and a lift γτ̄k of γτk in M̃ . Since
τk ∈ W s

ε (η), the lift γτ̄k can be chosen asymptotic to γη̄. Moreover, if τk = (pk, vk)
then pk ∈ Hη̄(0).
By Lemma 2.9

d (γη̄(t), γτ̄k(t)) 6 Kd(pk, p) + C

for every t > 0, and the contradiction assumption yields that there exists a = a(δ0) >
0 such that

d (γτ̄k(tnk), γη̄(tnk)) > a

for every k > 0.
Since η is recurrent, there exists a sequence of covering isometries Tk : M̃ −→ M̃

such that
(1) The pairs (Tk(γη̄(tnk)), dTk(γ′η̄(tnk))) converge to η̄.
(2) The sequence Tk(γτ̄k(tnk)) is contained in a compact ball centered at p,
(3) A convergent subsequence nkj of the pairs (Tk(γη̄(tnk)), dTk(γ′η̄(tnk))) gives

rise to a geodesic β defined by

β(t) = lim
j→∞

Tkj
(
γτ̄kj

(
t+ tnkj

))
that is bi-asymptotic to γη̄.

(4) d(β(0), γη̄(0)) > a > 0.
Thus, we get a geodesic β different from γη̄ that is bi-asymptotic to γη̄. But by

Corollary 3.3 this would generate a connected subset in the intersection W s
loc(η) ∩

W u
loc(η) containing more than one point, which is impossible by the generalized rank

one definition and the choice of η. This finishes the proof of the Claim. �

A statement analogous to Lemma 8.3 proceeds for W u
ε (η) and sn → −∞ such that

φsn(η)→ η, by the reversibility of the geodesic flow.

Lemma 8.4. — Under the assumptions of Theorem 1.2, let η, sn be as above, P−n
the return map of Σsu

η relative to sn. Given 0 < δ < ε, there exists n−δ < 0 such that
for every n < n−δ

(1) P−n is defined in W u
ε (η),

(2) P−n (W u
ε (η)) is strictly contained in W u

δ (φsn(η)).
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8.3. Proof of Theorem 8.1

The set W s
ε (η) is a subset of the open neighborhood B(η) where every point is

generalized rank one. As observed in Subsection 8.1, each intersection of the type
W u
ε (θ) ∩W s

ε (η) consists of a single point for every θ ∈ Σus
η . This allows us to define

a continuous projection

Πs : Ση −→ W s
ε (η)

Πs(θ) = W u
loc(θ) ∩W s

ε (η)

along the foliation of Ση formed by the sets W u
loc(θ).

By Lemma 8.3, the fact that limn→∞ φtn(η) → η, and the continuity of the sets
W s
r (σ) with respect to σ and r, we have that given 0 < δ < ε, there exists n(δ) > 0

such that
Πs (Pn (W s

ε (η))) ⊂ W s
δ (η)

for every n > n(δ). Therefore, the map Πs ◦ Pn : W s
ε (η) −→ W s

ε (η) sends a set
homeomorphic to a (m− 1) dimensional ball into itself.
By Brouwer’s fixed point theorem, there exists a fixed point σs, δ ∈ W s

ε (η) of
Πs ◦ Pn.
An analogous argument applying Lemma 8.4 shows that there exists a fixed point

σu, δ for P−n−
δ

◦Πu in W u
ε (η), where Πu : Σsu

η −→ W u
ε (η) is the projection along stable

leaves onto W u
ε (η).

Claim 1. — If δ is small enough, there exists σδ ∈ Uε(η) such that

σδ = W s
ε

(
φr(u)(σu, δ)

)
∩W u

(
φr(s)(σs, delta)

)
,

for some small numbers r(s), r(u) depending on σ and δ.

Indeed, if δ is small then W s
ε (σu, δ) is very close to W s

ε (η) by the continuity of
invariant foliations (Theorem 2.5). So the continuous submanifolds

W cs
ε (η) =

⋃
{|t|<ε}

φt (W s
ε (η)) ,

W cs
ε (σu, δ) =

⋃
{|t|<ε}

φt (W s
ε (σu, δ)) ,

will be close to each other as well and hence, the projection

Πs : W cs
ε (σu, δ) ∩ Uε(η) −→ W cs

ε (η)

along the unstable sets is a homeomorphism onto its image that has to be close to
W cs
ε (η) ∩ Uε(η) by the continuity of unstable sets and the small size of δ (if δ = 0

the projection is just the identity map).
Therefore, the set Πs(W cs

ε (σu, δ) ∩ Uε(η)) covers almost all W cs
ε (η) ∩ Uε(η), so

reducing δ if necessary this set contains σs, δ and will be hit by the unstable set of
some point σδ in the orbit of W s

ε (σu, δ) as claimed.

Claim 2. — : The orbit of σδ is periodic.
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Indeed, the point σδ has the same unstable local set of φr(s)(σu, δ), whose unstable
set is periodic by φtnδ+r(s) because the unstable set of σu, δ is periodic by φtnδ . At
the same time, σδ has the same stable local set of φr(u)(σs, δ), and the stable set of
this point is periodic by φs

n−
δ

+r(u). Since the geodesic flow preserves invariant sets,
the point σδ must be periodic with period tnδ + r(s) + sn−

δ
+ r(u).

To finish the proof of Theorem 8.1, observe that we can approach η as close as
desired by making δ → 0, and since recurrent points are dense, we conclude that
periodic points are also dense.
Proof of Theorem 1.2. — Theorem 1.2 follows from Theorem 8.1 and the fact that

the closure of the set of periodic orbits is hyperbolic by Theorem 4.7. �
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