
Annales Henri Lebesgue
4 (2021) 879-896

HENRI SKODA

A DOLBEAULT LEMMA FOR
TEMPERATE CURRENTS
UN LEMME DE DOLBEAULT POUR LES
COURANTS TEMPÉRÉS

Dedicated to the memory of Pierre Dolbeault

Abstract. — We consider a bounded open Stein subset Ω of a complex Stein manifold X
of dimension n. We prove that if f is a current on X of bidegree (p, q + 1), ∂-closed on Ω, we
can find a current u on X of bidegree (p, q) which is a solution of the equation ∂u = f in Ω.
In other words, we prove that the Dolbeault complex of temperate currents on Ω (i.e. currents
on Ω which extend to currents on X) is concentrated in degree 0. Moreover if f is a current on
X = Cn of order k, then we can find a solution u which is a current on Cn of order k + 2n + 1.

Résumé. — On considère un ouvert de Stein borné Ω d’une variété de Stein X de dimension
complexe n. Nous montrons que si f est un courant sur X de bidegré (p, q + 1), ∂-fermé sur
Ω, il existe un courant u sur X de bidegré (p, q), solution sur Ω de l’équation ∂u = f . En
d’autres termes, nous prouvons que le complexe de Dolbeault des courants tempérés sur Ω
(i.e. les courants sur Ω qui se prolongent en courants sur X) est concentré en degré 0. De plus
si f est un courant sur X = Cn d’ordre k, nous montrons qu’il existe une solution u qui est
un courant sur Cn d’ordre k + 2n + 1.
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1. Introduction

We will prove the following result in the same way as the famous “Dolbeault–
Grothendieck” lemma for ∂̄.

Theorem 1.1. — Let Ω be a bounded Stein open subset of Cn and let f be a
given current of bidegree (p, q + 1) on Cn (with compact support) which is ∂̄-closed
on Ω. Then there exists a current u of bidegree (p, q) (with compact support) in Cn

such that:
(1.1) ∂̄u = f,

inΩ.
Moreover if f is of order k (resp. if f ∈ H−s(p, q+1)(Cn) for some s > 0), we can find a

solution u is of order at most k+ 2n+ 1 (resp. u ∈ H−s−2n−1
(p, q) (Cn), more precisely if k

is the integer such that: s 6 k < s+1, for every r > k, we can find u ∈ H−r−2n
(p, q) (Cn)).

We say that a current T on Ω ⊂n is temperate if and only if it can be extended to
Cn. In other words, we have:

Corollary 1.2. — For a given relatively compact open Stein subset of Cn, the
Dolbeault ∂̄-cohomology of temperate currents on Ω vanishes.

As usual, we denote by Hs
(p, q)(Cn) the space of current on Cn of bidegree (p, q) the

coefficients of which are distributions in the Sobolev space Hs(Cn). A distribution
T ∈ D′(Rn) is of order k ∈ N if it is locally a finite linear combination of derivatives
of order at most k of Radon measures on Rn or equivalently if T can be extended as
a continuous linear form defined on all functions of class Ck with compact support in
Rn or equivalently if for every relatively compact open subset Ω ⊂ Rn, all functions
φ ∈ D(Ω) verify an inequality: |〈T, φ〉| 6 C(Ω, T ) supx∈Ω Σ|α|6 k |Dα

xφ(x)|, in which
the constant C(Ω, T ) only depends on Ω and T . Of course a current is of order k, if
its coefficients are distributions of order k.
The preceding results are still valid replacing Cn by a Stein manifold (Section 4,

Theorem 4.3) and for currents taking their values in a given holomorphic vector
bundle. But for the sake of simplicity, we begin with the case of Cn as in the
Dolbeault–Grothendieck lemma: the general case of a Stein manifold does only need
more difficult technical tools but no truly new ideas or methods. In the case of a
Stein manifold the loss of regularity is larger than 2n+ 1 because we have to iterate
several times the construction made in the case of Cn.
This result answers a question raised by Pierre Schapira in a personal discussion.

He hopes it can be useful to make significant progress in the Microlocal Analysis
theories highlighted for instance in the papers of M. Kashiwara and P. Schapira,
[KS96, Sch17] in which such a temperate cohomology naturally appears.
Even though the result is essentially a consequence of L. Hörmander’s L2 estimates

for ∂̄ (Corollary 2.2), it seems that it can not be explicitly found in the literature
on the subject (with complete proof). Let us observe the following features of the
result. No assumption of smoothness is required for Ω. The given current f and the
solution u have coefficients in spaces of distribution Hs(Cn) with s < 0. Hence they
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A Dolbeault Lemma for Temperate Currents 881

are never supposed to be smooth but with temperate singularities as for instance
derivatives of Dirac measures and the result is quite different from the most usual
regularity results for ∂̄ involving Ck regularity up to the boundary of Ω (k > 0) both
for Ω and for the given differential forms on Ω. If f ∈ Hs

(p, q+1)(Cn) for some s > 0,
then f ∈ L2

(p, q+1)(Ω) and the result is an immediate consequence of Hörmander’s
theorem which provides a solution u in L2

(p, q)(Ω). Then u has a trivial extension in
L2

(p, q)(Cn) (by 0 outside Ω).
The gap 2n + 1 of regularity for the solution u does not depend on Ω. In the

basic example Ω = B(0, R) \ H in which H is a complex analytic hypersurface of
the ball B(0, R) of center 0 and radius R, the result does not depend at all on the
complexity of the singularities of H (and on the degree of H when H is algebraic).
The gap 2n + 1 is an automatic consequence of the method of proof. To improve
the gap 2n+ 1 does not seem to immediately have a major interest for the purpose
in [Sch17].
We need four steps to prove Theorem 1.1. At first, as P. Dolbeault in [Dol56, Dol57],

by solving an appropriate Laplacian equation 1
2∆v = ∂̄?f on Cn (∆ is the usual

Laplacian on Cn defined on differential forms and currents and ∂̄? is the operator
adjoint of ∂̄ for the usual Hermitian structure on Cn) and replacing f by f − ∂̄v, we
reduce the problem to the case of a current f which has harmonic coefficients on
Ω. As f is temperate, the mean value properties of harmonic functions imply that
f grows at the boundary of Ω like a negative power of the distance d(z, ∂Ω) to the
boundary of Ω (for z ∈ Ω). Then Hörmander’s L2 estimates for ∂̄ give a solution u
of ∂̄u = f such that

∫
Ω |u|2[d(z, ∂Ω)]2ldλ(z) < +∞ (for some l > 0). Finally using

an extension theorem of L. Schwartz [Sch50] for distributions, u can be extended as
a current on Cn.
Similar methods, were already used by P. Lelong [Lel64] for the Lelong–Poincaré

∂∂̄-equation and by H. Skoda [Sko71] for the ∂̄-equation to obtain solutions explicitly
given on Cn by integral representations and with precise polynomial estimates. Y.T.
Siu has already studied holomorphic functions of polynomial growth on bounded
open domain of Cn using Hörmander’s L2 estimates for ∂̄ in [Siu70].
We establish the preliminary results we need in Section 2 and we prove Theorem 1.1

in Section 3. We extend the results to a Stein manifold in Section 4 Theorem 4.3
(using J-P. Demailly’s Theorem 4.1 extending Hörmander’s results to manifolds). A
first purely analytic proof of Theorem 4.3 (of independent interest) was given in
ArXiv [Sko20] on may 2020. According to constructive comments of the referee, we
have finally preferred to use a more sheaf theoretic method which follows the proof
of the Dolbeault isomorphism [Dol56, Dol57].
In the case of a subanalytic bounded open Stein subset Ω in a Stein manifold

X, Pierre Schapira in [Sch21] gives independently a proof of Theorem 1 (i.e. of
Corollary 1.2) and of Theorem 4.3. His proof is basically founded on cohomological
methods which are particularly well adapted to the subanalytic case. It also heavily
depends on Hörmander’s L2 estimates for ∂̄ that he uses in the case of a bounded
Stein open subset of Cn after embedding the given Stein manifold in some space
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882 H. SKODA

Cn. He also uses Lojasiewicz inequalities and another Hörmander’s inequality for
subanalytic subsets.

Acknowledgement

I thank Pierre Schapira very much for raising his insightful question which has
strongly motivated this research.

2. Preliminary definitions and results
Before proving Theorem 1.1, we need to remind several classical results. We have

sometimes given direct proof to establish the results in the appropriate form we
wish.
An open subset of Cn is called Stein if it is holomorphically convex: for all compact

K in Ω the holomorphic hull K̂Ω of K is compact (x ∈ K̂Ω if and only if x ∈ Ω and
for all holomorphic function f on Ω, |f(x)| 6 maxξ ∈K |f(ξ)|).
Let us recall the following fundamental Hörmander’s L2 existence theorem for

∂̄ [Hör90] or [Hör65]. We can also use J.P. Demailly’s book [Dem12, Chapter VIII,
Paragraph 6, Theorem 6.9, p. 379]. We denote by L2

(p, q)(Ω, loc) the vector space of
current of bidegree (p, q) in Ω the coefficients of which are in L2(Ω, loc) for the usual
Lebesgue measure dλ on Cn.
Theorem 2.1. — Let Ω be an open pseudoconvex subset of Cn and φ a plurisub-

harmonic function defined on Ω. For every g ∈ L2
(p, q+1)(Ω, loc) with ∂̄g = 0 such

that:
∫

Ω |g|2e−φdλ < +∞, there exists u ∈ L2
(p, q)(Ω, loc) such that:

(2.1) ∂̄u = g

in Ω and:

(2.2)
∫

Ω
|u|2e−φ

(
1 + |z|2

)−2
dλ 6

1
2

∫
Ω
|g|2e−φdλ.

If Ω is bounded, u verifies the L2 estimate:

(2.3)
∫

Ω
|u|2e−φdλ 6 C(Ω)

∫
Ω
|g|2e−φdλ

with C(Ω) := 1
2(1 + maxz ∈Ω |z|2)2.

The classical Oka–Norguet–Bremerman theorem ([Hör90, Paragraph 2.6 and The-
orem 4.2.8]) claims that the following assertions are equivalent:

(1) Ω is Stein,
(2) Ω is pseudoconvex: i.e. there exists a plurisubharmonic function φ on Ω which

is exhaustive (for all c ∈ R the subset {z ∈ Ω| φ(z) < c} is relatively compact
in Ω),

(3) the function − log d(z, ∂Ω) is plurisubharmonic in Ω.
Therefore for a given k > 0, we can choose φ(z) = −k log d(z, ∂Ω) in the inequal-
ity (2.3) and we will only need to use the following special case of Theorem 2.1 (see
also [Hör65, Theorem 2.2.1’]).
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A Dolbeault Lemma for Temperate Currents 883

Corollary 2.2. — Let Ω be a bounded Stein open subset of Cn and k > 0
be a given real number. Then for every g ∈ L2

(p, q+1)(Ω, loc) with ∂̄g = 0 such that:∫
Ω |g|2[d(z, ∂Ω)]kdλ < +∞, there exists u ∈ L2

(p, q)(Ω, loc) such that:

(2.4) ∂̄u = g

in Ω and:

(2.5)
∫

Ω
|u|2 [d(z, ∂Ω)]k dλ 6 C(Ω)

∫
Ω
|g|2 [d(z, ∂Ω)]k dλ

If we denote by L2, k
(p, q)(Ω) the space of u ∈ L2

(p, q)(Ω, loc) such that∫
Ω
|u|2 [d(z, ∂Ω)]2k dλ < +∞,

by:

(2.6) L2, k
0, (p, q)(Ω) :=

{
u ∈ L2, k

(p, q)(Ω)
∣∣∣ ∂̄u ∈ L2, k

(p, q+1)(Ω)
}

and by O2, k
p (Ω) := {u ∈ L2, k

(p, 0)(Ω)| ∂̄u = 0}, Corollary 2.2 means that the following
Dolbeault-complex is exact:

(2.7)
0→ O2, k

p (Ω)→ L2, k
0, (p, 0)(Ω) ∂̄−→L2, k

0, (p, 1)(Ω) ∂̄−→ . . .
∂̄−→ L2, k

0, (p, q)(Ω)
∂̄−→L2, k

0, (p, q+1)(Ω) ∂̄−→ . . .
∂̄−→ L2, k

0, (p, n)(Ω)→ 0.
We also need two results of real analysis.

Lemma 2.3. — Let w be a distribution on Rn of order k which is harmonic (for
the usual Laplacian on Rn) on the bounded open subset Ω of Rn. Then w is of
polynomial growth on Ω: |w(z)| 6 C(Ω, w) [ d(z,Rn \ Ω)]−k−n where the constant
C(Ω, w) only depends on Ω and w.
If w ∈ H−s(Rn) for s > 0 we have: |w(z)| 6 C(Ω, w) [ d(z,Rn \ Ω)]−k−n

2 where k
is the integer such that s 6 k < s+ 1.

Proof. — Let ρ be a non negative regularizing function in D(Rn) which only
depends on |ζ|, has its support in the Euclidean ball of radius 1 and verifies:∫
Rn ρ(ζ)dλ(ζ) = 1 where dλ is the Lebesgue measure on Rn.
Let ρε(ζ) := 1

εn
ρ( ζ

ε
) be the associated family of regularizing functions in D(Rn) so

that ρε has its support in the ball of radius ε and verifies too
∫
Rn ρε(ζ)dλ(ζ) = 1.

As w is harmonic in Ω, for every z ∈ Ω, w(z) coincide with its mean-value on
every Euclidean sphere of center z and radius r < d(z, ∂Ω). Therefore using Fubini’s
theorem we get for every ε < d(z, ∂Ω):

(2.8) w(z) =
∫
Rn
w(z + ζ)ρε(ζ)dλ(ζ) =

∫
Rn
w(ζ)ρε(z − ζ)dλ(ζ).

i.e. w = w ? ρε on Ωε := {z| d(z, ∂Ω) < ε} (in which ? represents a convolution
product).
Testing w as a distribution on the test function (in the variable ζ): ρε(z − ζ) with

ε < d(z, ∂Ω) 6 1, equation (2.8) becomes:
(2.9) w(z) = 〈w(ζ), ρε(z − ζ)〉ζ .
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As w is a distribution of order k, we have for every function φ ∈ D(Rn) an inequality:

(2.10) |〈w, φ〉| 6 C1(w) sup
ζ ∈Cn

Σ|α|6 k
∣∣∣Dα

ζ φ(ζ)
∣∣∣ ,

in which C1(w) > 0 is a constant only depending on w.
Taking φ(ζ) = ρε(z − ζ), we get:

(2.11) |w(z)| 6 C1(w) sup
|ζ|6 ε

Σ|α|6 k
∣∣∣Dα

ζ ρε(z − ζ)
∣∣∣ ,

and:
(2.12) |w(z)| 6 C2(w)ε−n−k ,
for some constant C2(w) > 0.
As it is true for every ε < d(z, ∂Ω), we take the limit as ε→ d(z, ∂Ω) and we get;

(2.13) |w(z)| 6 C2(w) [d(z, ∂Ω)]−l

with l = n+ k and then:

(2.14)
∫

Ω
|w|2 [d(z, ∂Ω)]2l dλ <∞.

If we now assume that w ∈ H−s(Rn) for a given s > 0, equation (2.9) becomes:

(2.15) |w(z)| =
∣∣∣〈w(ζ), ρε(z − ζ)〉ζ

∣∣∣ 6 ‖w‖H−s(Rn) ‖ρε(z − ζ)‖Hs(Rn) .

Let k be the integer defined by s 6 k < s + 1 so that (denoting as usual by φ̂ the
Fourier transform of φ):
(2.16)
‖φ‖2

Hs(Rn) =
∫
Rn

(
1 + |ξ|2

)s
|φ̂(ξ)|2dλ(ξ) 6

∫
Rn

(
1 + |ξ|2

)k
|φ̂(ξ)|2dλ(ξ) = ‖φ‖2

Hk(Rn)

As k is an integer, the norm ||φ||Hk(Rn) is equivalent to the sum of the L2 norms
of the derivatives of φ of order less or equal to k, we have:

(2.17) ‖φ‖2
Hk(Rn) 6 C2(k)

∫
Rn

∑
|α|6 k

|Dαφ|2dλ

We replace φ by φε(ζ) := 1
εn
φ( ζ

ε
) (with ε 6 1) so that we get:

(2.18) ‖φε‖2
Hk(Rn) 6 C2(k)ε−2k−n

∫
Rn

∑
|α|6 k

|Dαφ|2dλ


Using (2.15), (2.16), (2.17) and (2.18) with φ(ζ) = ρ(z − ζ) (for a fixed z ∈ Ω with
ε < d(z, ∂Ω) 6 1) we finally obtain:
(2.19) |w(z)| 6 C3(k, n) ‖w‖H−s(Rn) ε

−k−n
2

and when ε→ d(z, ∂Ω):
(2.20) |w(z)| 6 C3(k, n) ‖w‖H−s(Rn) [d(z, ∂Ω)]−k−n

2

(2.21)
∫

Ω
|w(z)|2 [d(z, ∂Ω)]2k+ndλ(z) < +∞.

�
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A Dolbeault Lemma for Temperate Currents 885

Remark 2.4. — Instead of using mean properties of harmonic functions, one can
also use the elementary solution of ∆ in Rn as in [KS96, Proposition 10.1., p. 53].
We also need the following theorem of L. Schwartz (in his book on distribution

theory [Sch50]). We can also directly use theory of Sobolev spaces. We say that a
measure µ defined on an open bounded subset Ω of Rn, is of polynomial growth at
most l in Ω, if

∫
Ω d(z, ∂Ω)ld|µ|(z) < +∞.

Theorem 2.5. — A measure of polynomial growth l defined on an open bounded
subset Ω of Rn can be extended as a distribution on Rn of order at most l.
Moreover if w ∈ L2(Ω, loc) verifies the estimate:

∫
Ω |w(z)|2 [d(z, ∂Ω)]2ldλ(z) < +∞,

with l ∈ N, then for every r > l, w can be extended as a distribution in H−r−n
2 (Rn)

(particularly in H−l−n
2−1(Rn)).

Remark 2.6. — If
∫
Ω |w(z)|2 [d(z, ∂Ω)]2ldλ(z) < +∞, let us observe that the

extension w̃ of w depends (a priori) on the choice of r > l. We will use the results
of Theorem 2.5 in the case of Cn = R2n so that w̃ can be constructed in H−l−n−1.
Remark 2.7. — If

∫
Ω |w(z)|2 [d(z, ∂Ω)]2ldλ(z) < +∞, as Ω is bounded, Schwarz

inequality implies that
∫

Ω d(z, ∂Ω)l |w(z)| dλ(z) < +∞. w defines on Ω a measure
of polynomial growth at most l. Hence the first part of Theorem 2.5 implies that w
can be extended to Rn as a distribution of order at most l.
Proof. — In L. Schwartz’s book there is no proof and no references so that we

give the following proof. We consider the subspace F ⊂ D(Cn) of functions the
derivatives of which vanish at the order 6 l − 1 in every point ζ ∈ ∂Ω. For a given
z ∈ Ω, we choose a point ζ ∈ ∂Ω such that |z − ζ| = d(z, ∂Ω) and we apply Taylor’s
formula at the point ζ ∈ ∂Ω, at the order l − 1 (with integral remainder, cf. [Hör83,
Paragraph 1.1, formula (1.1.7’)]) to a function φ ∈ F restricted to the real interval
{tz + (1− t)ζ| t ∈ R, 0 6 t 6 1} linking in Ω the point ζ ∈ ∂Ω to z ∈ Ω, so that we
obtain:

(2.22) φ(z) = l
∫ 1

0
(1− t)l−1

[
Σ|α|=l Dαφ (ζ + t(z − ζ)) (z − ζ)α

α!

]
dt,

and then:
(2.23) |φ(z)| 6 C4(l, n) [d(z, ∂Ω)]l max

ξ ∈ Ω̄

[
Σ|α|=l

∣∣∣Dα
ξ φ(ξ)

∣∣∣] .
For all functions φ ∈ F and all measures µ on Ω of polynomial growth l, i.e.∫

Ω d(z, ∂Ω)ld|µ|(z) < +∞, (using (2.23)) we have:

(2.24)
∣∣∣∣∫

Ω
φ dµ

∣∣∣∣ 6 C4(l, n)
[ ∫

Ω
d(z, ∂Ω)ld|µ|

]
max
ξ ∈ Ω̄

[
Σ|α|6 l

∣∣∣Dα
ξ φ(ξ)

∣∣∣] .
For a given measure µ of polynomial growth l, we consider the space E l(Cn) of

functions of class Cl on Cn. We apply Hahn Banach theorem to the linear form
φ →

∫
Ω φ dµ defined on the subspace F ⊂ D(Cn) ⊂ E l(Cn) and continuous for

the seminorm maxξ ∈ Ω̄ [Σ|α|6 l |Dα
ξ φ(ξ)|]. This linear form can be extended in a

continuous linear form T on E l(Cn), such that:

(2.25) |〈T, φ〉| 6 C4(l, n)
[∫

Ω
d(z, ∂Ω)ld|µ|

]
max
ξ ∈ Ω̄

[
Σ|α|6 l

∣∣∣Dα
ξ φ(ξ)

∣∣∣] .
TOME 4 (2021)
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for all φ ∈ E l(Cn), i.e. a distribution of order l on Cn (with compact support).
Let us now assume that w ∈ L2(Ω, loc) verifies the estimate:

(2.26) Il(w) :=
∫

Ω
|w(z)|2 [d(z, ∂Ω)]2l dλ(z) < +∞.

for some integer l > 0.
For every φ ∈ F , Cauchy–Schwarz inequality gives:

(2.27) |〈w, φ〉|2 =
∣∣∣∣∫

Ω
wφ dλ

∣∣∣∣2 6 Il(w)
∫

Ω
|φ(z)|2 [d(z, ∂Ω)]−2l dλ(z).

Using inequality (2.23), (2.27) becomes:

(2.28) |〈w, φ〉|2 6 C5(l, n,Ω) Il(w)
[
max
ξ ∈ Ω̄

Σ|α|=l
∣∣∣Dα

ξ φ(ξ)
∣∣∣]2

.

with C5(l, n,Ω) := [C4(l, n)]2
∫

Ω dλ.
For every r > l, we use classical Sobolev inequality:

(2.29) max
ξ ∈Rn

Σ|α|6 l
∣∣∣Dα

ξ φ(ξ)
∣∣∣ 6 C6(r) ‖φ‖

Hr+ n
2

and inequality (2.28), so that we obtain:

(2.30) |〈w, φ〉| 6 C7(l, n, r,Ω) [Il(w)]
1
2 ‖φ‖

Hr+ n
2 .

with C7(l, n, r,Ω) := C6(r) [C5(l, n,Ω)] 1
2 .

Using still Hahn–Banach Theorem for the linear form φ→ 〈w, φ〉 defined on the
subspace F of Hr+ n

2 (Rn) and continuous for the norm of Hr+ n
2 , we extend w as a

distribution T ∈ H−r−n
2 such that: ||T ||

H−r−n
2 6 C7(l, n, r,Ω) [Il(w)] 1

2 (of course we
can also do this extension by using orthogonal projection on the closed subspace F̄
in the Hilbert space Hr+ n

2 (Rn)). �

We can now prove Theorem 1.1.

3. Proof of Theorem 1.1

We follow P. Dolbeault’s proof of the Dolbeault–Grothendieck lemma. A. Grothen-
dieck’s proof was different, (in some sense) more elementary than P. Dolbeault’s
proof but not useful for our present purpose. Of course we can suppose (w.l.o.g.)
that f has compact support in Cn (using a cutoff function in D(Rn) equal to 1 in
a neighborhood of Ω̄). Let us remind that Cn being equipped with its usual flat
Hermitian metric, the Laplacian acting on differential forms and currents is defined
on Cn by:

(3.1) 1
2∆ = 1

2(dd? + d?d) = ∂̄∂̄? + ∂̄?∂̄ = ∂∂? + ∂?∂,

so that 1
2∆f is the usual Laplacian on Cn acting on each coefficient of the current f .

∂̄? (resp. ∂?) (resp. d?) is the adjoint of ∂̄ (resp. ∂) (resp. d := ∂ + ∂̄) for the same
constant metric on Cn (there is no weight function).
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At first we solve in Cn the Laplacian equation:

(3.2) 1
2∆v :=

(
∂̄∂̄? + ∂̄?∂̄

)
v = ∂̄?f.

(v and ∂̄?f are of bidegree (p, q).)
If we write: f = ∑′

|I|=p, |J |=q+1 fI, JdzI ∧dz̄J (Σ′ means that we only sum on strictly
increasing multi-indices I and J), we have (cf. [Hör90, Paragraph 4.1, p. 82 or 85]
or [Dem12, Chapter 6, Paragraph 6.1]) :

(3.3) ∂̄?f = (−1)p−1Σ′|I|=p, |K|=q

j=n∑
j=1

∂

∂zj
(fI, jK)

 dzI ∧ dz̄K .

If f is of bidegree (0, 1), we simply have : f = Σj=n
j=1fjdz̄j, ∂̄?f = −Σj=n

j=1
∂fj

∂zj
and (3.2)

is the Laplace equation in Cn :
j=n∑
j=1

∂2

∂zj∂z̄j
v =

j=n∑
j=1

∂fj
∂zj

.

v is obtained by convolution of each coefficient ∂fI,jK

∂zj
of ∂̄?f in (3.3) with the

elementary solution E of the usual Laplacian in Cn.
We set:

(3.4) g := f − ∂̄v

As ∂̄2 = 0, we have (by usual computation):

(3.5) 1
2∆(∂̄v) =

(
∂̄∂̄? + ∂̄?∂̄

)
∂̄v = ∂̄∂̄?∂̄v = ∂̄

(
∂̄∂̄? + ∂̄?∂̄

)
v = ∂̄

(1
2∆v

)
i.e. ∂̄ commutes with ∆ on Cn. Using (3.2), we have: 1

2∆(∂̄v) = ∂̄∂̄?f , and:

(3.6) 1
2∆g = 1

2∆f − 1
2∆(∂̄v) =

(
∂̄∂̄? + ∂̄?∂̄

)
f − ∂̄∂̄?f = ∂̄?∂̄ f.

Hence (as ∂̄f = 0 on Ω), g is harmonic on Ω:

(3.7) ∆g = 0.

f being of order k with compact support, ∂̄?f is of order k+1 with the same support
(the coefficients of ∂̄?f are linear combination of derivatives ∂

∂zj
of the coefficients

of f). Therefore the solution v of the Laplacian equation (3.2) is of order at most
k. Indeed it is obtained by convolution: E ?

∂fI, jK

∂zj
= ∂E

∂zj
? fI, jK of each coefficient

∂fI, jK

∂zj
of ∂̄?f in (3.3) with the elementary solution E := −Cn|z|−2n+2 of ∆, the

first derivatives ∂E
∂zj

of E are O(|z|−2n+1), then in L1(Cn, loc) and the convolution
∂E
∂zj

? fI,jK of a function in L1(R2n, loc) with a distribution of order k and compact
support is still of order at most k. Hence ∂̄v is of order at most k+ 1 and g = f − ∂̄v
is too of order at most k + 1.
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We write:
g =

∑′

|I|=p, |J |=q+1
gI, JdzI ∧ dz̄J

with strictly increasing multi-indices I and J . Let gI, J be a coefficient of g. As gI, J
is harmonic in Ω, we can apply Lemma 2.3 in R2n to gI, J which is a distribution of
order at most k + 1, we get an inequality:
(3.8) |gI, J(z)| 6 C1(Ω, gI, J) [d(z, ∂Ω)]−2n−k−1.

Hence :
(3.9) |g(z)| 6 C2(Ω, g) [d(z, ∂Ω)]−l

for some constant C2(Ω, g) > 0 and l := 2n+ k + 1 (and z ∈ Ω) and then:

(3.10)
∫

Ω
|g|2 [d(z, ∂Ω)]2ldλ <∞

where dλ is the Lebesgue measure on Cn.
L. Hörmander’s L2 estimates for ∂̄ (Corollary 2.2) provide a solution u in Ω of the

equation:
(3.11) ∂̄u = g

with the L2 estimate:

(3.12)
∫

Ω
|u|2 [d(z, ∂Ω)]2ldλ <∞

As Ω is bounded, Cauchy–Schwarz inequality gives the following L1 estimate:

(3.13)
∫

Ω
|u| [d(z, ∂Ω)]ldλ <∞

Therefore a coefficient uI, J of u defines a measure of polynomial growth l on Ω.
Using L. Schwartz’s Theorem 2.5, such a measure (of polynomial growth l) defined
on Ω can be extended as a distribution on Cn (of order at most l) so that u can
be extended as a current on Cn of order at most l. Then u + v is a current on Cn

verifying:
(3.14) ∂̄(u+ v) = f

on Ω. Moreover u+ v has order at most l = k + 2n+ 1.
We now consider the case of a given f ∈ H−s(p, q+1)(Cn) for some s > 0. Then

∂̄?f ∈ H−s−1
(p, q) (Cn). Classically we can find a solution v of the Laplace equation (3.2)

in H−s+1
(p, q) (Cn) so that g = f − ∂̄v is also in H−s(p, q+1)(Cn). We apply Lemma 2.3 to

every coefficient gI, J of g in Cn = R2n so that |g(z)| 6 C [d(z,Cn \Ω)]−k−n where k
is the integer such that s 6 k < s+ 1 and C = C(Ω, g) is a constant. Therefore we
obtain:

(3.15)
∫

Ω
|g|2 [d(z, ∂Ω)]2k+2n dλ < +∞.

Corollary 2.2 implies we can solve ∂̄u = g = f − ∂̄v with the estimate:

(3.16)
∫

Ω
|u|2 [d(z, ∂Ω)]2k+2n dλ < +∞.
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We now apply Theorem 2.5 in Cn = R2n to every coefficient of u with l = k + n
(l + n = k + 2n) so that for every r > k, u can be extended as a current in Cn in
H−r−2n

(p, q) (Cn). As v ∈ H−s+1
(p, q) (Cn), u+v is too in H−r−2n

(p, q) (Cn) and verifies ∂̄(u+v) = f
in Ω.

Remark 3.1. — We have a little more precise result: f = ∂̄(u + v) in Ω with
u ∈ L2, k+n

(p, q) (Ω) ∩ H−r−2n
(p, q) (Cn) (for every r > k particularly for r = k + 1) and

v ∈ H−s+1
(p, q) (Cn). Let us observe that v ∈ H−s+1

(p, q) (Cn) has a better regularity than
f ∈ H−s(p, q)(Cn).

4. Extension of Theorem 1.1 to Stein manifolds

We will now see that Theorem 1.1 remains true for a relatively compact open Stein
subset Ω of a given Stein manifold X. We use the same reasoning as in the classical
proof of the Dolbeault isomorphism to reduce the problem on the one hand to local
solutions in charts of X for ∂̄ and on the other hand to a global solution on X for ∂̄.
But we need much stronger technical results.
Let us recall that a complex manifoldX is Stein if, by definition, global holomorphic

functions O(X) separate the points of X, give local holomorphic coordinates on X
and if X is holomorphically convex (for all compact K in X the holomorphic hull
K̂ of K is compact with K̂ := {x ∈ X| ∀ f ∈ O(X), |f(x)| 6 maxξ ∈K |f(ξ)| }). Let
us also remind the two following other characterizations of a Stein manifold X of
complex dimension n. The first one, a complex holomorphic manifold X is Stein if
and only if it can be imbedded as a closed complex submanifold of C2n+1. The second
one, X is Stein if and only if there exists a strictly plurisubharmonic exhaustive
function ψ on X of class C2 (if X is a closed submanifold of C2n+1, we can take for
ψ the restriction to X of the function ‖x‖2 defined on C2n+1).
Hence X is a Kählerian manifold [Wei58] (taking, for instance, the Kähler metric

associated with the closed Kähler form i∂∂̄ψ).
It is proved in [Ele75] that if we consider a relatively compact Stein open subset

Ω of X and the geodesic distance associated with a given Kählerian metric on X,
then the function: − log d(z, ∂Ω) + C(Ω, ψ)ψ, is strictly plurisubharmonic in Ω for
a constant C(Ω, ψ) large enough.
Therefore using [Dem12, Chapter VIII, Paragraph 6, Theorem 6.1 p. 376 and 6.5,

p. 378] or [Dem82] the following result (similar to Corollary 2.2) still holds on a
Stein manifold (we have to consider the intersection of a given Ω with a chart U of
X):

Theorem 4.1. — Let Ω and U be two relatively compact open Stein subsets of
the Stein manifold X such that Ω ∩ U 6= ∅. We consider on X a given Kähler form
ω, the geodesic distance on X associated with ω and for z ∈ Ω the corresponding
distance d(z, ∂Ω) to the boundary of Ω. Let us consider a holomorphic Hermitian
vector bundle F of rank r on X and currents with values in F . Let k > 0 be a
given real number. Then for every g ∈ L2

(p, q+1)(Ω ∩ U, F, loc) with ∂̄g = 0 such that:
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∫
Ω∩U |g|2[d(z, ∂Ω)]kdλ < +∞, there exists u ∈ L2

(p, q)(Ω ∩ U, F, loc) such that:

(4.1) ∂̄u = g

in Ω ∩ U and:
(4.2)

∫
Ω∩U
|u|2[d(z, ∂Ω)]kdλ 6 C(Ω, F, k)

∫
Ω∩U
|g|2[d(z, ∂Ω)]kdλ,

where dλ = ωn

n! is the positive measure on X defined by the (n, n) form ωn

n! (C(Ω, F, k)
is a constant > 0 only depending on Ω, F and k).

Of course the result particularly holds if Ω = U . Let us give more details about
how to deduce Theorem 4.1 from in [Dem12, Theorems 6.1 and 6.5]. At first let us
remind Demailly’s Theorem 6.5 (for the sake of simplicity we state it with a little
more restrictive assumption):

Theorem 4.2. — Let (X,ω) be a Stein manifold X of complex dimension n
with a given Kähler metric ω. Let us consider a holomorphic Hermitian vector
bundle F of rank r on X and a C∞ function φ on X such that ic(F ) + i∂∂̄φ > µω
where c(F ) is the curvature form of F and µ > 0 a given constant. Then for every
g ∈ L2

(n, q+1)(X,F, loc) with ∂̄g = 0 such that:
∫
X |g|2e−φdV < +∞, there exists

u ∈ L2
(n, q)(X,F, loc) such that:

(4.3) ∂̄u = g

in X and:

(4.4)
∫
X
|u|2e−φdV 6 1

µ

∫
X
|g|2e−φdV.

where dV = ωn

n! is the positive measure on X defined by the (n, n) form ωn

n! .

In [Dem12, Theorem 6.5], F is a line bundle but the result is still valid for a vector
bundle : you only need to consider the positivity of the curvature form ic(F ) of F
in the strong sense of Nakano as explained in [Dem12, Theorem 6.1]. For (p, q)-form
(with p 6= n and values in F ) we consider (n,q)-forms with values in the new vector
bundle F ⊗∧pT ?(X)⊗∧nT (X).
If now Ω is a relatively compact open Stein subset of X, we can choose a constant

C1(Ω, F ) such that ic(F ) +C1(Ω, F ) i∂∂̄ψ > ω on Ω̄ (in the strong sense of Nakano).
For every C∞ plurisubharmonic function φ on Ω we can apply Theorem 4.2 restricted
to the Stein manifold Ω∩U and the function C1(Ω, F )ψ+φ so that (as ψ is bounded
on Ω) we get a solution u of the equation (4.1) which satisfies the estimate:

(4.5)
∫

Ω∩U
|u|2e−φdV 6 C2(Ω, F )

∫
Ω∩U
|g|2e−φdV.

We can now take φ = −k log d(z, ∂Ω) + k C(Ω, ψ)ψ, (for a given k > 0) so that (as
ψ is bounded on Ω) the estimate (4.5) implies the estimate (4.2) of Theorem 4.1 (for
(p,q) forms with values in F ). The function φ := −k log d(z, ∂Ω)+k C(Ω, ψ)ψ is only
continuous on Ω but as φ is strictly plurisubharmonic on the Stein manifold Ω it can
be closely approximated by a family (φε) (0 < ε < ε0) of C∞ strictly plurisubharmonic
functions on Ω as explained in [Dem12, Chapter 1, Paragraph 5.E, p. 42 (Richberg
Theorem (5.21))] such that φ 6 φε 6 φ+ ε. At first we obtain the estimate (4.5) for
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the functions φε and a solution uε of (4.1) (in Ω ∩ U). Taking the limit as ε goes to
0 and using the weak compactness of the closed ball of L2, k

(p, q)(Ω∩U, F ), we get (4.1)
and (4.5) for φ and a weak limit u of a subsequence of the family (uε).
We will only use Lemma 2.3 in a local chart of X (i.e. in Cn) : we do’nt need

to extend this lemma to the Riemannian Laplacian operator on X with variable
coefficients. Replacing Cn = R2n by a complex Riemannian manifold X, extension
Theorem 2.5 is still valid as it is a local result (alongside the boundary of Ω) using
a partition of unity of class C∞ on X.
To be able to use the same reasoning as in the classical proof of the Dolbeault

isomorphism, we have to consider the following sheaves on Ω̄ of currents defined on
open subsets of Ω with values in F . For the sake of simplicity we often omit F in
the notations (F is fixed). k > 0 be given, we define the sheaf D̃′(p, q), (resp. D̃′k(p, q)),
(resp. Õp), (resp. Õkp) on Ω̄. If U is an open subset of X such that U ∩ Ω̄ 6= ∅,
Γ(Ω̄ ∩ U, D̃′(p, q)), (resp. Γ(Ω̄ ∩ U, D̃′k(p, q)), (resp. Γ(Ω̄ ∩ U, Õp)), (resp. Γ(Ω̄ ∩ U, Õkp))
is the set of currents T ∈ D′(p, q)(Ω ∩ U, F ) (resp. the set of holomorphic p-form on
Ω∩U with values in F ) which can be extended locally along the boundary of Ω as a
current on X (resp. as a current in H−k(X,F )) in the sense that for all z ∈ ∂Ω ∩ U
there exists an open neighborhood V of z in X (V ⊆ U), and a current T̃ ∈ D′(V, F )
(resp. T̃ ∈ H−k(V, F ) so that T = T̃ on Ω ∩ V .
Let us observe that if φ ∈ D(X) and if T ∈ Γ(Ω̄ ∩ U, D̃′(p, q)), (resp. T ∈ Γ(Ω̄ ∩

U, D̃′k(p, q)) then φT ∈ Γ(Ω̄∩U, D̃′(p, q)) (resp. φT ∈ Γ(Ω̄∩U, D̃′k(p, q)) so that the sheaves
D̃′(p, q) (resp. D̃′k(p, q)), 0 6 q 6 n, are fine sheaves on Ω̄.
We will also need to use the associated sheaves D̃′k0, (p, q) on Ω̄ defined by:

Γ
(
Ω̄ ∩ U, D̃′k0, (p, q)

)
:=
{
T ∈ Γ

(
Ω̄ ∩ U, D̃′k(p, q)

)∣∣∣ ∂̄T ∈ Γ
(
Ω̄ ∩ U, D̃′k(p, q+1)

)}
.

As for all φ ∈ D(X), we have: ∂̄(φT ) = ∂̄φ∧T+φ ∂̄T , the sheaves D̃′k0, (p, q), 0 6 q 6 n,
are also fine sheaves on Ω̄.
Let us observe that a current T ∈ Γ(Ω̄, D̃′(p, q)) (resp. T ∈ Γ(Ω̄, D̃′k(p, q)) is the same

as a current on Ω which can be extended to X (resp. in H−k(X,F )). We consider
indeed a finite covering of Ω̄ by open subsets Vj of X, 1 6 j 6 N , and currents
T̃ j ∈ D′(p, q)(Vj) such that T̃ j = T in Ω ∩ Vj and a suitable partition of unity on
Ω̄ of functions φj ∈ D(Vj), 1 6 j 6 N such that ∑N

j=1 φj(z) = 1 for all z in a
neighborhood of Ω̄ so that T̃ := ∑N

j=1 φjT̃ j ∈ D′(X) (resp. T̃ ∈ H−k(X,F )) satisfies
T̃ = T in Ω.
To make short, giving z ∈ Ω, we set: dΩ(z) := d(z, ∂Ω). Using the geodesic distance

to the boundary of Ω, we also define the following corresponding L2-sheaves L̃2, k
(p, q)

and (resp. Õ2, k
p ) on Ω̄. If U is an open subset ofX such that Ω̄∩U 6= ∅, Γ(Ω̄∩U, L̃2, k

(p, q))
(resp. Γ(Ω̄ ∩ U, Õ2, k

p )) is the set of current f ∈ L2
(p, q)(Ω ∩ U, F, loc) (resp. the set of

holomorphic forms f ∈ L2
(p, 0)(Ω∩U, F, loc)) such that ∂̄f ∈ L2

(p, q+1)(Ω∩U, F, loc) and
such that for all z ∈ U ∩ ∂Ω there exists an open neighborhood V of z in X (V ⊆ U),
such that

∫
Ω∩V [|f |2 + |∂̄f |2] [dΩ(ζ)]2kdλ(ζ) < +∞ (resp.

∫
Ω∩V |f |2 [dΩ(ζ)]2kdλ(ζ)
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< +∞). Let us observe that we consider on Ω ∩ V the restriction to Ω ∩ V of
the distance dΩ(ζ) (to the boundary of Ω) and not the distance dΩ∩V (ζ) (to the
boundary of Ω ∩ V ).
If φ ∈ D(X) and if f ∈ Γ(Ω̄ ∩ U, L̃2, k

(p, q)), then φf ∈ Γ(Ω̄ ∩ U, L̃2, k
(p, q)) (as |∂̄(φf)|2 =

|φ ∂̄f + ∂̄φ∧ f |2 6 2|φ|2 |∂̄f |2 + 2|∂̄φ|2|f |2 and |φ|2, |∂̄φ|2 are bounded on X) so that
the sheaves L̃2, k

(p, q), 0 6 q 6 n, are fine sheaves on Ω̄.
Let us also observe that if f ∈ Γ(Ω̄, L̃2, k

(p, q)), then f ∈ L
2, k
(p, q)(Ω, F ).

Moreover Lemma 2.3 implies that if f ∈ Γ(Ω̄ ∩ U, Õkp) then f ∈ Γ(Ω̄ ∩ U, Õ2, k+n
p )

and for all U ′ ⊂⊂ U f has a polynomial growth like C(Ω∩U ′, f) d−k−nΩ (z) alongside
∂Ω ∩ U ′ and

∫
Ω∩U ′ |f |2 [dΩ(z)]2k+2ndλ(z) < +∞

We can now prove the following result as a consequence of the corresponding
theorem proved in the case of X = Cn. Moreover we consider currents in D′(p, q)(X,F )
with values in a given holomorphic vector bundle F (to simplify we only consider
current in H−k(X,F ), k ∈ N).

Theorem 4.3. — Let Ω be a relatively compact open Stein subset of a Stein
manifold X and F be a given Hermitian holomorphic vector bundle on X. Then
for every current f of bidegree (p, q + 1) on X with values in F (and with compact
support in X) which is ∂̄-closed on Ω, there exists a current w of bidegree (p, q) on
X with values in F (with compact support) such that:

(4.6) ∂̄u = f,

in Ω.
Moreover if f ∈ H−k(p, q+1)(X,F, loc)) for some integer k > 0, we can find a solution

u ∈ H−k−r(p, q) (X,F, loc)) with r = (q + 2)(2n+ 1).

Proof. — Let us assume that f ∈ D′(p, q+1)(X,F ). We will prove that we can find
a solution u ∈ D′(p, q)(X,F ). By considering local charts of X, we can locally reduce
the problem to the case of Cn. Using local charts on X and Borel–Lebesgue lemma,
we can find a finite open covering of the compact set Ω̄ by relatively compact open
subsets Ωj of X, 1 6 j 6 N such that every Ω̄j is contained in a geodesic chart for
the given Riemannian metric and every Ωj is biholomorphic to a bounded open ball
Uj := Bj(zj, rj) of Cn, by a local biholomorphic map φj defined on a neighborhood
of Ω̄j ⊂ X and taking its values into Cn (zj ∈ φj(Ω̄), rj > 0). Moreover we can
also suppose (by shrinking enough each Ωj) that the exponential map sending the
tangent space Tzj

X (of X at zj) into X is a diffeomorphism of an open ball in Tzj
X

onto a geodesic open ball of center zj containing Ω̄j so that the geodesic distance
and the Euclidian distance coming from Cn (by means of φj) are equivalent on a
neighborhood of Ω̄j and so that the spaces L2, k

(p, q)(Ω ∩ Ωj, F ) (k ∈ N) associated
with the geodesic distance to ∂(Ω ∩ Ωj) or with the Euclidian distance to ∂(Ω ∩ Ωj)
coming from Cn (by means of φj) are the same. Finally we can also suppose that
the given holomorphic vector bundle F is trivial on a neighborhood of each Ω̄j.
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Corollary 1.2 (applied to holomorphic charts of X) means that the following
Dolbeault ∂̄-complex of sheaves on Ω̄ is exact:

(4.7) 0→ Õp → D̃′(p, 0)
∂̄−→ D̃′(p, 1)

∂̄−→ . . .
∂̄−→ D̃′(p, q)

∂̄−→ D̃′(p, q+1)
∂̄−→ . . .

∂̄−→ D̃′(p, n) → 0

The sheaves D̃′(p, q), 0 6 q 6 n, are fine sheaves on Ω̄. Therefore by considering the
long exact sequence of cohomology associated with the sequence (4.7) we have the
isomorphism:

(4.8) Hq+1
(
Ω̄, Õp

)
'
{
T ∈ D̃′(p, q+1)(Ω̄)

∣∣∣ ∂̄T = 0
}
/
{
∂̄S
∣∣∣S ∈ D̃′(p, q)(Ω̄)

}
We use Lemma 2.3 in every chart Ωj (for holomorphic functions) so that Γ(Ω̄ ∩

U, Õp) is also the space of holomorphic p-forms on Ω ∩ U with polynomial growth
for the geodesic distance to the boundary of Ω (U is an open subset of X such that
Ω̄ ∩ U 6= ∅).
Corollary 2.2 or Theorem 4.1 (applied to holomorphic charts of X and with the

geodesic metric) means that the following Dolbeault ∂̄-complex of sheaves on Ω̄ is
exact:

(4.9) 0→ Õ2, k
p → L̃2, k

(p, 0)
∂̄−→ L̃2, k

(p, 1)
∂̄−→ . . .

∂̄−→ L̃2, k
(p, q)

∂̄−→ L̃2, k
(p, q+1)

∂̄−→ . . .
∂̄−→ L̃2, k

(p, n) → 0

The sheaves L̃2, k
(p, q), 0 6 q 6 n, are fine sheaves on Ω̄. Therefore by considering the

long exact sequence of cohomology associated with the sequence (4.9) we have the
isomorphism:

(4.10) Hq+1
(
Ω̄, Õ2, k

p

)
'
{
T ∈ L2, k

(p, q+1)(Ω)| ∂̄T = 0
}
/
{
∂̄S|S ∈ L2, k

(p, q)(Ω)
}

But using now Theorem 4.1, the L2 ∂̄-cohomology group in the right member of (4.10)
vanishes so that we get: Hq+1(Ω̄, Õ2, k

p ) = 0. As holomorphic p-forms with values in
Õp are the same as holomorphic p-form with values in Õkp for some k or the same as
holomorphic p-form with values in Õ2, k

p for some k, we have: Hq+1(Ω̄, Õp) = 0 and
using (4.8) that achieves the proof.
To obtain a more precise result we need to work with explicit Čech-cohomology

groups Hq+1
U (Ω̄,G) associated with a sheaf G and with a finite Stein open covering

U of Ω̄ defined by U = {Ω̄ ∩ Ωj|1 6 j 6 N} in which Ωj are Stein open subsets of
X and to explicitly describe the cochains and the diagram chase as in the chapter
“Cohomology with bounds” of L. Hörmander’s book [Hör90, Paragraphs 7.3 and 7.4].
We denote by δ : Cq(U ,G)→ Cq+1(U ,G) the usual coboundary operator acting on
cochains in Cq(U ,G), q > 0 which is defined by

(δc)I :=
q+1∑
j=0

(−1)jci0, ..., îj , ..., iq+1

if |I| = q + 1 with usual notations (if |I| = q) I = (i0, . . . , ij, . . . , iq), ΩI :=
Ω̄∩Ωi0 ∩ . . . ∩Ωij ∩ . . . ∩Ωiq and cI ∈ Γ(ΩI ,G). The coboundary operator δ satisfies:
δ2 = 0 and ∂̄δ = δ∂̄.
Let us assume that f ∈ H−k(p, q+1)(X,F, loc). We will prove that we can find a

solution u ∈ H−k−r(p, q) (X,F, loc).
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For every bounded Stein open subset φj(Ω ∩ Ωj) ⊂ φj(Ωj) =: Uj ⊂n we use the
construction made in the case of Cn (i.e. Remark 3.1, F is trivial on a neighborhood of
Ω̄j) so that we can construct a solution uj ∈ H−k−2n−1

(p, q) (Ωj, F ) of f = ∂̄uj in Ω ∩ Ωj.
The family of currents f|Ω∩Ωj

defines a 0-cochain c0 ∈ C0(U , D̃′(p, q+1)) such that
δc0 = 0. The family of uj defines a 0-cochain c′0 ∈ C0(U , D̃′(p,q)) such that ∂̄c′0 = c0.
We have ∂̄(uj − ul) = 0 in Ω ∩ Ωj ∩ Ωl so that the family of ∂̄-closed forms uj − ul
defines a 1-cochain c1 := δc′0, c1 ∈ C1(U , D̃′(p, q)) such that δc1 = 0 and ∂̄c1 = 0 and
then an element in the first Čech-cohomology group H1(U , D̃′(p, q)). Moreover uj, c′0
and c1 can be locally extended in the Sobolev space H−k−2n−1

(p, q) along the boundary of
Ω. We iterate q+ 1 times this construction solving the equation ∂̄c′l = cl and setting
cl+1 := δc′l so that δcl+1 = 0 and ∂̄cl+1 = 0 (∂̄cl+1 = ∂̄(δc′l) = δ(∂̄c′l) = δcl = 0),
0 6 l 6 q, to obtain a (q + 1)-cochain cq+1 ∈ Cq+1(U , D̃′(p, 0)) such that δcq+1 = 0,
∂̄cq+1 = 0 and then an element in the (q + 1)-Čech-cohomology group Hq+1(U , Õp).
The cochain cq+1 can be locally extended in the Sobolev space H−k−s(p, 0) along the
boundary of Ω with s := (q + 1)(2n + 1). The cochain cq+1 ∈ Cq+1(U , Õp) takes
its values in holomorphic p-forms and therefore it also takes its values in the sheaf
Õ2, k+s+n

(p,0) (using Lemma 2.3 in Cn = R2n).
The open subsets of the covering U and every finite intersection of these open

subsets are biholomorphic to Stein bounded open subsets of Cn. Hence using Corol-
lary 2.2, Theorem 4.1 and the L2 ∂̄-complex of sheaves (4.9) (replacing k by k+s+n)
we have the isomorphism Hq+1(U , Õ2, k+s+n

p ) ' Hq+1(Ω̄, Õ2, k+s+n
p ) = 0 (invoking

Leray’s theorem for acyclic covering or using direct diagram chase in (4.9)) so that
we can solve the equation δc′′q = cq+1 with c′′q taking its values in holomorphic
p-forms and in the same sheaf Õ2, k+s+n

p (as cq+1). Using Remark 2.6, c′′q takes its
values in Õ−k−rp (as s+ n+ n+ 1 = (q + 1)(2n+ 1) + 2n+ 1 = r).
We have cq+1 = δc′q = δc′′q so that we get δ(c′q − c′′q) = 0 and ∂̄(c′q − c′′q) = cq (as

∂̄c′q := cq and c′′q takes its values in holomorphic p-forms).
We will now consider the sheaves G = D̃′r0, (p,m), 0 6 m 6 n. They are fine sheaves

so that we have H l(U ,G) = 0, 1 6 l 6 n, i.e. for every l-cochain c such that
δc = 0 we can find a (l-1)-cochain c′ such that δc′ = c (c.f [Hör90, Proposition 7.3.3,
p. 174 and 175]). Hence we can solve the following δ equation: δ(c′′q−1) = c′q − c′′q
so that ∂̄δ(c′′q−1) = ∂̄(c′q − c′′q) = cq = δc′q−1, i.e. δ[c′q−1 − ∂̄(c′′q−1)] = 0. We
iterate solving successively the δ equations δ(c′′l−1) = c′l− ∂̄(c′′l) so that ∂̄δ(c′′l−1) =
∂̄(c′l − ∂̄(c′′l)) = cl := δc′l−1, i.e. δ[c′l−1 − ∂̄(c′′l−1)] = 0, 1 6 l 6 q − 1. For l = 1
we obtain δ[c′0 − ∂̄(c′′0)] = 0, i.e. the 0-cocycle c′0 − ∂̄(c′′0) defines a global current
u ∈ Γ(Ω̄, D̃′r(p,q)) (i.e u ∈ H−r(p, q)(X)) such that ∂̄(c′0− ∂̄(c′′0)) = ∂̄c′0 := c0, i.e. ∂̄u = f
in Ω.
To sum up constructing u needs to solve the ∂̄ equation q + 1 times with a loss of

2n + 1 of regularity at each step and to use Remark 2.6 and Lemma 2.3 with still
a loss of 2n+ 1 = n+ n+ 1. Then we get a solution u of ∂̄u = f in Ω such that u
can be extended to X in H−k−r(X) (r = (q + 2)(2n + 1)). If f is of bidegree (p, 1)
(q = 0) we get u ∈ H−k−2(2n+1)(X). �
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As explained in P. Schapira’s article [Sch21, Remark 2.3.4], Theorem 4.3 implies
the following result ([Sch21, Theorem 2.3.3]). We refer to [Sch21] for the definitions
of the (derived) sheave Otp

Xsa of temperate holomorphic functions (defined on the
subanalytic site Xsa) and of other objects associated with.

Theorem 4.4 (P. Schapira). — Let X be a complex Stein manifold and let Ω
be a subanalytic relatively compact Stein open subset of X contained in a Stein
compact subset K of X. Let F be a coherent OX-module defined on a neighborhood
of K. Then RΓ(Ω;F tp) is concentrated in degree 0.
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