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Abstract. — We establish small-time asymptotic expansions for heat kernels of hypoel-
liptic Hörmander operators in a neighborhood of the diagonal, generalizing former results
obtained in particular by Métivier and by Ben Arous. The coefficients of our expansions are
identified in terms of the nilpotentization of the underlying sub-Riemannian structure. Our
approach is purely analytic and relies in particular on local and global subelliptic estimates
as well as on the local nature of small-time asymptotics of heat kernels. The fact that our
expansions are valid not only along the diagonal but in an asymptotic neighborhood of the
diagonal is the main novelty, useful in view of deriving Weyl laws for subelliptic Laplacians.
Incidentally, we establish a number of other results on hypoelliptic heat kernels that are inter-
esting in themselves, such as Kac’s principle of not feeling the boundary, asymptotic results
for singular perturbations of hypoelliptic operators, global smoothing properties for selfadjoint
heat semigroups.

Résumé. — Nous établissons le développement asymptotique en temps petit de noyaux de
la chaleur d’opérateurs de Hörmander hypoelliptiques au voisinage de la diagonale, généralisant
des résultats précédents obtenus en particulier par Métivier et par Ben Arous. Les coefficients
dans nos développements sont identifiés en termes de la nilpotentisation de la structure sous-
Riemannienne sous-jacente. Notre approche est purement analytique et repose en particulier sur
des estimées sous-elliptiques locales et globales ainsi que sur la nature locale des asymptotiques
en temps petit des noyaux de la chaleur. Le fait que nos développements soient valides non
seulement le long de la diagonale mais aussi dans un voisinage asymptotique de la diagonale est
la nouveauté principale ; cela est utile pour établir des lois de Weyl pour des Laplaciens sous-
elliptiques. Incidemment, nous établissons un certain nombre de résultats sur les noyaux de la
chaleur hypoelliptiques qui sont intéressants en eux-mêmes, comme le principe de Kac de ne
pas sentir l’effet du bord, des résultats asymptotiques de perturbation singulière d’opérateurs
hypoelliptiques, des propriétés de régularisation globale pour des semi-groupes de la chaleur
dans le cas autoadjoint.
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1. Introduction and main result

1.1. Framework

Let n and m be nontrivial integers. Let M be a smooth connected manifold of
dimension n. LetX0, X1, . . . , Xm be smooth vector fields onM and let V be a smooth
function (potential) on M that is bounded below. Setting X = (X0, X1, . . . , Xm),
we define the Hörmander operator

(1.1) 4 =
m∑
i=1

X2
i +X0 − V

where Xi is seen as a derivation operator and V is the multiplication by the potential.
In view of involving the case of magnetic fields, the drift vector field X0 can even be
assumed to take complex values.(1)

Let µ be an arbitrary smooth (Borel) measure on M . We assume that the operator
4 on L2(M,µ), of domain D(4) ⊂ L2(M,µ) encoding some possible boundary
conditions whenever M has a boundary, generates a strongly continuous semigroup
(et4)t> 0 on L2(M,µ) (see Lemma 3.1 in Section 3.1.2 for some sufficient conditions).
We denote by e4, µ the corresponding heat kernel defined on (0,+∞) ×M ×M ,
associated with the operator 4 and with the measure µ (see Appendix A).
We set D = Span(X1, . . . , Xm). Under the strong Hörmander condition

(1.2) Lieq(D) = Lieq(X1, . . . , Xm) = TqM ∀ q ∈M
the operator 4 is subelliptic(2) (see [Hör67]) and the heat kernel e4, µ is smooth on
(0,+∞)×M ×M .
The objective of this paper is to establish a small-time asymptotic expansion of

the heat kernel e4, µ at any order near the diagonal. Our study is in the line of well
known results [BA89, Mét76] establishing such expansions along the diagonal. The
first main novelty here is that our expansion is valid, not only along the diagonal, but
in an asymptotic neighborhood of the diagonal. This fact is actually instrumental
in view of deriving local and microlocal Weyl laws for general subelliptic Laplacians,
which will be done in the forthcoming paper [CdVHT].
The second main novelty is that we identify the functions in the small-time as-

ymptotic expansion of the heat kernel in terms of the so-called nilpotentization of
the sub-Riemannian structure (M,D, g) where g is a metric on D defined thanks to
the vector fields X1, . . . , Xm.
Compared with the approach of [BA89] which is probabilistic (Malliavin calculus),

our proof (done in Part 2) is purely analytic and relies in particular on local and
global subelliptic estimates, on local and global smoothing properties of heat kernels,
on the finite propagation speed property for sR waves and on the Kannai transform,
and on the local nature of hypoelliptic heat kernels (Kac’s principle). Our paper is
entirely selfcontained: even for the several tools (such as uniform local subelliptic
(1)This requires some obvious slight changes for instance when considering a scalar product.
(2)Actually, the weaker assumption Lieq(X0, X1, . . . , Xm) = TqM for every q ∈ M (called weak
Hörmander condition) is sufficient to ensure subellipticity. The stronger assumption (1.2) is however
required to derive our main result.
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Small-time asymptotics of hypoelliptic heat kernels 901

estimates) that are straightforward extensions of known results, we provide at least
a sketch of proof.

Sub-Riemannian structure. Complete reminders on sub-Riemannian (sR) ge-
ometry are given in Section 2. Attached with the m-tuple of vector fields (X1, . . . ,
Xm), there is a canonical sR structure (M,D, g), where D = Span(X1, . . . , Xm) and
g is a positive definite quadratic form on D. Given any q ∈M , the sR flag at q is the
sequence of nested vector subspaces {0} = D0

q ⊂ Dq = D1
q ⊂ D2

q ⊂ . . . ⊂ Dr(q)−1
q (

Dr(q)
q = TqM defined in terms of successive Lie brackets, and r(q) is the degree of

nonholonomy at q. Setting ni(q) = dimDi
q, the integer Q(q) = ∑r

i=1 i(ni(q)−ni−1(q))
coincides with the Hausdorff dimension when q is regular, i.e., when the integers
ni(·) are constant in an open neighborhood of q. The point q is said singular when
it is not regular.
The nilpotentization of (M,D, g) at q is the sR structure (M̂ q, D̂q, ĝq) defined

as the metric tangent space of M (endowed with the sR distance) in the sense of
Gromov–Hausdorff. In a local chart of privileged coordinates around q, M̂ q is a
homogeneous space identified to Rn (with a sR isometry), endowed with dilations
δε(x) = (εw1(q)x1, . . . , ε

wn(q)xn), for ε ∈ R and x ∈ Rn, where wi(q) = i(ni(q) −
ni−1(q)) (sR weights). We have D̂q = Span(X̂q

1 , . . . , X̂
q
m) where X̂q

i is the limit of
εδ∗εXi in C∞ topology as ε→ 0. We also define the (constant) nilpotentized measure
µ̂q on Rn as the limit of 1

|ε|Q(q) δ
∗
εµ as ε→ 0. Finally, we define the sR Laplacian

4̂q =
m∑
i=1

(X̂q
i )2

and we denote by êq = e4̂q , µ̂q the heat kernel generated by 4̂q : D(4̂q) →
L2(M̂ q, µ̂q).

C∞ topology. We recall that the set C∞(Rn) of smooth functions on Rn is a
Montel space, i.e., a Fréchet space enjoying the Heine–Borel property (meaning that
closed bounded subsets are compact), for the topology defined by the seminorms
pi, j(f) = max{|∂αf(x)| | |x| 6 i, |α| 6 j}, (i, j) ∈ N2. We speak of the C∞(Rn)
topology.
Let W be an arbitrary open subset of the manifold M . Covering W with charts,

the set C∞(W ) of smooth functions on W is endowed with the C∞ topology (in
charts), making it a Montel space.
We say that a sequence (fk)k∈N in C∞(W ) converges to 0 in C∞ topology if fk

converges uniformly to 0 on any compact subset of W , as well as all its derivatives.
A sequence (Xk)k∈N of smooth vector fields on W converges to 0 in C∞ topology if
all its coefficients (in charts) converge to 0 in C∞ topology.
Throughout, we denote by C∞c (W ) the set of smooth functions of compact support

on W .

Notations. Throughout the paper, we use in the various estimates the notation
Cst(·), standing for a generic positive constant depending on the parameters indicated
in the parenthesis.

TOME 4 (2021)
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The integral of an integrable function f on M with respect to the smooth measure
µ is denoted by

∫
M f(q) dµ(q).

1.2. Main result

Theorem A. — Let q ∈ M be arbitrary (regular or not). Let ψq : U → V be a
chart of privileged coordinates at q such that ψq(q) = 0, where U is an open connected
neighborhood of q in M and V is an open neighborhood of 0 in Rn. We assume that
X0 is a smooth section of D over M . We also assume that supq′ ∈U r(q′) < +∞ (this
is always satisfied if U is compact).
Then, given any N ∈ N∗, in the chart(3) we have the asymptotic expansion in

C∞((0,+∞)× V × V )

(1.3) |ε|Q(q) e4, µ
(
ε2τ, δε(x), δε(x′)

)
= êq(τ, x, x′) +

N∑
i=1

εif qi (τ, x, x′) + o
(
|ε|N

)
as ε → 0, ε 6= 0, where the functions f qi are smooth and satisfy the homogeneity
property

f qi (τ, x, x′) = ε−i|ε|Q(q)f qi
(
ε2τ, δε(x), δε(x′)

)
for all (τ, x, x′) ∈ (0,+∞)× Rn × Rn and for every ε 6= 0.
Taking τ = 1, ε =

√
t and setting aqi (x, x′) = f qi (1, x, x′), it follows that, given any

N ∈ N, in the chart we have the asymptotic expansion in C∞(V × V )

(1.4) tQ(q)/2 e4, µ
(
t, δ√t(x), δ√t(x′)

)
= êq(1, x, x′) +

N∑
i=1

ti/2aqi (x, x′) + o
(
tN/2

)
as t → 0, t > 0, where the functions aqi are smooth and satisfy aq2j−1(0, 0) = 0 for
every j ∈ N∗.
Moreover, if q is regular, then the above convergence and asymptotic expansion

are also locally uniform with respect to q, and the functions êq, f qi and aqi depend
smoothly (in C∞ topology) on q in any open neighborhood of q consisting of regular
points. If the manifoldM is Whitney stratifiable with strata defined according to the
sR flag (i.e., the growth vector (n1(q), . . . , nr(q)(q)) is constant along each stratum)
then the latter property is satisfied along strata.

The fact that the asymptotic expansion (1.3) is in C∞((0,+∞)× V × V ) means
that the asymptotics are uniform with respect to (τ, x, x′) on any compact subset
of (0,+∞) × V × V as well as for all derivatives. In particular, for all k ∈ N,
α = (α1, . . . , αn) ∈ Nn and β = (β1, . . . , βn) ∈ Nn, we have

lim
ε→ 0
ε 6= 0

|ε|Q(q)+2kε
∑n

i=1(αi+βi)wi(q)
(
∂k1∂

α
2 ∂

β
3 e4, µ

) (
ε2τ, δε(x), δε(x′)

)
=
(
∂k1∂

α
2 ∂

β
3 ê

q
)

(τ, x, x′)

(3)This means that the left-hand side of (1.3) is |ε|Q(q) e4, µ(ε2τ, ψ−1
q (δε(x)), ψ−1

q (δε(x′))).
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uniformly with respect to (τ, x, x′) on any compact subset of (0,+∞)×V ×V . Here,
given a function e depending on three variables (τ, y, y′), the notation ∂1 (resp., ∂2,
∂3) denotes the partial derivative with respect to τ (resp., to y, to y′).
As a particular case, take x = x′ = 0 in the expansion (1.4) given in Theorem A and

set cj(q) = aq2j(0, 0). Since aq2j−1(0, 0) = 0 and ψ−1
q (0) = q, we obtain the following

corollary.

Corollary 1.1. — Given any N ∈ N, for every q ∈M ,

tQ(q)/2 e4, µ(t, q, q) = êq(1, 0, 0) + c1(q)t+ · · ·+ cN(q)tN + o
(
tN
)

as t → 0, t > 0. Moreover if q is regular then the functions cj are smooth locally
around q.

We thus recover the main result of [BA89] (see also [Mét76]), which is a small-
time expansion of the heat kernel along the diagonal. Here, additionally to those
well known results, we provide a geometric interpretation of the coefficients of this
expansion, in function of the nilpotentization at q: the main coefficient is êq(1, 0, 0)
> 0, but the other coefficients cj(q) are also given by convolutions of the heat kernel
êq = e4̂q , µ̂q , as made precise in the proof of the theorem in Part 2 (see in particular
Proposition 6.7 in Section 6.2, and see Section 6.3).
Moreover, the expansion stated in Theorem A is established in an asymptotic

neighborhood of the diagonal, which is instrumental to derive the microlocal Weyl
law for general equiregular sR structures, or to establish local Weyl laws for singular
sR structures (see Section 1.3).

Remark 1.2. — In Theorem A, we have assumed that X0 is a smooth section of
D over M . If X0(q) ∈ Dq for every q ∈M but cannot be written as a combination of
the vector fields Xi, i = 1, . . . , m, with smooth functions ai, then the asymptotics of
the heat kernel in small time along the diagonal may degenerate and be exponentially
decreasing (see [BAL91a, BAL91b]).
We have the following generalization if X0 is not a smooth section of D. We assume

that X0 is a smooth section of D2 over M , meaning that

(1.5) X0(q) =
m∑
i=1

ai(q)Xi(q) +
m∑

i, j=1
bij(q)[Xi, Xj](q) ∀ q ∈M

where the ai and bij are smooth functions on M . In local privileged coordinates
around q, it is then possible to write X0 = X

(−2)
0 +X

(−1)
0 +X

(0)
0 + · · · , where X(k)

0
is homogeneous of degree k (see Section 2.5.3). Therefore, defining on Rn the vector
field X̂q

0 = X
(−2)
0 (in the local coordinates), which is homogeneous of order −2 (and

not of order −1), we have ε2δ∗εX0 = X̂q
0 + εX

(−1)
0 + ε2X

(0)
0 + · · ·+ εNX

(N−2)
0 + o(|ε|N)

at any order N , in C∞ topology. Then Theorem A is still valid provided that 4̂q be
replaced with 4̂q + X̂q

0 . In other words, under the assumption (1.5), the asymptotics
of the heat kernel of 4 is given by the heat kernel of the operator 4̂q + X̂q

0 , which
is a first-order perturbation of 4̂q, homogeneous of order −2. This is in accordance
with results of [BAL91b].

TOME 4 (2021)
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In contrast, if X0 is not a smooth section of D2 then the asymptotics in small
time may be completely different, and the heat kernel along the diagonal may even
decrease exponentially as ε→ 0 (see [BAL91b]).

Remark 1.3. — We have stated Theorem A in terms of the heat kernels e4,µ and
êq = e4̂q , µ̂q . But, as explained in Appendix A, the smooth measure e4,µ(t, q, q′) dµ(q′)
on M does not depend on µ, but only on the operator 4. The same remark holds
for the smooth measure êq(t, x, x′) dµ̂q(x′) on M̂ q ∼ Rn. It would therefore be more
natural to express Theorem A in terms of Schwartz kernels. We keep however the
statement in this form, because the concept of heat kernel is familiar and is probably
the most standard in the literature.
Anyway, it is useful to note that using Schwartz kernels would avoid nilpotentiza-

tions of measures. Moreover, this explains why small-time expansions of heat kernels
along the diagonal have no interesting meaning in singular sR cases: what has to
be considered, there, is the small-time asymptotics of e4, µ(t, q, q) dµ(q), which is
related to the trace of et4f (see Appendix A) and does not depend on µ nor on the
nilpotentization of µ at the point q.

1.3. Using Theorem A to obtain Weyl laws

In the forthcoming paper [CdVHT], we will establish local and microlocal Weyl
laws for sR Laplacians in regular and in singular cases. Let us give a flavor of these
results, thus explaining how Theorem A can be used to reach this objective.
Considering the general framework of Section 1.1, we assume here moreover thatM

is compact without boundary and that 4 = 4sR is selfadjoint (it is a sR Laplacian:
see Sections 2.2 and 3.1.1).
Since Lie(D) = TM , the operator 4 is subelliptic, has a compact resolvent and

thus has a discrete spectrum 0 = λ1 6 λ2 6 · · · 6 λk · · · → +∞. Let (φk)k∈N∗ be
an orthonormal eigenbasis of L2(M,µ) corresponding to these ordered eigenvalues.
The spectral counting function is defined by N(λ) = #{k ∈ N∗ | λk 6 λ} for every
λ ∈ R.

Equiregular cases. We prove in [CdVHT] that, if (M,D, g) is equiregular, i.e.,
if every point of M is regular, then∫

M
f(q) e4, µ(t, q, q) dµ(q) =

∫
M f(q) êq(1, 0, 0) dµ(q)

tQ/2
+ O

( 1
tQ/2−1

)
as t → 0, t > 0, for every continuous function f on M , where Q is the Hausdorff
dimension of M (local Weyl law). Actually, we establish a small-time expansion at
any order, by using the complete statement of Theorem A (asymptotic expansion at
any order). In particular, the spectral counting function has the asymptotics

N(λ) ∼
λ→+∞

∫
M êq(1, 0, 0) dµ(q)

Γ(Q/2 + 1) λQ/2.

ANNALES HENRI LEBESGUE
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The above limits are an easy consequence of Theorem A along the diagonal (and
thus, already follow from [BA89, Mét76]). Indeed, taking x = x′ = 0 and ε =

√
t in

Theorem A, we obtain

e4, µ(t, q, q) dµ(q) ∼
t→0
t>0

êq(1, 0, 0)
tQ(q)/2 dµ(q) = êq(t, 0, 0) dµ(q) ∀ q ∈M.

The result follows by dominated convergence.
In turn, this result puts in evidence an intrinsic sR measure that we call the

Weyl measure, of which there exists a local and a microlocal version. The local Weyl
measure w4 is the probability measure on M defined by∫

M
f dw4 = lim

λ→+∞

1
N(λ)

∑
λk 6λ

∫
M
f |φk|2 dµ ∀ f ∈ C0(M)

whenever the limit exists for all continuous functions f , i.e., w4 is the weak limit of
the sequence of probability measures 1

N(λ)
∑
λk 6λ |φk|

2 µ (Cesàro mean) as λ→ +∞.
The above argument shows that, in the equiregular case, the local Weyl measure
exists, does not depend on µ, is a smooth measure on M and its density with respect
to µ is

dw4(q) = êq(1, 0, 0)∫
M êq′(1, 0, 0) dµ(q′) dµ(q).

Accordingly, the microlocal Weyl law W4 is the probability measure defined on the
co-sphere bundle S?M by∫

S?M
a dW4 = lim

λ→+∞

1
N(λ)

∑
λk 6λ

〈Op(a)φk, φk〉L2(M,µ)

for every symbol a of order 0, whenever the limit exists for all symbols a of order
0 (here, Op denotes any quantization operator). We prove in [CdVHT] that, in the
equiregular case, the microlocal Weyl law exists and we provide its explicit expression,
showing in particular that W4 is supported on S(Dr−1)⊥ where r is the degree of
nonholonomy. This generalizes to equiregular cases a result obtained in [CdVHT18]
in the three-dimensional contact case.
Establishing this result instrumentally relies on the fact that, taking x′ = 0 in

Theorem A, we obtain that, for every q ∈M , in the chart where ψq(q) = 0,

|ε|Q(q) e4, µ
(
ε2, δε(x), 0

)
dµ̂q(x) ∼

ε→0
ε6=0

êq(1, x, 0) dµ̂q(x)

uniformly with respect to x on any compact subset of ψq(U).

Singular cases. Famous singular sR structures are given by the Grushin case in
dimension two or by the Martinet case in dimension three. They are chiefly studied
in [CdVHT]. One of the main tools is the fact that, taking x = x′ in Theorem A, we
obtain that, for every q ∈M , in the chart where ψq(q) = 0,

lim
ε→ 0
ε 6= 0

|ε|Q(q) e4, µ
(
ε2, δε(x), δε(x)

)
= êq(1, x, x)

uniformly with respect to x on any compact subset of ψq(U). For instance, in the
Grushin (resp., Martinet) case the asymptotics of the spectral counting function is
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Cst λ ln λ (resp., Cst λ2 ln λ) as λ → +∞; this fact is known for the Grushin case
(see [MS78]) but is new for the Martinet case. We even obtain two-terms asymptotic
expansions of the local Weyl law, with intrinsic coefficients, by using the complete
statement of Theorem A (asymptotic expansion). In [CdVHT] we prove that, in some
sense, the occurrence of a (power of a) logarithm in the spectral counting function
is the highest possible complexity. More precisely, we establish that, given any sR
structure whose singular set is Whitney stratifiable according to the sR flag with
polynomial singularities,

∫
M
f(q) e4, µ(t, q, q) dµ(q) ∼ Cst

∣∣∣lnk t∣∣∣
tγ

as t→ 0, t > 0, for every continuous function f on M , with k ∈ {0, 1, . . . , n} and
γ ∈ Q such that γ > Qeq

2 , where Qeq is the Hausdorff dimension of the equiregular
region of M . Moreover if k = n then γ = Qeq

2 . As a consequence the asymptotics of
N(λ) is Cst λγ lnk λ as λ→ +∞: this gives the maximal complexity, for instance no
term ln ln λ appears in the asymptotics.

1.4. Structure of the paper

The paper is structured as follows.
We provide in Section 2 some reminders in sub-Riemannian (sR) geometry. In

particular, we recall the instrumental concept of nilpotentization, much relying on
sR dilations that are used in our main result. Also, for the sake of completeness, in
Section 3.1.2 we recall sufficient assumptions ensuring existence of the hypoelliptic
heat kernel.
The paper is then split into two parts. The reason is the following.
While our main result, Theorem A, states a small-time asymptotic expansion of

the heat kernel near the diagonal at any order, obtaining only the limit, i.e., only
the first term, is much less difficult than obtaining the complete expansion.
Actually, the mathematical techniques and results that are required to obtain the

limit are purely of a local nature, and thus, do not require lengthy developments.
Since the result is already interesting (in particular, for obtaining Weyl laws), in
Part 1 we establish Theorem B, which is Theorem A at the order zero. Part 2 is then
devoted to establishing the complete statement of Theorem A, which is surprisingly
much more difficult and requires results of a global nature, as explained in detail at
the beginning of Part 2.
The two parts, as well as the sections therein, are redacted independently enough

one from each other, in order to allow several possible levels of reading. For instance,
the reader only interested in the limit result may read only Part 1 (and Appendix B.1
on local subelliptic estimates). Besides, a reader, even though not interested in the
complete asymptotic expansion, may however find in Part 2 (and in Appendices B.2
and C on global subelliptic estimates) a number of tools of interest to deal with
global issues.
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Structure of Part 1. This part is concerned with local issues, sufficient to prove
Theorem B.
Section 3 in Part 1 is devoted to establishing some general facts on hypoelliptic

heat kernels:
• In Section 3.1, we gather some remarks on Hörmander operators (intrinsic
formula of integration by parts on a domain with boundary, symmetry prop-
erties, with Dirichlet or Neumann boundary conditions), useful in order to
state a general result for existence of semigroups (Lemma 3.1).
• In Section 3.2, we establish two general results for parameter-dependent
hypoelliptic heat kernels:
– In Section 3.2.1, we prove that the small time asymptotics of hypoellip-
tic heat kernels is purely local: this reflects the famous Kac’s principle
of not feeling the boundary. Our version (hypoelliptic Kac’s principle,
Theorem 3.2) is moreover uniform with respect to parameters.

– In Section 3.2.2, we give a general result for singular perturbations of
hypoelliptic operators (Theorem 3.5): assuming that the Hörmander
operator depends continuously on some parameter τ , we prove that the
corresponding heat kernel depends as well continuously on τ .

Section 4 is dedicated to proving Theorem B, which corresponds to proving the
limit in Theorem A. As said before, this proof only requires to use local tools. As
sketched at the beginning of Part 1, the argument starts by applying the Trotter–
Kato theorem to the operator 4ε = ε2δ∗ε4(δε)∗, which converges to 4̂q in C∞

topology, before using uniform local subellipticity (Appendix B.1) to infer strong
convergence properties.

Structure of Part 2. This part is devoted to establishing the complete statement
of Theorem A. In contrast to the proof of Theorem B, the proof of Theorem A
requires global smoothing properties.
Since the proof is quite lengthy, in Section 5 we give the idea of our approach to

the proof and we list a number of properties that are required. We point out the
main difficulties, in order to motivate the developments done in Section 6 and in
Appendix.
Theorem A is proved in full detail in Section 6. The proof starts by applying

iteratively the Duhamel formula but, as explained in Section 5, getting the com-
plete asymptotic expansion out of it raises serious difficulties and requires global
considerations. To facilitate the reading we have organized this section as follows:

• The operator 4ε, γ, adequate modification of the operator 4ε with a “dam-
ping” parameter γ > 0 so as to be (uniformly) at most polynomial at infinity,
is defined and analyzed in Section 6.1. In particular, the key Lemmas 6.2
and 6.4 state strong global convergence properties of 4ε, γ to 4̂q that are
required in our proof (and which do not hold for 4ε that converges to 4̂q

only in C∞ topology).
• In Section 6.2, and more precisely, in Proposition 6.7, we prove that et4ε, γ

has a small-time asymptotic expansion with respect to ε at any order, in
the sense of (uniformly) smoothing operators. The proof of this proposition
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is delicate and uses in an instrumental way, as explained and motivated in
Section 5, the global smoothing properties established for et4̂q in Appendix C,
and those established for et4ε, γ in Appendix B.2 thanks to (uniform) global
subelliptic estimates.
• Taking Schwartz kernels in Section 6.3, we obtain the asymptotic expansion
of the heat kernel.
• The end of the proof, in Section 6.4, consists of applying the localization
theorem (hypoelliptic Kac’s principle).

As noted in Section 5.3, in the particular case where M = Rn, all vector fields Xi

are polynomial and 4 is selfadjoint, it is not necessary to resort to the modified
operator 4ε, γ, and the global results established in Appendix C are sufficient to
achieve the proof of Theorem A.

Structure of Part 3 (Appendix). We have gathered in the appendix the fol-
lowing material.
In Appendix A, we recall some known facts on Schwartz and heat kernels. In

particular, we point out the meaningful fact that Schwartz kernels do not depend
on the measure while heat kernels do.
In Appendix B, we establish subelliptic estimates and smoothing properties for

hypoelliptic heat semigroups:

• Local estimates in Appendix B.1, uniform with respect to some parameters:
although these are standard (adding dependence with respect to parameters
is straightforward), we give sketches of proofs, in order to prepare the reader
to global estimates.
• Global estimates in Appendix B.2, uniform with respect to some parameters,
established for parameter-dependent Hörmander operators whose growth at
infinity is at most polynomial, satisfying a uniform polynomial Hörmander
condition.

In Appendix C, we derive a number of more precise and stronger global smoothing
properties in the case where the operator4 is a (selfadjoint) sR Laplacian, in Sobolev
spaces or iterated domains with polynomial weight. Our arguments are based on the
Kannai transform combined with the finite speed propagation property for sR waves
and on upper exponential estimates for the sR heat kernel.

2. Reminders: sub-Riemannian (sR) structure

Attached with the m-tuple of vector fields (X1, . . . , Xm), there is a canonical
sub-Riemannian (sR) structure. This section consists of reminders in sR geometry
(see the textbooks [ABB20, Bel96, Gro96, Jea14, LD10, Mon02, Rif14]), which are
useful in our analysis.
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2.1. Sub-Riemannian metric

The sR metric g associated with (X1, . . . , Xm) is defined as follows: given any
q ∈ M and any v ∈ Dq = Span(X1(q), . . . , Xm(q)), we define the positive definite
quadratic form gq on Dq by

gq(v) = inf
{

m∑
i=1

u2
i

∣∣∣∣∣ v =
m∑
i=1

uiXi(q)
}
.

The triple (M,D, g) is called a sub-Riemannian structure (see [Bel96, Rif14]). When
D has constant rankm onM withm 6 n, D is a subbundle of TM endowed with the
Riemannian metric g, and the frame (X1, . . . , Xm) is g-orthonormal. But the rank
of D may vary (i.e., D is a subsheaf of TM) and the above definition encompasses
the so-called almost-Riemannian case, for which m > n and rank(D) < n at some
singular points.
More formally, a sR structure on M can be defined by an Euclidean vector bundle

E over M and a smooth vector bundle morphism σ : E → TM , with Dq = σ(Eq)
and gq(V ) = inf{‖u‖2

Eq | u ∈ Eq, σ(u) = V } for every q ∈M . When E = M ×Rm

and σ(x, u) = ∑m
i=1 uiXi(x), we recover the definition of a sR structure attached

with the m vector fields X1, . . . , Xm.
A horizontal path is, by definition, an absolutely continuous path q(·) : [0, 1]→M

for which there exist m functions ui ∈ L1(0, 1) such that q̇(t) = ∑m
i=1 ui(t)Xi(q(t))

for almost every t ∈ [0, 1]. The metric g induces a length on the set of horizontal
paths, and thus a distance dsR on M that is called the sR distance.
The cometric g∗ associated with (X1, . . . , Xm) is the nonnegative quadratic form

on T ∗M defined as follows: given any q ∈M , g∗q is the nonnegative quadratic form
defined on T ∗qM by g∗q (ξ) = ∑m

i=1〈ξ,Xi(q)〉2. Note that
1
2gq(v) = sup

ξ ∈T ∗qM

(
〈ξ, v〉 − 1

2g
∗
q (v)

)
(Legendre transform).
Given any smooth function f onM , the horizontal gradient ∇gf of f is the smooth

section of D defined by g(∇gf,X) = df.X for every smooth section X of D. We
have ∇gf = ∑m

i=1(Xif)Xi.

2.2. Sub-Riemannian Laplacian

We denote by divµ the divergence operator associated with the smooth measure
µ on M , defined by LXµ = divµ(X)µ for every smooth vector field X on M . Here,
LX is the Lie derivative along X. The sR Laplacian 4sR is defined as the differential
operator

(2.1) 4sRf = divµ (∇gf) =
m∑
i=1

(
X2
i f + divµ(Xi)Xif

)
∀ f ∈ C∞(M).

Its principal symbol is the cometric g∗. The sR Laplacian is a particular instance of
a Hörmander operator: we have 4sR = 4 with X0 = ∑m

i=1 divµ(Xi)Xi and V = 0.
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Let Ω be an open subset of M . By integration by parts, we have

〈4sRu, v〉L2(Ω, µ) = −
∫

Ω
g (∇gu,∇gv) dµ+

∫
∂ Ω
v d

(
ι∇guµ

)
∀ u, v ∈ C∞(M)

where ι∇gu is the interior product of µ and ∇gu. We infer the sR Green formula

〈4sRu, v〉L2(Ω, µ) = 〈u,4sRv〉L2(Ω, µ) +
∫
∂ Ω
v d

(
ι∇guµ

)
−
∫
∂ Ω
u d

(
ι∇gvµ

)
for all u, v ∈ C∞(M). Hence, 4sR is symmetric and dissipative on C∞(Ω) in the two
following cases:

• Dirichlet case: f = 0 along ∂Ω;
• Neumann case: ι∇gfµ = 0 along ∂Ω.

In these two cases, 4sR has selfadjoint extensions; moreover, if the manifold Ω
endowed with the induced sR distance is complete then 4sR is essentially selfadjoint
(see [Str86]) and thus has a unique selfadjoint extension. We speak then of the
Dirichlet (resp., Neumann) sR Laplacian, which is defined on the maximal domain
that is the completion in L2(Ω, µ) of the subset of f ∈ C∞(Ω) satisfying f = 0 (resp.,
ι∇gfµ = 0) along ∂Ω.
Note that, if Ω = M is compact or if Ω = M = Rn or if one considers Dirichlet

boundary conditions then the adjoint of Xi in L2(Ω, µ) is X∗i = −Xi− divµ(Xi) and
then 4sR = −∑m

i=1X
∗
iXi.

2.3. Sub-Riemannian flag

We define the sequence of subsheaves Dk of TM by D0 = {0}, D1 = D =
Span(X1, . . . , Xm) and Dk+1 = Dk+[D,Dk] for k > 1. Under the strong Hörmander
condition (1.2), given any point q ∈M , we have the flag

{0} = D0
q ⊂ Dq = D1

q ⊂ D2
q ⊂ . . . ⊂ Dr(q)−1

q ( Dr(q)
q = TqM

where r(q) is called the degree of nonholonomy at q. We set ni(q) = dimDi
q. The r(q)-

tuple of integers (n1(q), . . . , nr(q)(q)) is called the growth vector at q, and we have
nr(q)(q) = n = dimM . By convention, we set n0(q) = 0. We define the nondecreasing
sequence of weights wi(q) as follows: given any i ∈ {1, . . . , n}, there exists a unique
j ∈ {1, . . . , n} such that nj−1(q) + 1 6 i 6 nj(q), and we set wi(q) = j. By
definition, we have w1(q) = · · · = wn1(q) = 1, and wnj−1+1(q) = · · · = wnj(q) = j
when nj(q) > nj−1(q). We also have wnr−1+1(q) = · · · = wnr(q) = r(q). Note that
nwnj (q) = nj(q) for j = 1, . . . , r and that wnj(q) = j if (and only if) nj(q) > nj−1(q).
Given any q ∈M , we set

Q(q) =
r∑
i=1

i (ni(q)− ni−1(q)) =
n∑
i=1

wi(q).

If q is regular then Q(q) is the Hausdorff dimension of a small ball in M containing
q endowed with the induced corresponding sR distance (see [Gro96]).
A point q ∈ M is said to be regular if the growth vector is constant in a neigh-

borhood of q; otherwise it is said to be singular. The sR structure is said to be
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equiregular if all points of M are regular; in this case, the weights and the Hausdorff
dimension are constant as well on M .
We recall that, at a point q that is regular, with degree of nonholonomy r(q), 4

is locally hypoelliptic and even subelliptic with a gain of regularity 2/r(q), meaning
that if 4f = g with g of Sobolev class Hs locally at q then f is (at least) of Sobolev
class Hs+2/r(q) locally at q (see [Hör67]).

2.4. Sub-Riemannian isometries

Given two sR structures (M1, D1, g1) and (M2, D2, g2), of respective cometrics g∗1
and g∗2, a (local) sR isometry φ : M1 → M2 is a (local) smooth diffeomorphism
mapping g∗1 to g∗2.
Note that, if M is a Lie group equipped with a left-invariant sR structure, then

the left action is a sR isometry on M .

2.5. Nilpotentization of the sub-Riemannian structure

2.5.1. First definition

Let q ∈ M be arbitrary. The nilpotentization of the sR structure (M,D, g) at q
is defined as the metric tangent space of M (endowed with its sR distance) in the
sense of Gromov-Hausdorff (see [Bel96, Gro96]). It is identified, with a sR isometry,
to the sR structure (M̂ q, D̂q, ĝq) defined hereafter, where M̂ q is a smooth connected
manifold of dimension n (as a topological space, M̂ q is the usual tangent space to
M at q), D̂q = Span(X̂q

1 , . . . , X̂
q
m) with smooth vector fields X̂q

1 , . . . , X̂
q
m on M

(defined hereafter) called nilpotentizations at q of the vector fields X1, . . . , Xm at q,
and the sR metric ĝq is defined, accordingly, by

ĝqx(v) = inf
{

m∑
i=1

u2
i

∣∣∣∣∣ v =
m∑
i=1

uiX̂
q
i (x)

}
∀ x ∈ M̂ q ∀ v ∈ D̂q

x.

The metric ĝq induces a distance d̂qsR on M̂ q.
To define (M̂ q, D̂q, ĝq), it suffices to define one of the elements of the equivalence

class under the action of sR isometries. A standard description consists of using
charts in M of so-called privileged coordinates, and then to identify M̂ q ' Rn with
a sR isometry, as follows.

2.5.2. Privileged coordinates

We first recall the notion of nonholonomic order (see [Bel96, Jea14, Mon02] for de-
tails). Given a germ f of a smooth function at q, given k ∈ N and integers j1, . . . , jk
in {1, . . . , m}, the Lie derivative LXj1 · · · LXjkf(q) is called a nonholonomic deriva-
tive of order k. By definition, the nonholonomic order of f at q, denoted by ordq(f),
is the smallest integer k for which at least one nonholonomic derivative of f of order
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k at q is not equal to zero. Given a germ Y of a smooth vector field at q, the non-
holonomic order of Y at q is the largest integer k such that ordq(LY f) > k+ordq(f),
for every germ f at q.
A family (Z1, . . . , Zn) of n vector fields is said to be adapted to the flag at q if it

is a frame of TqM at q and if Zi(q) ∈ Dwi(q)
q , for every i ∈ {1, . . . , n}.

A system of privileged coordinates at q is a system of local coordinates (x1, . . . , xn)
at q such that ordq(xj) = wj(q), for every i ∈ {1, . . . , n}. Note that we must have
dxi(Dwi(q)

q ) 6= 0 and dxi(Dwi(q)−1
q ) = 0, meaning that ∂xi ∈ Dwi(q)

q \Dwi(q)−1
q at q (i.e.,

privileged coordinates are always adapted to the flag).
An example of privileged coordinates at q is given by

(2.2) (x1, . . . , xn) 7→ exp
(

n∑
i=1

xiZ
q
i

)
(q)

where (Zq
i )16 i6n is a frame of vector fields that is adapted to the flag at q.

Privileged coordinates can be obtained from any system of adapted coordinates
by a triangular change of variables (see [Jea14]).

2.5.3. Dilations and nilpotentization of smooth sections of D

We consider a chart of privileged coordinates at q, that is a smooth mapping
ψq : U 7→ Rn, where U is a neighborhood of q in M , with ψq(q) = 0, inducing
local coordinates x = ψq(q) in which the vector fields (ψq)∗Xi (i = 1, . . . , m) have
a nilpotent approximation X̂q

i with the following precise meaning. In these local
coordinates, for every ε ∈ R, the dilation δε is defined in Rn, according to the flag
at q, by

δε(x) =
(
εw1(q)x1, . . . , ε

wn(q)xn
)

∀ x = (x1, . . . , xn) ∈ Rn.

Note that, denoting by m the Lebesgue measure on Rn (given by dm = dx1 · · · dxn),
we have δ∗εm = |ε|Q(q)m for every ε 6= 0.
Given any vector field X on M that is a smooth section (4) of D (i.e., X(q) =∑m
i=1 ai(q)Xi(q) at any point q, with smooth functions ai), the nilpotentization X̂q

at q of X is the (nilpotent and complete) vector field on Rn defined in the chart by
X̂q = lim

ε→ 0
ε 6= 0

εδ∗εX.

Actually this convergence is valid in C∞ topology (uniform convergence of all deriva-
tives on compact subsets of Rn). Note that X̂q is homogeneous of order −1 with
respect to dilations, i.e., λδ∗λX̂q = X̂q for every λ 6= 0, and that the nonholonomic
order of X − X̂q at q is nonnegative. Actually, setting Xε = εδ∗εX and writing in
C∞ topology the Taylor expansion X = X(−1) +X(0) +X(1) + · · · around 0, where
X(k) is polynomial and homogeneous of degree k (with respect to dilations), we get
that Xε has a Taylor expansion at any order N with respect to ε, in C∞ topology:
(2.3) Xε = εδ∗εX = X̂q + εX(0) + ε2X(1) + · · ·+ εNX(N−1) + o

(
|ε|N

)
(4)Note that we consider a smooth section of the subsheaf D, otherwise there are some difficulties:
take M = R2, D spanned by X1 = ∂x and X2 = x6∂y, and the vector field X = x2∂y.
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with X̂q = X(−1) (see also [Bar13, Lemma 1]), i.e., setting X0 = X̂q for ε = 0, Xε

depends smoothly on ε in C∞ topology. We also have

(2.4) Xε = X̂q + εZε

for every ε ∈ R with |ε| small enough so that we are in the chart, where Zε is a
smooth vector field depending smoothly on ε in C∞ topology.

2.5.4. Definition of the nilpotentization of the sR structure

In the above chart, we define M̂ q ' Rn, endowed with the sR structure (denoted
by (M̂ q, D̂q, ĝq)) induced by the vector fields X̂q

i , i = 1, . . . , m. This definition
does not depend on the choice of privileged coordinates at q because two sets of
such coordinates produce two sR-isometric sR structures. This is due to the fact
that, since transition maps of charts of privileged coordinates are triangular with
respect to the flag, the nilpotentization of any transition map is a sR isometry
(see [Bel96, Proposition 5.20]). Note that the nilpotent sR structure (M̂ q, D̂q, ĝq) is
homogeneous with respect to the above dilations and that the corresponding sR
distance is homogeneous of order 1. Moreover, the growth vector of D̂q coincides
with that of D at q, and Lie(X̂q

1 , . . . , X̂
q
m) is a nilpotent Lie algebra of step r(q).

It follows from the definition of the sR metric that

ĝq = lim
ε→ 0
ε 6= 0

ε−2δ∗εg and ĝqx
(
X̂q(x), Ŷ q(x)

)
= gq (X(q), Y (q))

for every x ∈ Rn, for all vector fields X and Y on M that are smooth sections of D.
Another useful geometric identification of (M̂ q, D̂q, ĝq) is the following. Fixing

a chart of privileged coordinates at q, let Gq be the (nilpotent) Lie group of dif-
feomorphisms of Rn generated by exp(tX̂q

i ), for t ∈ R and i = 1, . . . , m. Its Lie
algebra is

gq = Lie
(
X̂q

1 , . . . , X̂
q
m

)
=

r(q)⊕
i=1

(
D̂q
)i
/
(
D̂q
)i−1

it is nilpotent, graded, and generated by its first component D̂q. In other words, Gq
is a Carnot group (see [Mon02]). Under the strong Hörmander condition (1.2), Gq
acts transitively on Rn. Defining the isotropy group Hq = {ϕ ∈ Gq | ϕ(0) = 0}, of
Lie algebra hq = {Y ∈ gq | Y (0) = 0}, we identify M̂ q to the homogeneous (coset)
space Gq/Hq. If q is regular then Hq = {0} and thus M̂ q ' Gq is a Carnot group
endowed with a left-invariant sR structure.

Remark 2.1. — Carnot groups are to sub-Riemannian geometry as Euclidean
spaces are to Riemannian geometry. However, there is a major difference, which
is of particular importance here. In Riemannian geometry, all tangent spaces are
isometric, but this is not the case in sub-Riemannian geometry: given two points
q1 and q2 of M , the nilpotentizations (M̂ q1 , D̂q1 , ĝq1) and (M̂ q2 , D̂q2 , ĝq2) of the sR
structure respectively at q1 and q2 may not be sR-isometric, even though the growth
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vectors at q1 and q2 coincide.(5) There are many algebraically non-isomorphic (and
thus non-isometric) n-dimensional Carnot groups, and even uncountably many for
n > 5 (due to moduli in their classification). We refer to [AM05, Mar07] for a
complete classification of rigid and semi-rigid Carnot algebras.
Note that, in dimension three, if the growth vector is (2, 3) then we have a unique

model that is the Heisenberg flat case in the equivalence class of sR-isometric Carnot
groups.

2.5.5. Nilpotentized sR Laplacian

Let q ∈M be arbitrary. Associated with the sR structure (M̂ q, D̂q, ĝq), we define
on C∞(M̂ q) the differential operator

(2.5) 4̂q =
m∑
i=1

(
X̂q
i

)2
.

2.5.6. Nilpotentization of measures

Let us define the nilpotentization of a smooth measure µ on M . Let q ∈ M be
arbitrary. Using the bijective correspondence between smooth measures and densities,
the measure µ induces a volume form that we consider at the point q. Then, the
canonical isomorphism (6)

Λn
(
T ?qM

)
' Λn

r(q)⊕
k=1

Dk
q/D

k−1
q

∗

induces a measure µ̂q on M̂ q. Using a chart ψq of privileged coordinates at q, and
using the isometric representation M̂ q ' Rn, the measure µ̂q on Rn is given in the
chart by

µ̂q = lim
ε→ 0
ε 6= 0

1
|ε|Q(q) δ

∗
εµ

where the convergence is understood in the vague topology (i.e., the weak star
topology of Cc(M)′, where Cc(M) is the set of continuous functions onM of compact
support). According to this definition, if µ and ν are two smooth measures onM , with
µ = hν, where h is a positive smooth function on M , then µ̂q = h(q)ν̂q. Equivalently,
this means that

(2.6) h(q) = dµ

dν
(q) = µ̂q

ν̂q
.

(5)Actually, the flags of two sR structures coincide at any point if and only if the sR structures
are locally Lipschitz equivalent, meaning that the corresponding sR distances satisfy c1d2(q, q′)
6 d1(q, q′) 6 c2d2(q, q′) for some uniform constants c1 > 0 and c2 > 0.
(6) Indeed, following [ABGR09], considering a basis (e1, . . . , en) of TqM that is adapted to the flag,
that is, such that ei ∈ Dwi(q)

q , the wedge product e1 ∧ · · · ∧ en depends only on ei mod D
wi(q)−1
q .

This induces the canonical isomorphism.

ANNALES HENRI LEBESGUE



Small-time asymptotics of hypoelliptic heat kernels 915

In particular, the nilpotentizations at q of all smooth measures are proportional
to the Lebesgue measure m on M̂ q ' Rn. Note that, if q is regular, then µ̂q is a
left-invariant measure on the Carnot group M̂ q; in this case, M̂ q is a nilpotent Lie
group and thus is unimodular, and hence µ̂q coincides with the Haar measure, up to
scaling.
In passing, note that, applying (2.6) to the measure ν = HS that is the spherical

Hausdorff measure and using the fact (proved in [ABB12]) that ĤS

q(B̂q) = 2Q(q), we
obtain that the density at q of µ with respect to the spherical Hausdorff measure is

h(q) = dµ

dHS

(q) =
µ̂q
(
B̂q
)

2Q(q) .

Remark 2.2. — Let q ∈M be arbitrary, and let µ be an arbitrary smooth measure
on M . Endowing M̂ q with the measure µ̂q, we claim that
(2.7) divµ̂q

(
X̂q
i

)
= 0 ∀ i ∈ {1, . . . , m}.

As a consequence, we have (X̂q
i )∗ = −X̂q

i , where the transpose is considered in
L2(M̂ q, µ̂q). It follows that

4̂q =
m∑
i=1

(
X̂q
i

)2
=

m∑
i=1
−
(
X̂q
i

)∗
X̂q
i .

Due to the cancellation of the divergence term, there are no terms of order one
(compare with the general formula for a sR Laplacian, given, e.g., in [CdVHT16]).
Let us prove (2.7). Following [Jea14, page 25], we write X̂q

i (x) = ∑n
j=1 aij(x)∂xj in a

chart of privileged coordinates. By definition, ∂xj is homogeneous of degree −wj(q),
and since X̂q

i is homogeneous of degree −1, it follows that aij is a homogenous
polynomial of degree wj(q)− 1. Since xk is of weight greater than or equal to wj(q)
for k > j, aij does not depend on variables xk for k > j. It follows that ∂xjaij = 0,
and hence divµ̂q(X̂

q
i ) = 0 (recall that µ̂q is equal, up to constant scaling, to the

Lebesgue measure on Rn).

Part 1. Proof of the limit in Theorem A
This part is devoted to proving the following result (first term in the complete

asymptotic expansion stated in Theorem A).
Theorem B. — Let q ∈ M be arbitrary (regular or not). Let ψq : U → V be a

chart of privileged coordinates at q such that ψq(q) = 0, where U is an open connected
neighborhood of q in M and V is an open neighborhood of 0 in Rn. We assume that
X0 is a smooth section of D overM . We also assume that supq′∈U r(q′) < +∞. Then,
in the chart, we have
(2.8) lim

ε→ 0
ε 6= 0

|ε|Q(q) e4, µ
(
ε2t, δε(x), δε(x′)

)
= êq(t, x, x′)

in C∞((0,+∞)× V × V ) topology.
Moreover, if q is regular, then the above convergence is locally uniform with

respect to q, and the function êq depends smoothly (in C∞ topology) on q in any

TOME 4 (2021)



916 Y. COLIN DE VERDIÈRE, L. HILLAIRET & E. TRÉLAT

open neighborhood of q consisting of regular points. If the manifold M is Whitney
stratifiable with strata defined according to the sR flag (i.e., the growth vector
(n1(q), . . . , nr(q)(q)) is constant along each stratum) then the latter property is
satisfied along strata.
When X0 is a smooth section of D2 over M , the above statement remains true,

replacing 4̂q with 4̂q + X̂q
0 (see Remark 1.2).

Sketch of proof. In few words, the proof goes as follows (see Section 4 for all
details).
Assume first that M = Rn. For every i ∈ {0, . . . , m}, the vector field Xε

i = εδ∗εXi

converges to X̂q
i in C∞ topology as ε→ 0. Hence the operator

4ε = ε2δ∗ε4(δε)∗ =
m∑
i=1

(Xε
i )

2 + εXε
0 − ε2 (δ∗εV)

converges to 4̂q = ∑m
i=1

(
X̂q
i

)2
in C∞ topology. By the Trotter–Kato theorem

(see [EN00, Paz83]), the corresponding heat kernel

(2.9) eε(t, x, x′) = |ε|Q(q) e4, µ
(
ε2t, δε(x), δε(x′)

)
converges to êq in a weak topology, but actually convergence is true as well in
C∞((0,+∞)× Rn × Rn topology because, by uniform local subellipticity of

(4ε)ε∈ [−ε0, ε0],

the family (eε)ε∈ [−ε0, ε0] is uniformly bounded in the Montel space C∞, for some
ε0 > 0 small enough.
On a general manifold, we follow the above argument in a local chart around q,

extending the vector fields Xi by 0 outside of a neighborhood of q. The relation (2.9)
is then not exactly true, but, thanks to the fact that the small-time asymptotics of
hypoelliptic heat kernels is purely local (Kac’s principle), the relation (2.9) remains
true with a remainder term O(|ε|∞) as ε→ 0, and we conclude as well.
As one can see, in the above argument, we only use local results:
• local subellipticity estimates and local smoothing properties for hypoelliptic
heat kernels, uniform with respect to some parameters: these are well known
results, but for completeness (and in order to prepare global estimates), we
give statements and proofs in Appendix B.1;
• local nature of the small-time asymptotics of hypoelliptic heat kernels (Kac’s
principle), uniform with respect to parameters: this is established in Theo-
rem 3.2 in Section 3.2.1.

Incidentally, we state in Theorem 3.5 (in Section 3.2.2) a general convergence result
for hypoelliptic heat kernels depending on parameters: this is a singular perturbation
theorem for hypoelliptic operators, generalizing existing singular perturbation results
for elliptic operators.
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3. Some general facts for hypoelliptic heat kernels

3.1. Hörmander operators, semigroups and heat kernels

3.1.1. Preliminary remarks on Hörmander operators

In this section, we make some remarks on Hörmander operators, which are useful in
view of defining the domains of such operators and then show existence of semigroups,
as done in Section 3.1.2. Let Ω be an open subset of M .

Integration by parts with a Hörmander operator. We consider the differen-
tial operator 4 is defined by (1.1). By integration by parts, we compute

(3.1) 〈4f, f〉L2(Ω,µ) = −
m∑
i=1
‖Xif‖2

L2(Ω, µ) +
∫
∂ Ω
f d (ιY µ)

+ 1
2

∫
Ω
f 2
(

m∑
i=1

(
Xi (divµ(Xi)) + (divµ(Xi))2

)
− divµ(X0)− 2V

)
dµ

with

(3.2) Y =
m∑
i=1

(
Xif −

1
2f divµ(Xi)

)
Xi + 1

2fX0.

Of course, if ∂Ω = ∅ then there is no boundary term. When ∂Ω 6= ∅, the boundary
term

∫
∂Ω f d (ιY µ) is equal to zero in the two following cases:
• Dirichlet case: f = 0 along ∂Ω;
• Neumann case: ιY µ = 0 along ∂Ω.

In particular, we have defined here the Neumann boundary condition for the Hör-
mander operator 4: the interior product of µ and of the vector field Y (defined
by (3.2)) is zero along ∂Ω. Note that

Y = ∇gf + 1
2f

(
X0 −

m∑
i=1

divµ(Xi)Xi

)

where ∇gf is the horizontal gradient of f .

Symmetry properties of Hörmander operators. Recalling that the differen-
tial operator 4 is defined by (1.1) and that 4sR is defined by (2.1), we have

4 = 4sR +X ′0 − V with X ′0 = X0 −
m∑
i=1

divµ(Xi)Xi.

Integrating by parts, we compute

〈4u, v〉L2(Ω, µ) = −
∫

Ω
g (∇gu,∇gv) dµ−

∫
Ω
u(X ′0v) dµ−

∫
Ω
uv (divµ (X ′0) + V) dµ

+
∫
∂ Ω
v d

(
ι∇guµ

)
+
∫
∂ Ω
uv d

(
ιX′0uµ

)
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and we infer the Green formula for Hörmander operators:

〈4u, v〉L2(Ω, µ) = 〈u,4v〉L2(Ω, µ) +
∫

Ω

(
v(X ′0u) dµ− u(X ′0v)

)
dµ

+
∫
∂ Ω
v d

(
ι∇guµ

)
−
∫
∂ Ω
u d

(
ι∇gvµ

)
∀ u, v ∈ C∞(M).

For the operator 4 to be symmetric on C∞(Ω), there are two necessary conditions:
• The term

∫
Ω(v(X ′0u) dµ− u(X ′0v)) dµ must be zero, which is the case if and

only if X ′0 = 0, i.e., X0 = ∑m
i=1 divµ(Xi)Xi on Ω.

• The boundary term must be zero. This is the case for Dirichlet boundary
conditions. For Neumann boundary conditions, using the fact that X ′0 = 0 by
the first item and thus that the vector field Y defined by (3.2) coincides with
the horizontal gradient, we see then that the Neumann boundary condition for
the Hörmander operator coincides with the sR Neumann boundary condition.

Therefore, in the Dirichlet as in the Neumann case, the Hörmander operator 4
is symmetric on C∞(Ω) if and only if X0 = ∑m

i=1 divµ(Xi)Xi on Ω. In this case,
4 = 4sR − V has selfadjoint extensions; moreover, if the manifold Ω endowed with
the induced sR distance is complete then 4 is essentially selfadjoint on C∞c (Ω) and
thus has a unique selfadjoint extension.

3.1.2. Hypoelliptic semigroups and heat kernels

We consider the operator 4 : D(4)→ L2(Ω, µ) defined on a domain D(4) that is
assumed to be dense in L2(Ω, µ) and for which (4, D(4)) is closed. When ∂Ω 6= ∅,
the domain D(4) encodes some possible boundary conditions on ∂Ω.
According to Section 3.1.1, given a sufficiently regular function f , we speak of the

Dirichlet boundary condition when f = 0 along ∂Ω, and of the Neumann boundary
condition when ιY µ = 0 (interior product of µ and Y ) along ∂Ω, where Y is defined
by (3.2).
Let q ∈ M be arbitrary. Let µ be an arbitrary smooth measure on M . We set

D(4̂q) = {f ∈ L2(M̂ q, µ̂q) | 4̂qf ∈ L2(M̂ q, µ̂q)}. According to Section 3.1.1 and
Remark 2.2, since (M̂ q, d̂qsR) is complete (indeed, sR balls of small radius are compact,
and M̂ q is invariant under dilations), the operator 4̂q : D(4̂q) → L2(M̂ q, µ̂q) is
selfadjoint.

Lemma 3.1. — Under any of the following assumptions:
(A) 4 : D(4)→ L2(Ω, µ) is selfadjoint (see Section 3.1.1);
(B) the functions divµ(X0), divµ(Xi) and Xi(divµ(Xi)), i = 1, . . . , m, are boun-

ded on Ω, and we have Dirichlet or Neumann boundary conditions whenever
∂Ω 6= ∅;

the operator (4, D(4)) generates a strongly continuous semigroup (et4)t> 0 on
L2(Ω, µ).
The operator (4̂q, D(4̂q)) is selfadjoint and generates a strongly continuous con-

traction semigroup (et4̂q)t> 0 on L2(M̂ q, µ̂q).
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Proof. — Under Assumption A, it follows from Sections 2.2 and 3.1.1 that 4 =
4sR − V with V bounded below and thus there exists C > 0 such that 4− C id is
dissipative.
Under Assumption B, by integration by parts, we have the formula (3.1). The

integral on ∂Ω is zero in the case of Dirichlet or Neumann boundary conditions. Hence
there exists C > 0 (not depending on f) such that 〈(4− C id)f, f〉L2 (Ω, µ) 6 0 for
every f ∈ D(4), and thus 4−C id is dissipative in L2(Ω, µ). The same result holds
for its adjoint.
Now, since the operator 4− C id in L2(Ω, µ) is closed and dissipative as well as

its adjoint, it follows from the Lumer–Phillips theorem (see, e.g., [EN00, Paz83])
that it generates a strongly continuous contraction semigroup (et(4−C id))t> 0. Then,
the operator 4 generates a strongly continuous semigroup (et4)t> 0, and we have
et4 = eCtet(4−C id).
The operator 4̂q on L2(M̂ q, µ̂q) is closed, selfadjoint and dissipative, and thus it

generates a strongly continuous contraction semigroup(et4̂q)t> 0. �

Hypoelliptic heat kernels. Under the assumptions done in Lemma 3.1, since
Lie(D) = TM (which implies Lie(D̂q) = TM̂ q)(7) , both operators ∂t−4 and ∂t−4̂q

are hypoelliptic and therefore the corresponding heat kernels exist and are smooth:
given any smooth measure µ on M , we consider the heat kernel e4, µ defined on
(0,+∞)×Ω×Ω, associated with the operator4 and with the measure µ, and the heat
kernel êq = e4̂q , µ̂q defined on (0,+∞)× M̂ q × M̂ q, associated with the operator 4̂q

and with the measure µ̂q (see Appendix A for reminders on heat kernels). Smoothness
follows from the fact that e4, µ is solution of Pe4, µ = 0, with P = 2∂t−(4)q−(4∗)q′
that is hypoelliptic.
When V is bounded on M , it follows from the maximum principle for hypoelliptic

operators (see [Bon69]) that e4, µ and êq are positive functions. Since −4̂q is selfad-
joint, êq is also symmetric. Note also that, using the formulas in Appendix A, we
have the homogeneity property

(3.3) êq(t, x, x′) = |ε|Q(q) êq
(
ε2t, δε(x), δε(x′)

)
for all (t, x, x′) ∈ (0,+∞)× Rn × Rn and for every ε 6= 0 (where we have identified
M̂ q ' Rn).
In Theorem A further, we will establish an asymptotic relationship between the

heat kernel e4,µ and the nilpotentized heat kernel êq.

Probabilistic interpretation. It can be noted that, when Ω = M and V = 0, the
heat kernel e4, µ is the density of the probability law of the solution to the stochastic
differential equation on M in the Stratonovich sense

dxt, q =
√

2
m∑
i=1

Xi(xt, q) ◦ dwit +X0(xt, q) dt

(7)Actually, the following weaker Hörmander assumption is enough to ensure hypoellipticity of ∂t−4:
TM is spanned by the vector fields (Xi)1 6 i6m, ([Xi, Xj ])0 6 i, j6m, ([Xi, [Xj , Xk]])0 6 i, j, k6m, etc.
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with x0,q = q, where (wit)16 i6m is a m-dimensional Brownian process realized as
the coordinate process on {u ∈ C([0, 1],Rm | u(0) = 0} under the Wiener measure
(see [BA89]): the solution to ∂tu−4u = 0 for t > 0, u(0, q) = f(q) with f ∈ L2(Ω, µ),
is then given by

u(t, q) =
∫

Ω
e4, µ(t, q, q′)f(q′) dµ(q′) = Ef(xt, q).

3.2. Two general results for parameter-dependent hypoelliptic heat
kernels

This section can be read independently of the rest.
Let M be a smooth connected manifold and let Ω be an open subset of M . Let

m ∈ N∗ and let K be a compact set. For every τ ∈ K, let µτ be a smooth density
on M , let Xτ

0 , X
τ
1 , . . . , X

τ
m be smooth vector fields on M and let Vτ be a smooth

function onM , all of them depending continuously on τ in C∞ topology. We consider
the second-order differential operator

4τ =
m∑
i=1

(Xτ
i )2 +Xτ

0 − Vτ .

Throughout the section, we assume that the Lie algebra Lie(Xτ
1 , . . . , X

τ
m) generated

by the vector fields is equal to TqM at any point q ∈M , with a degree of nonholonomy
that is uniform with respect to τ ∈ K (uniform strong Hörmander condition).

3.2.1. Local nature of the small-time asymptotics of hypoelliptic heat kernels

Let Ω1 and Ω2 be two arbitrary open subsets of M , assumed to be manifolds with
or without boundary. We still denote by µτ the volume induced on each Ωi.
For i = 1, 2, we define the operator 4τ

i on L2(Ωi, µ
τ ) as follows. Let D(4τ

i ) be a
subset of {u ∈ L2(Ωi, µ

τ ) | (4τu)|Ωi ∈ L2(Ωi, µ
τ )}, standing for the domain of 4τ

i

and encoding possible boundary conditions on ∂Ωi if Ωi has a nontrivial boundary.
We now consider the operator 4τ

i : D(4τ
i )→ L2(Ωi, µ

τ ) defined by 4τ
i u = (4τu)|Ωi

for every u ∈ D(4τ
i ).

In other words, we consider here the operator 4τ on different subsets Ωi, with
some boundary conditions. For instance, one can take Ω1 = M and Ω2 an open
subset of M with Dirichlet conditions on ∂Ω2.
Let us assume that 4τ

i generates a strongly continuous semigroup (et4τi )t> 0 on
L2(Ωi, µ

τ ), satisfying the uniform estimate∥∥∥et4τi ∥∥∥
L(L2(Ωi, µτ ))

6 Cst eCt ∀ t > 0 ∀ τ ∈ K

for some C > 0. By an obvious (parameter-dependent) generalization of Lemma 3.1,
we note that this is the case if Vτ is uniformly bounded below on Ω1 ∪ Ω2 with
respect to τ and if, for i = 1, 2:
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(Aτ ) either 4τ
i : D(4τ

i )→ L2(Ωi, µ
τ ) is selfadjoint for every τ ∈ K,

(Bτ ) or the functions divµτ (Xτ
0 ), divµτ (Xτ

j ) and Xτ
j (divµτ (Xτ

j )), j = 1, . . . , m,
are bounded on Ω, uniformly with respect to τ , and we have Dirichlet or
Neumann boundary conditions (see Lemma 3.1).

Let eτi (t, q, q′) = e4τi , µτ (t, q, q
′) be its heat kernel, defined on (0,+∞) × Ωi × Ωi.

Note that eτi is symmetric whenever 4τ
i is selfadjoint.

The following fact was noticed in [JSC86]: extending the heat kernels by 0 for
t < 0, by hypoellipticity of the operator ∂t −4τ

i (under the Lie algebra generating
assumption), it follows that eτi (t, q, q′) vanishes at infinite order as t→ 0 for fixed q
and q′ such that q 6= q′. This observation inspired to us the result below.
Hereafter, given a function e depending on three variables (t, q, q′), the notation

∂1 (resp., ∂2, ∂3) denotes the partial derivative with respect to t (resp., to q, to q′).

Theorem 3.2. — For all (k, α, β) ∈ N× Nd × Nd, we have(
∂k1∂

α
2 ∂

β
3 e

τ
1

)
(t, q, q′) =

(
∂k1∂

α
2 ∂

β
3 e

τ
2

)
(t, q, q′) + O(t∞)

as t → 0, t > 0, uniformly with respect to τ ∈ K and to q and q′ varying in any
compact subset of Ω1∩Ω2. This means that, for all (k, α, β) ∈ N×Nd×Nd, for every
t1 > 0, for every compact subset K ⊂ Ω1 ∩ Ω2, for every N ∈ N∗, we have∣∣∣(∂k1∂α2 ∂β3 (eτ1 − eτ2)

)
(t, q, q′)

∣∣∣ 6 Cst(k, α, β, t1, K,N)tN

∀ t ∈ (0, t1] ∀ (q, q′) ∈ K ×K ∀ τ ∈ K.

This result reflects Kac’s principle of “not feeling the boundary”, showing that
the small-time asymptotic behavior of the heat kernel is purely local. Moreover, we
establish here a uniform parameter-dependent version, which is possible thanks to
the uniform subelliptic estimates obtained in Appendix B.
Proof. — Let τ ∈ K be arbitrary. Let Ω be an open subset of Ω1 ∩ Ω2. We set

wτ (t, q, q′) = eτ1(t, q, q′)− eτ2(t, q, q′), for all t ∈ R and (q, q′) ∈ Ω× Ω. The function
wτ is smooth on (0,+∞) × Ω × Ω, and actually (extending by 0 for t < 0) we are
going to prove that it is smooth on R× Ω× Ω, with uniform estimates with respect
to τ ∈ K.
On Ω × Ω, we consider the differential operator (4τ )q = 4τ ⊗ id, meaning that

given any smooth function g on Ω× Ω, the function (4τ )qg designates the partial
derivative, using the differential operator 4τ , of the function g, with respect to q.
Accordingly, we consider the operator (4τ )∗q′ = id⊗(4τ )∗.
Noticing that the heat kernels have been extended by 0 for t < 0, both kernels

eτ1 and eτ2 are solutions of the same differential equation (∂t − (4τ )q)e = δ(0, q′)(t, q)
in the sense of distributions, for any fixed q′ ∈ Ω, where the distribution pairing is
considered with respect to the measure dt×dµτ (q) on R×Ω. Hence (∂t−(4τ )q)wτ = 0
on R × Ω × Ω. Using that e4τ ,µτ (t, q, q′) = e4τ∗ , µτ (t, q′, q), both eτ1 and eτ2 are also
solutions of (∂t − (4τ )∗q′)e = δ(0, q)(t, q′) in the sense of distributions, for any fixed
q ∈ Ω. Hence (∂t − (4τ )∗q′)wτ = 0 on R×Ω×Ω. Setting Pτ = (4τ )q + (4τ )∗q′ − 2∂t,
we infer that Pτwτ = 0 on R × Ω × Ω. At this step, for any τ fixed, we infer by
hypoellipticity of Pτ that wτ is smooth, and since wτ vanishes for t < 0, it follows
that wτ is flat at t = 0. This gives the result, for τ fixed.
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But in order to ensure uniform estimates with respect to τ , we have to elaborate
further arguments. In order to use the uniform local subelliptic estimates (B.2)
established in Section B.1.1, as an initialization, we need to prove that wτ is bounded,
uniformly with respect to τ , for some weak enough Sobolev norm. To this aim, let
us first establish a rough norm estimate, valid for both heat kernels, and uniform
with respect to τ .
Lemma 3.3. — For every t1 > 0, for every open subset V ⊂ Ω of compact closure,

there exists p ∈ N∗ such that
‖eτi (·, ·, ·)‖L∞t (0, t1)×H−pq (V )×L2

q′ (V ) 6 Cst(t1, V ) ∀ τ ∈ K ∀ i ∈ {1, 2}.

In the norm above, and in the proof hereafter, the Sobolev spaces are considered
with respect to the density µτ .
Proof of Lemma 3.3. Let t1 > 0 be arbitrary. As in the proofs of Lemma 3.1 (Sec-

tion 3.1.2) and of Corollary B.3 (Appendix B.1.2), we first note that ‖et4τi ‖L(L2(Ωi))
6 Cst(t1), for every t ∈ [0, t1]. Besides, we set Λa = a(id−4R)1/2, where 4R is any
second-order elliptic operator on Ωi (for instance, a Riemannian Laplacian if M is
Riemannian) and a is a smooth positive function on Ωi chosen such that there exists
p ∈ N∗ large enough so that Λ−pa is Hilbert–Schmidt (as an operator on L2(Ωi)),
i.e., ‖Λ−pa ‖HS < +∞ (see also the proof of Corollary B.3 in Appendix B.1.2 for the
existence of such an integer p). It follows that the operator Λ−pa et4

τ
i on L2(Ωi) is

Hilbert–Schmidt, and its Hilbert–Schmidt norm is bounded uniformly with respect
to τ ∈ K and to t ∈ [0, t1]. Since∥∥∥Λ−pa et4

τ
i

∥∥∥
HS

=
∥∥∥(Λa)−pq eτi (t, ·, ·)

∥∥∥
L2
q(Ωi)×L2

q′ (Ωi)
,

the conclusion follows. �
Now, let ζ and ζ ′ be arbitrary smooth functions compactly supported in (−t1, t1)×

Ω × Ω, with ζ ′ = 1 on the support of ζ. From Lemma 3.3, there exists s < 0 such
that ‖ζ ′wτ‖Hs ((−t1,t1)×Ω×Ω) 6 Cst(t1, ζ ′). Applying Theorem B.1 to the family of
operators Pτ (in particular, applying to wτ the uniform estimates (B.2) that follow
from this theorem), we infer that, for every k ∈ N, the norm ‖ζwτ‖Hs+kσ((−t1,t1)×Ω×Ω)
is uniformly bounded with respect to τ ∈ K. Using Sobolev embeddings, the theorem
follows. �

Remark 3.4. — Note that a quite similar result has been established in [Hsu95],
without parameter dependence and under completeness assumptions.

3.2.2. A general convergence result for hypoelliptic heat kernels

We keep the notations and assumptions done in Section 3.1.2. We assume that 4τ

generates a strongly continuous semigroup (et4τ )t> 0 on L2(Ω, µτ ), satisfying uniform
estimate ∥∥∥et4τ ∥∥∥

L (L2 (Ω, µτ ))
6 Cst eCt ∀ t > 0 ∀ τ ∈ K

for some C > 0. Like in Section 3.2.1, we note that this is the case if Vτ is uniformly
bounded below on M and if either Aτ or Bτ is satisfied. We denote by eτ = e4τ , µτ
the associated heat kernel, defined on (0,+∞)× Ω× Ω.
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Theorem 3.5. — The heat kernel eτ is smooth on (0,+∞) × Ω × Ω, for every
τ ∈ K, and depends continuously on τ ∈ K in C∞((0,+∞)× Ω× Ω) topology.
Proof. — Let τ0 ∈ K be arbitrary. The differential operator 4τ0 is the limit of 4τ

in C∞ topology as τ → τ0, meaning that 4τf →4τ0f as τ → τ0 uniformly on any
compact subset of M , for every smooth function f on M .
By the Trotter–Kato theorem (see, e.g., [EN00, Chapter III] or [Paz83, Chapter 3]),

et4
τ
f → et4

τ0f in L2(Ω, µτ ) as τ → τ0, for every t > 0 and every smooth function
f on Ω with compact support, and the convergence is uniform with respect to t on
[0, t1], for every t1 > 0. Taking the Schwartz kernels (see Appendix A), it follows
that, given any 0 < t0 < t1 and any compact subset K of Ω, eτ converges to eτ0 in
C−∞([t0, t1]×K×K) as τ → τ0 for the weak-star topology. Here, C−∞([t0, t1]×K×K)
is the topological dual of the Fréchet Montel space C∞([t0, t1]×K ×K).
By Corollary B.3 in Appendix B.1.2, applied with Lτ = 4τ , the family (eτ )τ ∈K

is uniformly bounded in C∞([t0, t1] × K × K). Therefore, thanks to the Heine–
Borel property, we conclude that eτ converges to eτ0 in the Fréchet Montel space
C∞((0,+∞)× Ω× Ω) as τ → τ0. �

Remark 3.6. — We note that 4τ is a singular perturbation of 40. One can find
in [Lio73] (see also [Hue60]) a number of results on singular perturbations of elliptic
operators, i.e., when 40 is an elliptic operator. Here, our results can be seen as some
singular perturbations of hypoelliptic operators.
For example, Theorem 3.5 can be applied to the situation where 4τ = 40 +

τ4R, with 40 being hypoelliptic and 4R being a Riemannian Laplacian if M
is Riemannian: this is an elliptic perturbation of a hypoelliptic operator. We thus
recover results established in [Rum00, Theorem 7.2] (see also [Ge93]) in the particular
case where 40 is a contact sR Laplacian.
Note also that, when the considered operators are selfadjoint and of compact

resolvent, using the max-min principle, our results imply convergence of the spectrum
of 4τ (eigenvalues and eigenfunctions) to that of 40 (as in [Fuk87, Ge93, Rum00]).
We do not give details. This convergence is of course not uniform in general because
the leading term in the short-time asymptotics of heat kernels may differ: for instance
when 40 is a 3D contact sub-Riemannian Laplacian then the short-time asymptotics
is like 1/t2, whereas for τ 6= 0, assuming that 4τ = 40 + τ4R as above, the
short-time asymptotics is like 1/t3/2 (asymptotics in the Riemannian case).

4. Proof of the limit in Theorem A

In this section, we prove Theorem B, which is Theorem A at the order zero.

4.1. Preliminaries

Throughout, we assume that X0 is a smooth section of D overM . Each time this is
required, we will indicate the modifications that must be done when X0 is a smooth
section of D2 over M .
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Let ε0 > 0 be small enough such that δε(V ) ⊂ V for every ε ∈ [−ε0, ε0]. We first
extend the vector fields (ψq)∗Xi (which are defined in the neighborhood V given by
the chart) to Rn. Let W1 and W2 be open subsets of Rn of compact closure such
that W 1 ⊂ W2 ⊂ W 2 ⊂ V and such that δε(W1) ⊂ W1 and δε(W2) ⊂ W2 for every
ε ∈ [−ε0, ε0]. Let χ be a smooth function of compact support on Rn, such that
0 6 χ 6 1, χ(x) = 1 if x ∈ W 1 and χ(x) = 0 if x ∈ Rn \W2.
Hereafter, we will use the measure µ̂q on Rn, which coincides, up to a constant

scaling, with the Lebesgue measure on Rn.

Definition of 4̃ (local version of 4 in the chart). We define
Yi = χ(ψq)∗Xi, i = 0, . . . , m,

so that Yi = (ψq)∗Xi on W1 and Yi = 0 on Rn \W2. Similarly, we define the function
v on Rn by v = χ(ψq)∗V, and the measure ν on Rn by 〈ν, f〉 = 〈ψq)∗µ, χf〉 for every
f ∈ C0(Rn). Setting Y = (Y0, Y1, . . . , Ym), we consider on C∞(Rn) the differential
operator

4̃ =
m∑
i=1

Y 2
i + Y0 − v.

The operator 4̃ (resp., the measure ν) is the extension to Rn (by 0) of the local version
of 4 (resp., of µ) in the chart. As we are going to see, in the proof of Theorem B,
the way we extend does not have any impact on the local asymptotics of the heat
kernel, thanks to the localization result stated in Theorem 3.2 (Section 3.2.1).
Since the vector fields Yi are of compact support, setting

D(4̃) =
{
f ∈ L2(Rn, ν)

∣∣∣4̃f ∈ L2(Rn, ν)
}
,

it follows from Lemma 3.1 that the operator (4̃, D(4̃)) generates a strongly contin-
uous semigroup (et4̃)t> 0 on L2(Rn, ν). By hypoellipticity (see Corollary B.3), the
Schwartz kernel of et 4̃, restricted to (0,+∞)×W1×W1 → (0,+∞), has a continuous
density with respect to ν, which is the smooth function

ẽ = e4̃, ν : (0,+∞)×W1 ×W1 → (0,+∞).

4.2. Definition of the vector fields Y ε
i

For every ε ∈ [−ε0, ε0] \ {0}, we set

(4.1) νε = 1
|ε|Q(q) δ

∗
εν, Y ε

i = εδ∗εYi, i = 0, . . . , m.

Using that δε = δ ε
λ
δλ = δλδ ε

λ
, we observe that

(4.2) Y ε
i = λδ∗λY

ε/λ
i , i = 0, . . . , m, ∀ λ > 0 ∀ ε ∈ [−λε0, λε0] \ {0}.

When X0 is a smooth section of D2 over M , we modify the definition of Y ε
0 by

setting Y ε
0 = ε2δ∗εY0, and we have the homogeneity property Y ε

0 = λ2δ∗λY
ε/λ

0 .
Note that Y ε

i is nontrivial on δ−1
ε (W1) = δ1/ε(W1) which is a neighborhood of

0 increasing to Rn as ε → 0. For every i ∈ {0, . . . , m}, Y ε
i converges to X̂q

i in
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C∞(Rn,Rn) as ε → 0 (see Section 2.5 and Remark 1.2). Actually, using (2.3), we
have the expansion

(4.3) Y ε
i = εδ∗εYi = X̂q

i + εY
(0)
i + ε2Y

(1)
i + · · ·+ εNY

(N−1)
i + o

(
|ε|N

)
in C∞ topology, where Y (k)

i is polynomial and homogeneous of degree k (with respect
to dilations), and X̂q

i = Y
(−1)
i , i.e., setting Y 0

i = X̂q
i for ε = 0, Y ε

i depends smoothly
on ε in C∞ topology.
Since Y ε

i converges to X̂q
i , as well as all its derivatives, on any compact, since

the m-tuple (X̂q
1 , . . . , X̂

q
m) satisfies the Hörmander condition, using that [Y ε

i , Y
ε
j ]

= ε2δ∗ε [Yi, Yj], it is clear that the m-tuple (Y ε
1 , . . . , Y

ε
m) satisfies the uniform strong

Hörmander condition (as defined in Section B.1.2) on W1, for ε ∈ [−ε0, ε0], provided
that ε0 be small enough.
Moreover, we have νε → µ̂q for the vague topology as ε→ 0. Actually, the density

of νε with respect to the Lebesgue measure of Rn converges in C∞ topology to the
density of µ̂q with respect to the Lebesgue measure of Rn (which is constant).

4.3. Definition of the operator 4ε

Differential operator 4ε. For every ε ∈ [−ε0, ε0] \ {0} we define on C∞(Rn) the
differential operator

(4.4) 4ε = ε2δ∗ε4̃(δε)∗.
Using (4.2), we have the homogeneity property

(4.5) 4ε = λ2δ∗λ4
ε
λ (δλ)∗ ∀ λ > 0 ∀ ε ∈ [−λε0, λε0] \ {0}.

Using Appendix A, we have

(4.6) 4ε =
m∑
i=1

(εδ∗εYi)
2 + ε2δ∗εY0 − ε2 (δ∗εv) =

m∑
i=1

(Y ε
i )2 + εY ε

0 − ε2 (δ∗εv) .

When X0 is a smooth section of D2 over M , the definition of 4ε is modified as
follows:

4ε =
m∑
i=1

(Y ε
i )2 + Y ε

0 − ε2 (δ∗εv) .

Convergence of 4ε to 4̂q. Since εY ε
0 → 0 in C∞(Rn,Rn), the differential

operator 4̂q defined by (2.5) is the limit of 4ε in C∞ topology as ε→ 0, meaning
that 4εf → 4̂qf in C∞(Rn) as ε → 0, for every f ∈ C∞(Rn). Defining 40 = 4̂q

for ε = 0, 4ε depends smoothly on ε in C∞ topology.
We could give an asymptotic expansion of 4ε in C∞ topology, as we will do

further in Section 6.1.3 for an appropriate modification of 4ε, but we do not give it
because it will not be useful. Indeed, we will see further that the C∞ topology is not
strong enough to establish the complete asymptotic expansion stated in Theorem A.
Anyway, the limit in C∞ topology suffices to establish Theorem B.
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When X0 is a smooth section of D2 over M , we have Y ε
0 = ε2δ∗εY0 = X̂q

0 + εY
(−1)

0 +
o(|ε|) where X̂q

0 is homogeneous of order −2 (see Remark 1.2 for the details). We
obtain in this case that 4ε → 4̂q + X̂q

0 in C∞ topology as ε→ 0.

Semigroup generated by 4ε. Setting

D(4ε) =
{
f ∈ L2 (Rn, νε)

∣∣∣4εf ∈ L2 (Rn, νε)
}
,

using (4.4), the operator (4ε, D(4ε)) generates a strongly continuous semigroup
(et4ε)t> 0 on L2(Rn, νε), satisfying

δ∗εe
ε2t4̃(δε)∗ = et4

ε ∀ t > 0 ∀ ε ∈ [−ε0, ε0] \ {0}.

Since ‖et4̃‖L(L2(Rn, ν)) 6 Cst eCt for every t > 0, for some C > 0, it follows that the
semigroup (et4ε)t> 0 satisfies the uniform estimate ‖et4ε‖L(L2(Rn, νε)) 6 Cst eCε2t.

Heat kernel eε of 4ε. By hypoellipticity (see Corollary B.3), the Schwartz kernel
of et4ε , restricted to (0,+∞)×W1 ×W1, has a continuous density with respect to
νε, which is the smooth function

eε = e4ε, νε : (0,+∞)×W1 ×W1 → (0,+∞).

Using (4.4) and the formulas (A.1) of Appendix A, we have

(4.7) eε(t, x, x′) = |ε|Q(q)ẽ
(
ε2t, δε(x), δε(x′)

)
∀ ε ∈ [−ε0, ε0] \ {0} ∀ (t, x, x′) ∈ (0,+∞)×W1 ×W1.

Convergence of eε to êq. Recall that the nilpotentized heat kernel is the smooth
function êq = e4̂q , µ̂q : (0,+∞) × Rn × Rn → (0,+∞), defined as the continuous
density with respect to µ̂q of the Schwartz kernel of et4̂q .
Applying the general convergence result stated in Theorem 3.5 (in Section 3.2.2)

with K = [−ε0, ε0], τ = ε, Ω = W1, µτ = νε and Lτ = 4ε, we obtain that

(4.8) eε −→
ε→0

êq in C∞ ((0,+∞)×W1 ×W1) .

When X0 is a smooth section of D2 over M , the result remains true provided that
4̂q be replaced with 4̂q + X̂q

0 .

Remark 4.1. — The above argument yields a convergence that is much stronger
than the convergence on semigroups provided by the Trotter–Kato theorem (which
is only pointwise). We do not know if this could have been established by general
results on analytic semigroups. Indeed, although the strongly continuous contraction
semigroup (et4̂q)t> 0 is analytic of angle π/2 (this follows, e.g., from [EN00, Chap-
ter II, Corollary 4.7], because the operator 4̂q on L2(Rn) is nonpositive selfadjoint
and thus has a real nonpositive spectrum), given any ε > 0, we do not know if the
strongly continuous semigroup (et4ε)t> 0 on L2(Rn) is analytic with an angle that
would be uniform with respect to ε in general (unless, of course, we are in the case
where 4ε is selfadjoint). Actually, there are hints (see [EH03]) showing that the
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operator 4ε may fail to be uniformly sectorial.(8) Note also that 4ε − 4̂q is not
4̂q-bounded in general and that 4̂q is not an elliptic operator. This is why, instead
of using classical integral representations of analytic semigroups, we used the fact
(proved in Section B.1.2) that et4ε is uniformly locally smoothing.

4.4. End of the proof of Theorem B

We already know that eε is related to ẽ by the formula (4.7), which gives as well

(4.9)
(
∂k1∂

α
2 ∂

β
3 e4ε, νε

)
(t, x, x′)

= |ε|Q(q)+2kε
∑n

i=1(αi+βi)wi(q)
(
∂k1∂

α
2 ∂

β
3 e4̃, ν

) (
ε2t, δε(x), δε(x′)

)
for every ε ∈ [−ε0, ε0] \ {0}, for all (t, x, x′) ∈ (0,+∞) × W1 × W1 and for all
(k, α, β) ∈ N× Nd × Nd, where we have set α = (α1, . . . , αn) and β = (β1, . . . , βn).
Let us now relate ẽ with e4, µ. This is done thanks to the localization result stated
in Theorem 3.2 (Section 3.2.1). Recalling that 4̃ coincides with 4 in the chart,
Theorem 3.2 gives, in the chart,
(4.10) e4, µ

(
ε2t, δε(x), δε(x′)

)
= e4̃, ν

(
ε2t, δε(x), δε(x′)

)
+ O(|ε|∞)

in C∞ topology. The limit (2.8) in C∞ topology then follows from (4.8), (4.9)
and (4.10).

Case q regular. Let us assume that q is regular, meaning that there exists an
open subset U of M on which the flag is regular. Let us make vary q in U . We
first remark that it is possible to choose, at the beginning of the proof, a chart ψq
depending smoothly on q: for instance, one may use the map (2.2) that is obtained
with a frame of vector fields Zq

i adapted to the flag and depending smoothly on q.
With such a choice, Y ε

i depends smoothly on q, and the convergence of Y ε
i to X̂q

i is
uniform as well with respect to q. Similar properties hold for all convergences under
consideration in the proof. Since all our results on subelliptic estimates (Appendix B)
and localization of the heat kernels (hypoelliptic Kac’s principle, Theorem 3.2) are
valid uniformly with respect to q in this regular neighborhood, we can keep track
of the regularity with respect to q in the entire proof above, and smoothness with
respect to q of all the coefficients of the expansion follows.
A similar argument is developed on strata defined according to the sR flag.

(8)We thank Martin Hairer for a discussion on this subject.
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Part 2. Proof of the complete asymptotic
expansion in Theorem A

Theorem B is a weaker version of Theorem A, in which we have obtained the limit,
i.e., the first term of the expansion with respect to ε. The full version of Theorem A
states an asymptotic expansion at any order with respect to ε.

5. Idea of the proof

Surprisingly, the proof of Theorem A, done in Section 6, is much more difficult
than the (quite easy) one of Theorem B done in Section 4. Deriving the complete
expansion indeed requires significant additional work. In particular, as we explain
hereafter, it requires to use global smoothing estimates (established in Appendix C
and in Appendix B.2) and to consider an adequate modification 4ε, γ of the operator
4ε, which complicates significantly the analysis.
Hereafter, we explain our proof approach and we point out the main difficulties,

in order to motivate some of the developments that will follow.

5.1. Duhamel formula

Consider the operator 4ε defined by (4.4) in Section 4. As in [Bar13], the starting
point is the Duhamel formula

et4
ε = et 4̂

q +
∫ t

0
e(t−s)4ε

(
4ε − 4̂q

)
es4̂

q

ds

for t > 0. Setting

Σi(t) =
{
si+1 = (s1, . . . , si+1) ∈ (0,+∞)i+1

∣∣∣∣∣
i+1∑
k=1

sk = t

}
∀ i ∈ N∗,

given any N ∈ N∗ we obtain by iteration

(5.1) et4
ε = et4̂

q +
N∑
i=1

∫
Σi(t)

es14̂q
(
4ε − 4̂q

)
es24̂q · · ·

(
4ε − 4̂q

)
esi+14̂q dsi+1

+
∫

ΣN+1(t)
es14ε

(
4ε − 4̂q

)
es2 4̂q · · ·

(
4ε − 4̂q

)
esN+24̂q dsN+2.

Besides, using an expansion in homogeneous terms, we have an asymptotic expansion
at any order

(5.2) 4ε = 4̂q + εA1 + · · ·+ εNAN + εN+1Rε
N+1

where Ai, i ∈ N∗, and Rε
N+1 are second-order differential operators. Moreover all

derivations Ai, for i = 1, . . . , N , have polynomial coefficients with a degree that is
bounded by some power of N . Of course, we must be careful with the topology taken
for the convergences and for the asymptotic expansions, and by the way, this is one
of the main problems, because the C∞ topology, which was considered previously,
will not be sufficient. Let us explain why.
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Using (5.1) and (5.2), for the moment in a formal way, we obtain

(5.3) et4
ε = et4̂

q + εC1(t) + · · ·+ εNCN(t) + εN+1PεN+1(t)
where each operator Cj(t) is a finite sum of terms Ii(t) for some i ∈ {1, . . . , N},
where Ii(t) is defined by

(5.4) Ii(t) =
∫

Σi(t)
es14̂qAj1 es24̂q · · · Aji esi+14̂q dsi+1

with j1, . . . , jN ∈ {1, . . . , N}, and where the remainder term PεN+1(t) is a finite sum
of terms εkIi(t), εkJ ε

i (t) and εkKεi (t) with k, i ∈ N, k 6 (N + 1)2, 1 6 i 6 N , and
J ε
i (t) and Kεi (t) are defined by

(5.5) J ε
i (t) =

∫
Σi(t)

es14̂qBε1 es24̂q · · · Bεi esi+14̂q dsi+1

(5.6) Kεi (t) =
∫

Σi(t)
es14εBε1 es2 4̂q · · · Bεi esi+14̂q dsi+1

where each Bεj is a second-order derivation, either equal to some Ai, i ∈ {1, . . . , N},
or to Rε

N+1.
All operators above are defined as convolutions, i.e., iterated compositions involving

the operators esi 4̂q and es14ε , and derivations Ai andRε
N+1 in-between. For instance,

we have

C1(t) =
∫ t

0
e(t−s)4̂qA1e

s 4̂q ds, C2(t) =
∫ t

0
e(t−s)4̂q

(
A2e

s 4̂q +A1C1(s)
)
ds.

Only the terms Kεi (t) (involved in the remainder PεN+1(t)) contain es14ε as a first
term in the convolution. Note that 4̂q is selfadjoint but 4ε is not selfadjoint in
general.
The basic idea is then to take Schwartz kernels in (5.3), in order to obtain the

expansion of the heat kernel eε with respect to ε.
Although apparently simple, at least in a formal way, establishing rigorously the

expansion at any order appears to be difficult and technical. The main difficulty is to
give a sense to the expansion (5.3) with respect to some appropriate topology. The
asymptotic expansion (5.3) will be written in the sense of smoothing operators (see
Proposition 6.7 in Section 6.2), i.e., operators that map continuously any Hj

loc(Rn)
to any Hk

loc(Rn), with a norm that is uniformly bounded with respect to ε. More
precisely, let 0 < t0 < t1 be fixed. We would like to prove that

(5.7) ‖χ1Ii(t)χ2‖L(Hj(Rn), Hk(Rn)) 6 Cst (N,χ1, χ2, j, k, t0, t1)

∀ t ∈ [t0, t1] ∀ χ1, χ2 ∈ C∞c (Rn) ∀ j, k ∈ Z ∀ i ∈ {1, . . . , N}
and that there exists ε0 > 0 such that

(5.8)
∥∥∥χ1J ε

N+1(t)χ2

∥∥∥
L(Hj (Rn), Hk(Rn)) +

∥∥∥χ1KεN+1(t)χ2

∥∥∥
L(Hj (Rn), Hk(Rn))

6 Cst (N,χ1, χ2, j, k, t0, t1)
∀ t ∈ [t0, t1] ∀ χ1, χ2 ∈ C∞c (Rn) ∀ j, k ∈ Z ∀ ε ∈ [−ε0, ε0].

TOME 4 (2021)



930 Y. COLIN DE VERDIÈRE, L. HILLAIRET & E. TRÉLAT

To prove these smoothing properties, we will prove that the chain of compositions
appearing in the integrals (5.4), (5.5) and (5.6), involving the operators esi 4̂q and
es14ε and the derivations Ai and Rε

N+1, is performed in the scale of Sobolev spaces
with polynomial weight Hα

β (Rn) (whose definition is recalled in Appendix B.2),
and that at least one of the operators esi 4̂q and es14ε enjoys a strong smoothing
property, able to map continuously any Hα

β (Rn) to Hα′
β′ (Rn) for any α′ ∈ R and for

some appropriate β′ ∈ R (and this, uniformly with respect to ε).
Here, in contrast to Section 4, local subelliptic estimates are not enough and

global subelliptic estimates are required, in order to establish such global smoothing
properties. Since the derivations appearing in the chain of compositions can be
arbitrary (they have no specific relationship with the operators 4̂q and 4ε), the use
of Sobolev spaces with polynomial weight Hα

β (Rn) appears to be relevant.
Hereafter, we list the properties that we will have to establish in order to prove (5.7)

and (5.8). Note that (5.7) involves operators esi4̂q and derivations Ai, not depending
on ε, while (5.8) involves also the operator es14ε and the derivation Rε

N+1 for which
we will have to establish properties that are uniform with respect to ε. As we will
see in Section 5.3, this will raise a significant additional difficulty.

5.2. Requirements to prove (5.7)

To prove (5.7), we observe that, inside the integral (5.4), at least one of the real
numbers sp is such that sp > t0

N
. We want the corresponding operator esp 4̂q to be

globally smoothing. To this aim, we will need to establish the following property:
(P1) Global smoothing property in Sobolev spaces with polynomial weight: there

exists k0 ∈ N such that∥∥∥∥eτ 4̂q∥∥∥∥
L

(
Hα
β

(Rn), Hα′
β/k0−k0(|α |+ |α′ |)(Rn)

) 6 Cst (α, α′, β, τ0)

∀ α, α′, β ∈ R ∀ τ0 ∈ (0, 1) ∀ τ ∈ [τ0, 1].

In other words, in positive times (τ0 6 τ 6 1) the operator eτ 4̂q gains differential
regularity, with a controlled loss of polynomial weight regularity.
Besides, all other operators in the composition in the integral (5.4) are either esi 4̂q ,

with 0 6 si 6 1 or derivations Ai. The second-order derivations Ai for i = 1, . . . , N ,
because they have polynomial coefficients with maximal degree, say, N ` for some
` ∈ N∗, and thus map continuously any Hα

β (Rn) to Hα−2
β−N`(Rn). Concerning esi4̂q ,

we require the following property:
(P2) Continuity with controlled loss in the Sobolev spaces with polynomial weight,

including time zero: there exist β0 > 0 and k1 ∈ N such that∥∥∥∥eτ 4̂q∥∥∥∥
L

(
Hα
β

(Rn), Hα−k1 |α |
β/k1−k1 |α |−k1

(Rn)
) 6 Cst(α, β) ∀ α ∈ R ∀ β > β0 ∀ τ ∈ [0, 1].
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Note that, in contrast to (P1) which is a smoothing property in positive time, (P2) is
stated on the time interval [0, 1], including time zero. The property (P2) is inferred
from the following two properties that we will establish:
(P3) Let D̂q, sRk, β be the completion of C∞c (Rn) for the norm ‖〈x〉βsR(id−4̂q)ku‖L2(Rn),

which is the domain of (id−4̂q)k polynomially weighted with the power β of
the sR Japanese bracket (see a precise definition in Appendix C.2). We have∥∥∥∥eτ 4̂q∥∥∥∥

L(D̂q, sR
k, β )

6 Cst(k, β) ∀ τ ∈ [0, 1] ∀ k ∈ Z ∀ β > 1.

(P4) Continuous embeddings: there exist σ > 0 and N0 ∈ N such that

H2k
β+2kN0(Rn) ↪→ D̂q, sRk, β ↪→ Hkσ

β/r(q)−kN0(Rn) ∀ k ∈ N ∀ β ∈ R

and by duality,
H−kσβ/r(q)+kN0

(Rn) ↪→ D̂q, sR−k,β ↪→ H−2k
β−2kN0(Rn) ∀ k ∈ N ∀ β ∈ R.

The smoothing property of Ii(t) follows from (P1), (P3) and (P4) (the full detail
of the argument will be given in Proposition (6.7), but one can already note the
important fact that β must be taken large enough).
The property (P4) follows from global subelliptic estimates, that we establish in

Appendix B.2 for general Hörmander operators whose coefficients (as well as their
derivatives) have a growth at infinity that is at most polynomial (of course, there,
the polynomial property is crucial). Actually, in Appendix B.2 we will establish (P4)
for the domains D̂qk, β of (id−4̂q)k polynomially weighted with the power β of the
usual (not sR) Japanese bracket (see their definition in Appendix B.2.1). But, since
we have the inequality

Cst ‖ · ‖D̂q
j, α/r(q)

6 ‖ · ‖D̂q, sR
j, α
6 Cst ‖ · ‖D̂qj, α

for all j ∈ Z and α > 0 (see (C.5) in Section C.2), (P4) follows.
The property (P1) is inferred from (P4) and from the following property:
(P′1) Global smoothing property in the iterated domains with polynomial weight:

there exists k0 ∈ N such that∥∥∥∥eτ 4̂q∥∥∥∥
L(D̂q, sR

j, β
,D̂q, sR
k, β )

6 Cst(j, k, β, τ0)

∀ j, k ∈ Z ∀ β > 1 ∀ τ0 ∈ (0, 1) ∀ τ ∈ [τ0, 1].
While (P′1) is a smoothing property (valid for positive times), the property (P3),
which must hold also at τ = 0 but does not provide any gain of regularity, is
equivalent to the fact that (et4̂q)t> 0 is a semigroup on the weighted Hilbert space
L2
β(Rn), for every β > 1. These facts are not obvious. We prove (P′1) and (P3) in

Appendix C (more precisely, see Proposition C.3 in Appendix C.2) by using upper
exponential estimates of the heat kernel of the nilpotent sR Laplacian 4̂q.
At this step, we have realized that, to prove that the operators χ1Ii(t)χ2 are

smoothing, we have to establish some properties for the operator 4̂q that are of a
global nature. To prove them, we will use the instrumental facts that the operator 4̂q
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is selfadjoint and polynomial. This is the objective of Appendix C. Selfadjointness
allows us to use the spectral theorem.

Remark 5.1. — It seems unavoidable in general to use Sobolev spaces with poly-
nomial weight Hα

β (Rn), in the above chain of arguments. Indeed, the second-order
derivations Ai can be arbitrary, in the sense that they “cannot be factorized” by 4̂q

and thus they do not map an iterated domain of 4̂q to another in general.

5.3. Requirements to prove (5.8)

Let us now search what properties are required to prove (5.8). Compared with the
operator Ji(t) defined by (5.4):

• in the definitions (5.5) and (5.6) of J ε
i (t) and Kεi (t), the derivations in-between

can be either Aj or Rε
N+1;

• in the definition (5.6) of Kεi (t), we have a final composition by the operator
es04ε in the integral.

Note that, in contrast to 4̂q, the operator 4ε is not selfadjoint in general.
In order to perform a reasoning as above, it would be desirable that there exist

` ∈ N and ε0 > 0 such that:
(i) ‖Rε

N+1‖L(Hα
β

(Rn), Hα−2
β−N`

(Rn)) 6 Cst(α, β) ∀ α, β ∈ R ∀ ε ∈ [−ε0, ε0];
(ii) the operator χ1e

τ4ε satisfy the properties (P1) (global smoothing in the
Sobolev spaces with polynomial weight) and (P2) (continuity with controlled
loss, including time zero), uniformly with respect to ε ∈ [−ε0, ε0].

However, except in the following particular case, we are going to see that these
properties are not satisfied in general, which raises a serious difficulty that we will
show how to overcome.

A particular case. It is interesting to note that (i) and (ii) are satisfied under
the following additional assumptions:

• M = Rn;
• the vector fields X0, X1, . . . , Xm are polynomial;
• the operator 4 defined by (1.1) is selfadjoint (see Section 3.1.1).

Indeed, under these assumptions the coefficients of 4ε are polynomial, and thus the
homogeneous expansion (5.2) is exact for N large enough, i.e., Rε

N+1 = 0, hence (i) is
satisfied. As for (ii), since 4ε is also selfadjoint, all results established in Appendix C
can straightforwardly be extended to such a one-parameter family of operators. In
particular, Proposition C.3 and continuous embeddings give (ii).
Hence, under the above additional assumptions, the results established in Appen-

dix C are sufficient to conclude that χ1J ε
N+1(t)χ2 is smoothing and then complete

the proof of Theorem A.
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Difficulties in the general case. But in the general case where either the vector
fields are not polynomial at infinity, or 4 is not selfadjoint, the properties (i) and (ii)
may fail and we have to proceed differently.
First of all, when 4 is not selfadjoint, we cannot use the results of Appendix C,

but this difficulty is bypassed in Appendix B.2, where we establish some global
smoothing properties for general hypoelliptic Hörmander operators (not necessarily
selfadjoint) depending on a parameter.
However, this can only be done under the crucial assumption that the growth

at infinity of the differential operator is at most polynomial, with a degree that is
uniform with respect to the parameter. This requirement of being at most polynomial
at infinity is the main constraint. The results of Section B.2 cannot be applied to
et4

ε , because the growth at infinity of the vector fields Xε
i is not at most polynomial

uniformly with respect to ε, in general (see Example 6.3 in Section 6.1.1).
This serious flaw is due to the fact that Y ε

i (defined by (4.1)) converges to X̂q
i only

in C∞ topology as ε→ 0, i.e., Y ε
i converges uniformly, as well as all its derivatives,

to X̂q
i only on every compact subset of Rn. But this convergence is not global in

general.

Adding a “damping” parameter γ. To overcome this defect of convergence, we
introduce in Section 6.1 a slightly different operator4ε, γ , depending on an additional
(fixed) parameter γ ∈ (0, 1), which satisfies 4ε, γ → 4̂q as ε→ 0 in a much stronger
sense, and whose growth at infinity is uniformly at most polynomial.
To do so, we replace each vector field Y ε

i with an adequate modification Y ε, γ
i :

we define the vector field Y ε, γ
i such that, roughly speaking, Y ε, γ

i = X̂q
i outside of

the sR ball B̂q
sR(0, 1/εγ) and Y ε, γ

i = Y ε
i inside the ball. In the key Lemma 6.2, we

establish that, while Y ε
i converges uniformly (as well as all its derivatives) to X̂q

i

only on every compact, for appropriate (small enough) values of γ, Y ε, γ
i converges

to X̂q
i globally, on the whole Rn, as ε→ 0, and the convergence is even valid in any

space Lp, p ∈ [1,+∞], as well as all its derivatives. This much stronger convergence
property, obtained thanks to the adequate modification using the parameter γ, is
instrumental in our proof. By the way, we think that it could be useful for other
purposes.
The parameter γ can be viewed, in some sense, as a “damping” parameter: Y ε, γ

i

is an adequate modification of Y ε
i , which is sufficiently damped (but not too much)

to be of polynomial growth at infinity, uniformly with respect to ε.
The construction of 4ε, γ is done in Section 6.1. We will prove that the family

of vector fields Y ε, γ
i satisfies a uniform polynomial strong Hörmander condition if

γ > 0 is chosen small enough (see Lemma 6.4), thus allowing us to use the uniform
global subelliptic estimates established in Section B.2.
Note that, to ensure the validity of the global subelliptic estimates, it could seem

sufficient to consider the above truncation on a ball B̂q
sR(0, 1) of fixed radius, rather

than on a ball B̂q
sR(0, 1/εγ). But then, the end of the proof of Theorem A would

fail; more precisely, the application of the final localization argument (hypoelliptic
Kac’s principle) would fail (see Section 6.4). So, we underline that it is important
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to take γ > 0 small and thus keep the equality Y ε, γ
i = Y ε

i valid on a neighborhood
of 0 increasing to Rn as ε→ 0.
With this modification in mind, we go back to Section 5.1 and we apply the

Duhamel formula, replacing 4ε with 4ε, γ. This is what we will do in Section 6.2,
and we will obtain the expansion (5.3) with 4ε, γ instead of 4ε.
We will then want to prove (5.8) with 4ε, γ replacing 4ε. Recalling (i) and (ii) as

desirable properties, what we will be able to establish is:
(P5) We have 4ε, γ = 4̂q + εAε,γ1 + ε2Aε, γ2 + · · · + εNAε, γN + εN(1−γ)+1−γr(q)Rε, γ

N+1
and there exist β0 > 0 and ε0 > 0 such that∥∥∥Rε, γ
N+1

∥∥∥
L

(
Hα
β

(Rn),Hα−2
β−β0

(Rn)
) 6 Cst(α, β) ∀ α, β ∈ R ∀ ε ∈ [−ε0, ε0].

(P6) Global-to-local smoothing property: there exist k0 ∈ N and α0 > 0 such that∥∥∥χ1e
τ4ε, γ

∥∥∥
L

(
H−α
k0 α

(Rn),Hβ(Rn)
) 6 Cst(α, β, τ0)

∀ α, β > α0 ∀ τ0 ∈ (0, 1) ∀ τ ∈ [τ0, 1].

We note that, in contrast to the asymptotic expansion (5.2) of4ε, the introduction
of the damping parameter γ implies a loss in the power of ε for the remainder term,
in the asymptotic expansion of 4ε, γ given in (P5). The property (P6) is proved in
Appendix B.2.2, thanks to the fact that a uniform polynomial strong Hörmander
condition is satisfied as soon as 0 < γ < 1

r(q)(r(q)+1) (see Lemma 6.4).
We show in Proposition 6.7 that the properties (P5) and (P6) are sufficient to

conclude.

5.4. End of the proof

Finally, we will take Schwartz kernels in Section 6.3, in order to obtain an expansion
at any order of the heat kernel eε, γ associated with 4ε, γ, in function of the heat
kernel êq of et4̂q .
To conclude, it will remain to relate the heat kernels eε, γ and e4, µ. As in Section 4,

the local nature of the small-time asymptotics of heat kernels (hypoelliptic Kac’s
principle), established in Theorem 3.2 in Section 3, will be instrumental there and
will be applied several times (as in the proof of Theorem B). First, by localization,
small-time asymptotics of e4, µ and of the heat kernel of a representation of 4 in
a chart are the same. Second, the heat kernel eε is directly related to the kernel of
the local representation by homogeneity. Unfortunately, the heat kernel eε, γ does
not satisfy this homogeneity property, and an additional difficulty arises here, which
we will solve thanks to the adequate construction of the operator 4ε, γ. There, the
fact that the localization argument can be applied is strongly due to the fact that
0 < γ < 1, more precisely, that ε/εγ → 0 as ε→ 0.
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6. Proof of Theorem A

Throughout, we assume that X0 is a smooth section of D over M . In view of
Remark 1.2, each time this is required, we will indicate the modifications that must
be done when X0 is a smooth section of D2 over M .
We consider the framework and notations introduced in Section 4.

6.1. Construction of 4ε, γ, with a damping parameter γ

Let γ ∈ (0, 1) be fixed, to be chosen later. We assume that ε0 > 0 is small enough
so that δεγ (V ) ⊂ V for every ε ∈ [−ε0, ε0].

6.1.1. Definition and properties of the vector fields Y ε,γ
i

Considering the subsets W1,W2 and the function χ ∈ C∞(Rn) introduced in
Section 4, for every ε ∈ [−ε0, ε0] \ {0}, we define

νε, γ = (δ∗εγχ) νε + (1− (δ∗εγχ)) µ̂q = µ̂q + (δ∗εγχ) (νε − µ̂q)
and

Y ε,γ
i = (δ∗εγχ)Y ε

i + (1− δ∗εγχ) X̂q
i = X̂q

i + (δ∗εγχ)
(
Y ε
i − X̂

q
i

)
, i = 0, . . . , m.

By construction, we have Y ε, γ
i = Y ε

i on δ1/εγ (W1) and Y ε, γ
i = X̂q

i on Rn \ δ1/εγ (W2).
Note that δ1/εγ (W1) ⊂ δ1/ε(W1) is a neighborhood of 0 increasing to Rn as ε→ 0. The
vector field Y ε, γ

i is thus an adequate restriction of Y ε
i on a neighborhood increasing to

Rn as |ε| decreases, and Y ε, γ
i coincides with X̂q

i “at infinity”, more precisely, outside
of the increasing neighborhood δ1/εγ (W2). The asymptotics in εγ, with a γ ∈ (0, 1)
to be chosen small enough later, will be instrumental several times in the proof. In
particular, if we would replace (δ∗εγχ) by (δ∗λχ) in the definition of Y ε, γ

i , for some
λ > 0 fixed, then, at the very end of the proof, the localization theorem (Theorem 3.2)
could not be applied.
Setting Y 0, γ

i = X̂q
i for ε = 0, Y ε, γ

i depends smoothly on ε at ε = 0 in C∞ topology
(this is because Y ε

i depends smoothly on ε and, on any fixed compact subset K ⊂ Rn,
one has δ∗εγχ = 1 on K as soon as ε is small enough).
We note that, for i = 0, . . . ,m, we have the homogeneity property

(6.1) εβδ∗εβY
ε, γ
i = Y ε1+β , γ+β

i ∀ β ∈ (−γ, 1− γ) ∀ ε ∈
[
−ε1/(1+β)

0 , ε
1/(1+β)
0

]
\ {0}.

Remark 6.1. — Given any i ∈ {0, . . . , m}, since Y ε, γ
i coincides with Y ε

i on the
growing (as ε decreases) neighborhood on δ1/εγ (W1), we obviously have Y ε, γ

i =
Y ε
i + O(|ε|∞) as ε→ 0 in C∞ topology.
The parameter γ > 0 introduced above is used to sufficiently damp the growth of

the vector field Y ε, γ
i at infinity, with respect to that of the undamped vector field

Y ε
i .
In the next lemma, we prove that, while Y ε

i converges uniformly (as well as all
its derivatives) to X̂q

i only on every compact, Y ε, γ
i converges to X̂q

i globally, on the
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whole Rn, as ε→ 0, and the convergence is even valid in any space Lp, p ∈ [1,+∞].
This much stronger convergence property is due to the adequate modification using
the parameter γ. It implies in particular that the growth at infinity of the coefficients
of Y ε, γ

i , as well as all their derivatives, is at most polynomial, uniformly with respect
to ε. This will be crucial in what follows, as motivated and explained in Section 5.3.

Lemma 6.2. — Recall that r(q) is the degree of nonholonomy at q (we have
r(q) = wn(q), the largest weight at q, see Section 2.3) and that Q(q) = ∑n

i=1wi(q).
If γ < 1

r(q) then:

(i) For every i ∈ {0, . . . , m}, considering the vector field Y ε, γ
i − X̂q

i as a deriva-
tion, we have∥∥∥(Y ε, γ
i − X̂q

i

)
f
∥∥∥
Wk, p(Rn)

6 Cst(k)|ε|1−γr(q)‖f‖Wk+1, p(Rn)

∀ k ∈ N ∀ p ∈ [1,+∞] ∀ ε ∈ [−ε0, ε0] ∀ f ∈ C∞c (Rn).
In particular:
• Taking p = +∞: Y ε, γ

i converges uniformly on Rn to X̂q
i as ε → 0

(meaning that all coefficients of the vector field converge uniformly on
Rn), as well as all its derivatives.
• Taking p = 2: Y ε, γ

i f converges to X̂q
i f in L2(Rn) as ε→ 0, as well as all

its derivatives.
(ii) The density of νε, γ with respect to µ̂q (which is a constant times the Lebesgue

measure of Rn) converges uniformly on the whole Rn to 1, and all its deriva-
tives converge uniformly on Rn to 0. Therefore, for every s ∈ R we have
Hs(Rn, νε, γ) = Hs(Rn, µ̂q) = Hs(Rn) with respective norms that are equiva-
lent, uniformly with respect to ε.

(iii) As in Appendix B.2, we denote by (Y ε, γ
i )i> 1 the family of vector fields consist-

ing of the vector fields Y ε, γ
1 , Y ε, γ

2 , . . . , Y ε, γ
m completed with all their successive

Lie brackets. Then (i) is satisfied as well for every i > 1.
In particular, if ε0 is small enough then Lie(Y ε, γ

1 , . . . , Y ε, γ
m ) = Rn for every

ε ∈ [−ε0, ε0], with a uniform degree of nonholonomy r.
(iv) Generalizing (i) (which we recover for N = 0), we have the following as-

ymptotic expansion: given any N ∈ N, for every i ∈ {0, . . . , m}, for every
ε ∈ [−ε0, ε0],

(6.2) Y ε, γ
i = X̂q

i + ε (δ∗εγχ)Y (0)
i + · · ·+ εN (δ∗εγχ)Y (N−1)

i + εN(1−γ)+1−γr(q)Rε, γ
i,N

where Rε, γ
i,N is a smooth vector field on Rn, depending smoothly on ε, which

satisfies∥∥∥Rε, γ
i,Nf

∥∥∥
Wk, p(Rn)

6 Cst(k,N)‖f‖Wk+1, p(Rn)

∀ k ∈ N ∀ p ∈ [1,+∞] ∀ ε ∈ [−ε0, ε0] ∀ f ∈ C∞c (Rn).

Note that the asymptotic expansion (6.2) is not at order N but is at the order
of the floor (integer part) of N(1 − γ) + 1 − γr(q). Note also that the asymptotic
expansion (6.2) of Y ε, γ

i is global, in contrast to the asymptotic expansion (4.3) of Y ε
i

which is in C∞ topology.
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We will mainly use this lemma with p = 2 (note that W k, 2(Rn) = Hk(Rn)) or
with p = +∞.
Proof. — Using (4.2), we have Y ε

i = εγδ∗εγY
ε1−γ
i , and besides, since X̂q

i is homoge-
neous of degree −1, we have X̂q

i = εγδ∗εγX̂
q
i , therefore,

(6.3) Y ε, γ
i = X̂q

i + εγδ∗εγ
(
χ
(
Y ε1−γ

i − X̂q
i

))
, i = 0, . . . , m, ∀ ε ∈ [−ε0, ε0].

Now, using (2.4), we have Y η
i = X̂q

i + ηZη
i for every η ∈ R with Zη

i depending
smoothly on η in C∞ topology, and we have δ∗λZ

η
i = Zλη

i for every λ > 0. Hence

Y ε, γ
i = X̂q

i + εδ∗εγ
(
χZε1−γ

i

)
, i = 0, . . . , m, ∀ ε ∈ [−ε0, ε0].

Recalling that Y η
i has an asymptotic expansion in η around 0, at any order, in C∞

topology, Y η
i = X̂q

i +ηY
(0)
i +o(η) (see (4.3)), we have that Zη

i converges uniformly to
Y

(0)
i as well as all its derivatives, on any compact, as η → 0. Therefore, multiplying

by χ that is of compact support, χZε1−γ
i converges to χY (0)

i uniformly on Rn, as well
as all its derivatives, as ε→ 0. In particular, for every α ∈ Nn, we have

(6.4)
∥∥∥∂αx (χZε1−γ

i

)∥∥∥
Lp(Rn)

6 Cst(α) ∀ p ∈ [1,+∞] ∀ ε ∈ [−ε0, ε0].

We note that χ(δη(x)) dδ1/η(δη(x)) is uniformly bounded on Rn by Cst /ηr(q), as well
as all its derivatives. Now, since

δ∗εγ
(
χZε1−γ

i

)
(x) = dδ1/εγ (δεγ (x)).

(
χ(δεγ (x))Zε1−γ

i (δεγ (x))
)
,

using (6.4), it follows that the pullback δ∗εγ (χZε1−γ
i ) is uniformly bounded on Rn by

Cst /|ε|γr(q), as well as all its derivatives (indeed, differentiation with respect to x
can only multiply terms by εγ), and then, given any f ∈ C∞c (Rn), (Y ε, γ

i − X̂q
i ) f

is uniformly bounded on Rn by Cst |ε|1−γr(q), as well as all its derivatives, in any
Lp space and independently of ε. The proof is similar for the measure νε, γ. The
statements (i) and (ii) follow immediately.
In order to prove (iii), let us for instance prove that [Y ε,γ

i , Y ε, γ
j ] converges to

[X̂q
i , X̂

q
j ]. Noting that, by (i), we have ‖Y ε,γ

i ‖L(W 1,p(Rn), Lp(Rn)) 6 Cst for every p ∈
[1,+∞], given any f ∈ C∞c (Rn), we have∥∥∥Y ε,γ

i Y ε, γ
j f − X̂q

i X̂
q
j f
∥∥∥
Lp(Rn)

6
∥∥∥Y ε,γ

i

(
Y ε, γ
j − X̂q

j

)
f
∥∥∥
Lp(Rn)

+
∥∥∥(Y ε, γ

i − X̂q
i

)
X̂q
j f
∥∥∥
Lp(Rn)

6 Cst
(∥∥∥(Y ε, γ

j − X̂q
j

)
f
∥∥∥
W 1, p(Rn)

+ |ε|1−γr(q)‖X̂q
j f‖W 1, p(Rn)

)
6 Cst |ε|1−γr(q)‖f‖W 2, p(Rn)

and the result follows.
Let us finally prove (iv). We generalize the above argument, starting from the

expansion at the order N (see (2.3) and (4.3))

Y η
i = X̂q

i + ηY
(0)
i + · · ·+ ηNY

(N−1)
i + ηN+1Zη

i,N , i = 0, . . . , m,

TOME 4 (2021)



938 Y. COLIN DE VERDIÈRE, L. HILLAIRET & E. TRÉLAT

for every η ∈ R, where Zη
i,N is a smooth vector field on Rn depending smoothing on

η in C∞ topology. Hence, using (6.3) and the fact that Y (k)
i is homogeneous of order

k (with respect to dilations), we obtain

Y ε,γ
i = X̂q

i + ε (δ∗εγχ)Y (0)
i + · · ·+ εN (δ∗εγχ)Y (N−1)

i + εN(1−γ)+1δ∗εγ
(
χZε1−γ

i, N

)
and then, reasoning as above, all coefficients of the vector field δ∗εγ (χZε1−γ

i, N ) are
smooth functions of compact support that are uniformly bounded on Rn by Cst /
|ε|γr(q), as well as all their derivatives. Setting Rε,γ

i,N = εγr(q)δ∗εγ (χZε1−γ
i, N ), the statement

follows. �

Thanks to the damping parameter γ, chosen such that 1− γr(q) > 0, the modified
vector fields Y ε, γ

i converge uniformly on Rn to X̂q
i , as well as all their derivatives (with

rate of convergence |ε|1−γr(q)), while the vector fields Y ε
i do not converge uniformly on

Rn to X̂q
i in general, although their convergence is true on any compact. Convergence

is also established in Sobolev spaces.
To shed light on the above proof, let us take an example, which moreover shows

that the estimates derived in Lemma 6.2 (convergence rate |ε|1−γr(q)) are sharp.

Example 6.3. — In R2, consider the two vector fields

X1(x1, x2) = ∂

∂x1
, X2(x1, x2) = f(x1, x2) ∂

∂x2

where f ∈ C∞(R2) is such that

f(0, 0) = ∂f

∂x1
(0, 0) = · · · = ∂k−1f

∂xk−1
1

(0, 0) = 0 and ∂kf

∂xk1
(0, 0) = 1

for some k ∈ N∗, i.e., f(x1, x2) = xk1(1 + O(x1, x2)) + O(x2) around q = (0, 0).
The coordinates (x1, x2) are privileged around (0, 0) and we have w1(0, 0) = 1 and
r(0, 0) = w2(0, 0) = k + 1.
For instance, for k = 1 one can take f(x1, x2) = x1 or f(x1, x2) = x1 + x2

2
(this case is known in the literature as the Grushin case and the corresponding
Grushin sR structure is singular at (0, 0)); for k = 2 one can take f(x1, x2) = x2

1
or f(x1, x2) = x2

1 + x2
2 or f(x1, x2) = x2

1 − x2 (the latter is called singular Grushin
case).
For every ε ∈ R \ {0}, we have

Xε
1(x1, x2) = ∂

∂x1
, Xε

2(x1, x2) =
f
(
εx1, ε

k+1x2
)

εk
∂

∂x2

and thus

X̂
(0,0)
1 (x1, x2) = ∂

∂x1
, X̂

(0, 0)
2 (x1, x2) = xk1

∂

∂x2
.

The family of functions (f ε)ε∈R\{0}, defined by f ε(x1, x2) = f(εx1, εk+1x2)
εk

, converges
to the function f̂ defined by f̂(x1, x2) = xk1, uniformly on any compact subset
of R2, but does not converge uniformly on R2 to f̂ in general (take for instance
f(x1, x2) = x1 + x2

1, or f(x1) = ex1 − 1).

ANNALES HENRI LEBESGUE



Small-time asymptotics of hypoelliptic heat kernels 939

Now, let us fix an arbitrary γ ∈ (0, 1
k+1) (recall that r(0, 0) = k + 1) and an

arbitrary function χ ∈ C∞c (R) such that χ(x1, x2) = 1 on the sR ball BsR(0, 1)
and χ(x1, x2) = 0 on R2 \ BsR(0, 2). Writing, in short, χ ' 1BsR(0, 1), we have
δ∗εγχ ' 1BsR(0,1/εγ), and we compute

Xε, γ
1 (x1, x2) = ∂

∂x1
,

Xε, γ
2 (x1, x2) = x1

∂

∂x2
+ χ

(
εγx1, ε

(k+1)γx2
)(f(εx1, ε

k+1x2)
εk

− x1

)
∂

∂x2
.

Thanks to the introduction of the parameter γ (small enough), now, the family of
functions (f ε, γ)ε∈R \{0}, defined by f ε,γ(x1, x2) = f(εx1,εk+1x2)

εk
, converges uniformly

on R2 to the function f̂ defined by f̂(x1, x2) = x1. Indeed, thanks to the truncation
function, we have to prove this convergence for |x1| 6 1/|ε|γ and |x2| 6 1/|ε|(k+1)γ,
i.e., |εx1| 6 |ε|1−γ and |εk+1x2| 6 |ε|(k+1)(1−γ). But then, for such values of (x1, x2),
we have

f
(
εx1, ε

k+1x2
)

= εkxk1
(
1 + O

(
|ε|1−γ

))
+ O

(
|ε|(k+1)(1−γ)

)
and thus

f ε, γ(x1, x2) = xk1
(
1 + O

(
|ε|1−γ

))
+ O

(
|ε|1−(k+1)γ

)
= xk1 + O

(
|ε|1−(k+1)γ

)
where the remainder term O(|ε|1−(k+1)γ) is uniform with respect to (x1, x2) ∈ R2.
Hence ‖f ε, γ − f̂‖L∞(R2) 6 Cst |ε|1−(k+1)γ, as stated in the general lemma above.

Thanks to the introduction of the damping parameter γ, we have seen that Y ε, γ
i

converges to X̂q
i in a much stronger way than Y ε

i . We next prove that these modified
vector fields Y ε, γ

i satisfy a global strong Hörmander condition on Rn.

6.1.2. Uniform polynomial strong Hörmander condition

As in Appendix B.2, we denote by (Y ε, γ
i )i> 1 the family of vector fields consisting of

the vector fields Y ε, γ
1 , Y ε, γ

2 , . . . , Y ε,γ
m completed with all their successive Lie brackets.

In the following lemma, we prove that the family (Y ε, γ
i )i> 1 satisfies the uniform

polynomial strong Hörmander condition (B.9) (see Appendix B.2.2), whenever γ > 0
is small enough.

Lemma 6.4. — There exist N1 ∈ N such that, if γ < 1
r(q)(r(q)+1) then

(6.5) ‖y‖2
2 6 Cst 〈x〉2r(q)

N1∑
i=1
〈Y ε, γ

i (x), y〉2 ∀ x, y ∈ Rn ∀ ε ∈ [−ε0, ε0].

This lemma will allow us to use the global subelliptic estimates established in
Appendix B.2, required in order to obtain the asymptotic expansion of the semi-
group with respect to ε (see further).
Proof. — Recall that Y 0, γ

i = X̂q
i for ε = 0. Let us first prove that the family of

vector fields (X̂q
i )i> 1 (consisting of the vector fields X̂q

1 , . . . , X̂
q
m, completed with

their iterated Lie brackets), satisfies the polynomial strong Hörmander condition,
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i.e., that (6.5) is satisfied for ε = 0. Actually, one could apply Remark B.8 (i.e., one
could use [Hör58, Lemma 2]), which would give the inequality (6.5) with the term
〈x〉2N0 at the right-hand side, for some N0 ∈ N. This would be enough for our needs.
But actually, hereafter, instead of using the non-obvious result [Hör58, Lemma 2],
we make a direct proof by using the homogeneity property of the vector fields X̂q

i .
In turn, we obtain the optimal integer N0 = r(q) (it is easy to see on examples that
it is optimal).
Let N1 ∈ N be an integer, large enough so that the finite family (X̂q

i )06 i6N1 is a
frame of Rn at every point: such an integer exists because the m-tuple of polynomial
vector fields (X̂q

1 , . . . , X̂
q
m) satisfies the Hörmander condition at every point of Rn,

with a uniform degree of nonholonomy. We have to prove that

(6.6) ‖y‖2
2 6 Cst〈x〉2r(q)

N1∑
i=1

〈
X̂q
i (x), y

〉2
∀ x, y ∈ Rn.

Let us introduce the sR pseudo-norm, defined by

‖x‖sR =
n∑
i=1
|xi|1/wi(q)

for every x = (x1, . . . , xn) ∈ Rn in privileged coordinates. Note that ‖δε(x)‖sR =
|ε|‖x‖sR for every x ∈ Rn and every ε ∈ R. By the Hörmander condition and by
compactness, we first note that

(6.7) ‖y‖2
2 6 Cst

N1∑
i=1

〈
X̂q
i (x), y

〉2
∀ y ∈ Rn ∀ x ∈ Rn | ‖x‖sR 6 1

and thus (6.6) is satisfied as well for x such that ‖x‖sR 6 1. Let us now establish (6.6)
for every x ∈ Rn. Let x ∈ Rn \ {0} be arbitrary. Setting ε = 1

‖x‖sR
, we have

‖δε(x)‖sR = 1 and hence, using (6.7), we get

‖y‖2
2 6 Cst

N1∑
i=1

〈
X̂q
i (δε(x)), y

〉2
6

Cst
ε2r(q)

N1∑
i=1

〈
X̂q
i (x), y

〉2

= Cst ‖x‖2r(q)
sR

N1∑
i=1

〈
X̂q
i (x), y

〉2

for all x, y ∈ Rn, where we have used that εX̂q
i (δε(x)) = X̂q

i (x) for i ∈ {1, . . . , m}
and thus εkiX̂q

i (δε(x)) = X̂q
i (x) for i ∈ {1, . . . , N1} with ki 6 wn(q) = r(q). To

obtain (6.6), we use the fact that ‖x‖sR 6 Cst〈x〉 for every x ∈ Rn.
Now, let us establish (6.5) for every ε ∈ [−ε0, ε0], whenever γ is small enough.

Since χ has a compact support, there exists R > 0 such that supp(χ) ⊂ B̂q
sR(0, R).

Here, given any r > 0, the set B̂q
sR(0, r) = {x ∈ Rn | d̂qsR(0, x) < r} is the sR ball of

center 0 and of radius r, for the sR distance d̂qsR on M̂ q ' Rn. By definition, given
any f ∈ C∞(Rn) we have

supp
((
Y ε, γ
i − X̂q

i

)
f
)
⊂ supp (δ∗εγχ) ⊂ B̂q

sR(0, R/|εγ|),
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i.e., Y ε, γ
i coincides with X̂q

i outside of the sR ball B̂q
sR(0, R/|εγ|). Since (6.5) is

satisfied for the family (X̂q
i )16 i6N1 , we only have to prove that (6.5) is satisfied for

the family (Y ε, γ
i )16 i6N1 for x ∈ B̂q

sR(0, R/|εγ|), i.e., defining the n-by-N1 matrix

P ε, γ(x) =
(
Y ε, γ

1 (x) Y ε, γ
2 (x) · · · Y ε,γ

N1 (x)
)

∀ x ∈ Rn,

we have to prove that, if γ is small enough then

(6.8) y>P ε, γ(x)P ε, γ(x)>y > Cst〈x〉−2r(q)‖y‖2
2 ∀ x, y ∈ Rn.

It follows from Lemma 6.2 that
P ε, γ(x)P ε, γ(x)> = P̂ q(x)P̂ q(x)>y + O

(
|ε|1−γr(q)

)
when 0 < γ < 1

r(q) . Therefore, using (6.6), to prove (6.8) it suffices to observe that

〈x〉2r(q)|ε|1−γr(q) 6 |ε|1−γr(q)(r(q)+1) ∀ x ∈ B̂q
sR(0, R/|εγ|),

which is so because, for x ∈ B̂q
sR(0, R/|εγ|), we have |x| 6 Cst |ε|−γr(q) (actually,

in privileged coordinates, we have |xi| 6 Cst |ε|−γwi(q)). The conclusion follows, by
taking γ < 1

r(q)(r(q)+1) . �

6.1.3. Definition of the operator 4ε, γ

Differential operator 4ε, γ. For every γ ∈ (0, 1), for every ε ∈ [−ε0, ε0], we
define on C∞(Rn) the differential operator

(6.9) 4ε, γ =
m∑
i=1

(Y ε, γ
i )2 + ε (δ∗εγχ)Y ε

0 − ε2 (δ∗εγχ) (δ∗εv)

(note that 40, γ = 4̂q). By construction, we have 4ε, γ = 4ε on δ1/εγ (W1) and
4ε, γ = 4̂q on Rn \ δ1/εγ (W2). We have the homogeneity property (obvious to check,
using (6.1)):

(6.10) ε2βδ∗εβ4ε, γ (δεβ)∗ = 4ε1+β , γ+β

∀ β ∈ (γ − 1, γ) ∀ ε ∈
[
− ε1/(1+β)

0 , ε
1/(1+β)
0

]
\ {0}.

When X0 is a smooth section of D2 over M , we modify the definition of 4ε, γ as
follows:

4ε, γ =
m∑
i=1

(Y ε, γ
i )2 + Y ε, γ

0 − ε2(δ∗εγχ) (δ∗εv) .

Remark 6.5. — As in Remark 6.1, since 4ε, γ coincides with 4ε on the growing
neighborhood δ1/εγ (W1), we have in particular 4ε, γ = 4ε + O(|ε|∞) as ε→ 0 in C∞
topology.

The operator 4ε, γ, defined by (6.9), depends smoothly on ε ∈ [−ε0, ε0] in C∞

topology. In particular, 4ε, γ converges to 4̂q in C∞ topology as ε → 0. But, as a
consequence of Lemma 6.2, we have the following stronger result.
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Lemma 6.6. — If 0 < γ < 1/r(q) then∥∥∥(4ε, γ − 4̂q
)
f
∥∥∥
Lp(Rn)

6 Cst |ε|1−γr(q)‖f‖W 2, p(Rn)

∀ p ∈ [1,+∞] ∀ ε ∈ [−ε0, ε0] ∀ f ∈ C∞c (Rn).

Asymptotic expansion of 4ε, γ. Let us first give an asymptotic expansion in
C∞ topology. Using (4.3), (4.6) and Remark 6.5, we get that 4ε, γ has an asymptotic
expansion in C∞ topology at any order N with respect to ε,

(6.11) 4ε, γ = 4̂q + εA1 + ε2A2 + · · ·+ εNAN + o
(
|ε|N

)
where Ai is a second-order differential operator for every i ∈ N∗, with

A1 =
m∑
i=1

(
X̂q
i Y

(0)
i + Y

(0)
i X̂q

i

)
+ X̂q

0

A2 =
m∑
i=1

(
X̂q
i Y

(1)
i + Y

(1)
i X̂q

i +
(
Y

(0)
i

)2
)

+ Y
(0)

0 − v(0)
(6.12)

etc. Moreover, Ai has polynomial coefficients of degree less than (r(q) + i)2 (this
bound is not optimal). Indeed, given any integer k > −1, the vector field Y (k)

i is a
polynomial that is homogeneous of degree k with respect to dilations. In privileged
coordinates, its coefficient along ∂

∂xn
(where xn has the largest weight, wn(q) = r(q))

must therefore be a polynomial of degree 6 wn(q) + k = r(q) + k.
When X0 is a smooth section of D2 over M , since Y ε, γ

0 = X̂q
0 + (δ∗εγχ)(Y ε

0 − X̂
q
0) =

X̂q
i + (δ∗εγχ)(εY (−1)

0 + ε2Y
(0)

0 + · · ·+ εNY
(N−2)

0 + o
(
|ε|N

)
) with X̂q

0 homogeneous of
order −2 (see Remark 1.2), the expansion (6.11) of 4ε, γ remains true as well by
replacing 4̂q with 4̂q + X̂q

0 and A1 with A1 = ∑m
i=1

(
X̂q
i Y

(0)
i + Y

(0)
i X̂q

i

)
+ Y

(−1)
0 , etc.

The asymptotic expansion (6.11) is in C∞ topology. Thanks to (6.2) in Lemma 6.2,
we now derive an asymptotic expansion of 4ε, γ , at any order, valid on the whole Rn

(not only on every compact): in the above definition of Ai, it suffices to replace Y (k)
i

by (δ∗εγχ)Y (k)
i , X̂q

0 by (δ∗εγχ)X̂q
0 , etc, and we obtain

(6.13) 4ε, γ = 4̂q + εAε, γ1 + ε2Aε, γ2 + · · ·+ εNAε, γN + εN(1−γ)+1−γr(q)Rε, γ
N+1

with

Aε, γ1 =
m∑
i=1

(
X̂q
i (δ∗εγχ)Y (0)

i + (δ∗εγχ)Y (0)
i X̂q

i

)
+ (δ∗εγχ) X̂q

0

Aε, γ2 =
m∑
i=1

(
X̂q
i (δ∗εγχ)Y (1)

i + (δ∗εγχ)Y (1)
i X̂q

i +
(
(δ∗εγχ)Y (0)

i

)2
)

+ (δ∗εγχ)Y (0)
0 − (δ∗εγχ) v(0)

(6.14)

etc. Because of the damping parameter γ, the growth of the coefficients of the second-
order differential operator Aε, γi is at most polynomial of degree r(q) − 1 (which is
the maximal degree of the coefficients of X̂q

i ), for all i ∈ N∗ and ε ∈ [−ε0, ε0]. Note
that Aε, γi = Ai+ O(|ε|∞) as ε→ 0 in C∞ topology. We infer from (iv) in Lemma 6.2
that, in (6.13), the term Rε, γ

N+1 is a finite sum of products of Rε, γ
j,N (whose coefficients
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are uniformly bounded) with either some X̂q
i (whose coefficients are polynomial of

degree 6 r(q) − 1) or some (δ∗εγχ)Y (0)
i (whose coefficients are uniformly bounded).

Therefore Rε, γ
N+1 a second-order differential operator, depending smoothly on ε, with

coefficients whose growth is at most polynomial of degree r(q)− 1, and

‖Rε, γ
N+1‖L

(
Hα
β

(Rn), Hα−2
β−r(q)+1

) 6 Cst(α, β) ∀ α, β ∈ R ∀ ε ∈ [−ε0, ε0]

which is exactly the property (P5) that we have identified in Section 5.3. This means
that the asymptotic expansion (6.13) is in the sense of operators mapping Hα

β (Rn)
to Hα−2

β−N`(Rn), uniformly with respect to ε.
Note that we also have ‖Rε, γ

N+1f‖Wk, p(Rn) 6 Cst(k,N)‖f‖Wk+2, p(Rn) for all k ∈ N,
p ∈ [1,+∞], ε ∈ [−ε0, ε0] and f ∈ C∞c (Rn). This means that the asymptotic
expansion (6.13) is also in the sense of operators mapping W k+2, p(Rn) to W k, p(Rn),
uniformly with respect to ε.

Semigroup generated by 4ε, γ. In the sequel, we assume that 0 < γ < 1/r(q).
By Lemma 6.2, we have Hs(Rn, νε,γ) = Hs(Rn), so that, hereafter, we use the
Lebesgue measure in all Sobolev spaces that we consider.
Reasoning as in the proof of Lemma 3.1 and using Lemma 6.6 with p = 2, we

first observe that there exists C > 0, not depending on ε ∈ [−ε0, ε0], such that
the operator 4ε, γ − C id is closed and dissipative in L2(Rn), as well as its adjoint.
Setting D(4ε, γ) = {f ∈ L2(Rn) | 4ε, γf ∈ L2(Rn)}, it follows that the opera-
tor (4ε, γ, D(4ε, γ)) generates a strongly continuous (quasicontraction) semigroup
(et4ε, γ )t> 0 on L2(Rn), satisfying ‖et4ε, γ‖L(L2(Rn)) 6 eCt for every t > 0 and every
ε ∈ [−ε0, ε0] \ {0}.
Following Section B.2, for every k ∈ Z, we define the Hilbert space Dε,γk as the

completion of C∞c (Rn) for the norm

‖f‖Dε, γ
k

=
∥∥∥(2C id−4ε, γ − (4ε, γ)∗)k f

∥∥∥
L2(Rn)

.

For k = 1, we have Dε, γ1 = D(4ε, γ).
By applying the semigroup estimate to (2C id−4ε, γ−(4ε, γ)∗)kf and by a classical

argument of restriction or extension of semigroups on the Sobolev towers (see [EN00]),
we obtain the uniform estimates

(6.15)
∥∥∥et4ε, γ∥∥∥

L(Dε, γk ) 6 Cst eCt ∀ t > 0 ∀ k ∈ Z ∀ ε ∈ [−ε0, ε0].

Recall that, for ε = 0, we have 40, γ = 4̂q. For every k ∈ Z, the Hilbert space D̂qk
is the completion of C∞c (Rn) for the (equivalent) norm ‖f‖D̂q

k
= ‖(id−4̂q)kf‖L2(Rn).

Actually, for ε = 0 we have the better estimate ‖et 4̂q‖
L(D̂q

k
) 6 1 for every k ∈ Z

(contraction semigroup).

Heat kernel eε, γ of 4ε, γ. By hypoellipticity (see Corollary B.3), the Schwartz
kernel of et4ε, γ has a continuous density with respect to νε, γ, which is the smooth
function

eε, γ = e4ε, γ ,νε, γ : (0,+∞)× Rn × Rn → (0,+∞).
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Using (6.10), we have the homogeneity property (which will be useful at the end of
the proof):

(6.16) eε, γ(t, x, x′) = |ε|βQ(q)eε
1−β , γ−β

(
ε2βt, δεβ(x), δεβ(x′)

)
∀ β ∈ (γ, 1− γ)

∀ ε ∈
[
− ε1/(1−β)

0 , ε
1/(1−β)
0

]
\ {0} ∀ (t, x, x′) ∈ (0,+∞)× Rn × Rn.

Convergence of eε, γ to êq. Applying Theorem 3.5 (in Section 3.2.2), we obtain
that eε, γ converges to êq in C∞((0,+∞) × Rn × Rn) topology as ε → 0 (when X0
is a smooth section of D2 over M , one has to replace 4̂q with 4̂q + X̂q

0), but, as
announced earlier, we are now going to derive an asymptotic expansion in ε at any
order. This is possible thanks to the introduction of the parameter γ.

6.2. Asymptotic expansion in ε of the semigroup

Recall that the operators Ci(t) have been defined in Section 5.1, as finite sums of
operators Ii(t), defined by the integral (5.4), which is a convolution in which the
compositions involve the operators es4̂q and the derivations Aj. The operators Ci(t)
appear in the asymptotic expansion (5.3) of et4ε in C∞ topology. In the proposition
hereafter, we prove that they appear as well in the asymptotic expansion of et4ε, γ

in the sense of uniformly smoothing operators. This key result is the byproduct of
the introduction of the damping parameter γ.

Proposition 6.7. — We assume that

γ <
1

r(q)(r(q) + 1) .

Given any 0 < t0 < t1 < +∞, given any N ∈ N∗, we have

et4
ε, γ = et4̂

q + εC1(t) + · · ·+ εNCN(t) + εN+1Qε, γN+1(t)(6.17)

as ε→ 0, for every t ∈ [t0, t1], where all operators in (6.17) are locally smoothing for
t ∈ [t0, t1], i.e.,

N∑
i=1
‖χ1Ci(t)χ2‖L(Hj(Rn), Hk(Rn)) +

∥∥∥χ1Qε, γN+1(t)χ2

∥∥∥
L(Hj(Rn), Hk(Rn))

6 Cst (χ1, χ2, j, k, t0, t1, N) ∀ t ∈ [t0, t1] ∀ χ1, χ2 ∈ C∞c (Rn) ∀ j, k ∈ Z.

Proof. — Following the approach described in Section 5, we start by applying the
Duhamel formula, with the operator 4ε,γ,

et4
ε, γ = et 4̂

q +
∫ t

0
e(t−s)4ε, γ

(
4ε, γ − 4̂q

)
es4̂

q

ds,

which we iterate N times, thus obtaining the formula (5.1) with 4ε replaced by
4ε, γ . Now, using the asymptotic expansion (6.13) of 4ε, γ , applied at order N1 such
that N1(1− γ) + 1− γr(q) > N + 1, we obtain

(6.18) et4
ε, γ = et4̂

q + εCε, γi (t) + · · ·+ εNCε, γN (t) + εN+1Pε, γN+1(t)
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where each operator Cε, γj (t) is a finite sum of terms Iε, γi (t) for some i ∈ {1, . . . , N},
where Iε, γi (t) is defined by

(6.19) Iε, γi (t) =
∫

Σi(t)
es14̂qAε, γj1 es24̂q · · · Aε,γji e

si+14̂q dsi+1

with j1, . . . , jN ∈ {1, . . . , N}, and where the remainder term Pε, γN+1(t) is a finite sum
of terms εkIε, γi (t), εαJ ε, γ

i (t) and εαKε, γi (t) with k, i ∈ N, k 6 (N + 1)2, 1 6 i 6 N ,
α ∈ [0, (N + 1)2], and J ε, γ

i (t) and Kε, γi (t) are defined by

(6.20) J ε, γ
i (t) =

∫
Σi(t)

es1 4̂qBε, γ1 es24̂q · · · Bε, γi esi+1 4̂q dsi+1

(6.21) Kε, γi (t) =
∫

Σi(t)
es14ε,γBε, γ1 es24̂q · · · Bε, γi esi+14̂q dsi+1

where each Bε, γj is a second-order derivation, either equal to some Aε, γi , i ∈ {1, . . . ,
N}, or toRε, γ

N1+1, whose coefficients growth at infinity is at most polynomial of degree
r(q).
Note that, compared with the operator Ii(t) defined by (5.4) in Section 5.1, in the

definition (6.19) of Iε, γi (t) the derivations Aj are replaced with Aε, γj .
The above expansion is formal. We give it a rigorous meaning in the following

proposition, by using, as explained in Section 5, the various global smoothing prop-
erties established in Appendix B.2 and in Appendix C.
The arguments that we develop hereafter will show that all operators Cε, γi (t),
Ci(t), for i ∈ N∗ and the operators Pε, γN+1(t) and Qε, γN+1(t) are locally smoothing
for t ∈ [t0, t1], and that, actually, Cε, γi (t) = Ci(t) + O(|ε|∞) in C∞ topology, and
then (6.17) will follow from (6.18).
We start by noting that:
• by construction, the coefficients of the operator 4ε, γ, as well as all their
derivatives, have a growth at infinity that is at most polynomial, uniformly
with respect to ε ∈ [−ε0, ε0];
• the vector fields defining the one-parameter family of Hörmander operators

(4ε, γ)−ε0 6 ε6 ε0 satisfy the uniform polynomial strong Hörmander condition
established in Lemma 6.4.

Therefore, the global subelliptic estimates established in Appendix B.2 can be ap-
plied to 4ε, γ (in other words, we have the properties (P5) and (P6) motivated in
Section 5.3).
We are also going to apply to 4̂q the global smoothing properties established in

Appendix C (in other words, we have the properties (P1) and (P2) motivated in
Section 5.2).
Let χ1, χ2 ∈ C∞c (Rn), let 0 < t0 < t1 be arbitrarily fixed and let j, k ∈ Z be

arbitrary.

Lemma 6.8. — All operators Ci(t) and Cε, γi (t), i ∈ N∗, are locally smoothing for
t ∈ [t0, t1].
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Proof. — It suffices to prove that, for every i ∈ N∗, the operator χ1Ii(t)χ2, defined
by (5.4), maps continuously Hj(Rn) to Hk(Rn), with a norm that is uniformly
bounded with respect to t ∈ [t0, t1] (in other words, we want to prove (5.7)). The
proof for the operator Iε, γi (t), defined by (6.19), will be exactly similar, by replacing
the derivations Ai with Aε, γi which are, as well, derivations whose coefficients growth
is at most polynomial, uniformly with respect to ε.
Although the argument has been sketched in Section 5.2, we provide hereafter

the detailed proof. Inside the integral (5.4) defining Ii(t), at least one of the real
numbers sp is such that sp > t0

N
. We write:

χ1Ii(t)χ2 =
∫

Σi(t)
χ1e

s14̂qAj1 es24̂q · · · Ajp−1 e
sp4̂qAjpesp+14̂q · · · Aji esi+14̂qχ2 ds

i+1.

Using (C.5) and the global continuous embeddings (B.6) and (B.7), the localization
operator χ2 maps continuously Hj(Rn) to D̂q−m,β for some m ∈ N, for every β ∈ R.
We note here that β can be chosen arbitrarily large. Then, by Proposition C.3 (and
more precisely, by (C.7)), the operator esi+1 4̂q maps continuously D̂q−m,β to itself
for every si ∈ [0, t1], provided that β > 1, with a norm constant not depending on
si ∈ [0, t1]. By (B.7), D̂q−m,β is continuously embedded into H−2m

β−2mN(Rn). Applying
the derivation Aji then maps to H−2m−2

β−2mN−(r(q)+ji)2(Rn), because Aji is a second-order
derivation with polynomial coefficients of degree less than (r(q) + ji)2. This step is
repeated i− p times, so that

Ajpesp+14̂q · · · Aji esi+14̂qχ2

maps continuously Hj(Rn) to Hα
β (Rn), for some α 6 0, for every β > 1. We stress

that, in the latter repeated argument, as well as in the following, it is important to
ensure that the weight be greater than 1, in order to be able to apply (C.7). One now
applies the operator esp 4̂q , which maps continuously Hα

β (Rn) to Hα′

β−k0(|α|+|α′|)(Rn),
for every α′ ∈ R, by applying the global smoothing property (P1) stated in Section 5.2
(itself following from Proposition C.3 in Appendix C.2 and from the embeddings (B.6)
and (B.7)). Then we continue by applying again compositions Ajes4̂

q as above, and
the final composition by the localization operator χ1, which maps continuously to
Hk(Rn) if α′ and β have been chosen large enough. �

Lemma 6.9. — The operator Pε, γN+1(t) is locally smoothing for t ∈ [t0, t1].

Proof. — It suffices to prove that χ1Iε, γi (t)χ2 and χ1Kε, γi (t)χ2 (see (6.20) and
(6.21)) map continuously Hj(Rn) to Hk(Rn), with a norm that is uniformly bounded
with respect to t ∈ [t0, t1] and to ε ∈ [−ε0, ε0]. As pointed out at the beginning of
Section 5.3, the argument is similar to the one used in the proof of Lemma 6.8 with
the following differences:

• The second-order derivations Bε, γj can be either equal to some Aε, γi , i ∈
{1, . . . , N}, or to Rε,γ

N1+1. In the latter case, this does not affect our previous
reasoning because its coefficients have a growth at infinity that is at most
polynomial of degree r(q).
• In the definition (6.21) of Kε, γi (t), the last term in the composition is es14ε, γ .
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Hence, the only main difference is in the last item: we have to explain how to deal
with the composition by es14ε, γ . There are two cases.
If s1 > t0

N
, then the term χ1e

s14ε, γ is expected to act as a smoothing operator.
By the above reasoning, the operator Bε, γ1 es24̂q · · · Bε, γi esi+14̂qχ2 maps continuously
Hj(Rn) to H−αk0 α(Rn) for some α > 0 and some k0 ∈ N. Now, we apply to χ1e

s14ε, γ

the property (P6) stated in Section 5.3 (itself following from Corollary B.9 in Ap-
pendix B.2.2), which gives the result.
Otherwise, another term esp4̂

q acts as a smoothing operator, and thus, by the
above reasoning, the operator Bε, γ1 es24̂q · · · Bε, γi esi+14̂qχ2 maps continuously Hj(Rn)
to Hm

β (Rn) for any m ∈ N and β > 1, and thus, using the global continuous
embeddings (B.6), it mapsHj(Rn) to Dε, γm , for anym ∈ N arbitrarily large, uniformly
with respect to ε ∈ [−ε0, ε0]. One then applies es14ε, γ , which, by (6.15), maps
continuously Dε, γm to Dε, γm (uniformly with respect to ε), and the final application
of the localization operator χ1 maps to Hk(Rn), by applying the uniform local
subellipticity estimates (Theorem B.1), provided that m be large enough. �

To conclude, it remains to establish the following lemma.

Lemma 6.10. — We have
Cε, γi (t) = Ci(t) + O(|ε|∞)

as ε→ 0 in C∞ topology, for every i ∈ {1, . . . , N}, for every t ∈ [t0, t1].

Proof. — It suffices to prove that χ1(Iε, γi (t)− Ii(t))χ2 = O(|ε|∞), i.e., that
(6.22)∫

Σi(t)
χ1e

s14̂q
(
Aε, γj1 −Aj1

)
es24̂q · · ·

(
Aε, γji −Aji

)
esi+14̂qχ2 ds

i+1 = O(|ε|∞)

as ε→ 0, for every i ∈ N∗. Recall that the second-order differential operators Ai and
Aε, γi are respectively defined by (6.12) and (6.14). It follows from their definition
that there exists R > 0 such that

supp ((Aε, γi −Ai) f) ⊂ Rn \ B̂q(0, R/εγ) ∀ ε ∈ [−ε0, ε0] ∀ f ∈ C∞(Rn).

Besides, for i = 1, 2, let Ri > 0 be such that supp(χi) ⊂ B̂q(0, Ri). Here, B̂q(0, R)
denotes the sR ball in Rn of center 0 and radius R, for the (nilpotent) sR structure
associated with 4̂q. We are going to use the exponential estimates (C.4) given in
Appendix C.1.
The Sobolev regularity arguments are to those in the proof of Lemma 6.8, but we

slightly modify those arguments with the following additional considerations.
Inside the integral (6.22), at least one of the real numbers sp is such that sp > t0

N
.

We write esp4̂q = e
sp
2 4̂

q
e
sp
2 4̂

q . Let χε3 be a function of compact support such that
χ3(x) = 1 on B̂q(0, R/εγ/2) and χ3(x) = 0 on Rn \ B̂q(0, 2R/εγ/2). In other words,
one has χ3 ' 1

B̂q(0, R/εγ/2). We write the operator inside the integral (6.22) as

χ1Dε, γ1 e
sp
2 4̂

q

e
sp
2 4̂

qDε, γ2 χ2

= χ1Dε, γ1 e
sp
2 4̂

q

χ3e
sp
2 4̂

qDε, γ2 χ2 + χ1Dε, γ1 e
sp
2 4̂

q(1− χ3)e
sp
2 4̂

qDε, γ2 χ2
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where Dε,γ1 and Dε, γ2 are compositions of esj4̂q and of Aε, γj − Aj. Using the expo-
nential estimates (C.4) for heat kernels and their derivatives (see Appendix C.1),
and combining with the previous reasonings, we infer that, not only the operator
e
sp
2 4̂

qDε, γ2 χ2 maps Hj(Rn) to Hα
β (Rn) for any α and β arbitrarily large, but also, its

range is “essentially concentrated” in B̂q(0, R/εγ/2), in the sense that∥∥∥∥(1− χ3)e
sp
2 4̂

qDε, γ2 χ2

∥∥∥∥
L(Hj(Rn), Hα

β
(Rn))

6 C e−C/|ε|
γ ∀ ε ∈ [−ε0, ε0]

with C = Cst(j, k, t0, t1, N). The exponential term comes from the fact that the
support of 1− χ3 is far from the support of χ2, at a distance of the order of 1/|ε|γ/2.
By a similar argument, we have∥∥∥∥(Aε, γjp −Ajp) e sp2 4̂qχ3e

sp
2 4̂

qDε, γ2 χ2

∥∥∥∥
L(Hj(Rn), Hα

β
(Rn))

6 C e−C/|ε|
γ ∀ ε ∈ [−ε0, ε0].

The exponential term comes from the fact that the support of Aε, γi −Ai is far from
the support of χ3, at a distance of the order of 1/|ε|γ.
All in all, combining with the arguments already used in the proof of Lemma 6.8,

we obtain the Lemma 6.10. �

Proposition 6.7 is proved. �

6.3. Asymptotic expansion in ε of the heat kernel

Taking the Schwartz kernels in the expansion (6.17), more precisely, considering
their densities with respect to the measure µ̂q, and recalling that êq = e4̂q ,µ̂q , we get
that

(6.23) e4ε, γ , µ̂q(t, x, x′) = êq(t, x, x′) +
N∑
i=1

εi[Ci(t)]µ̂q(x, x′) + o
(
|ε|N

)
at any order N , as ε → 0, in C∞((0,+∞) × Rn × Rn) topology. For instance, we
have

[C1(t)]µ̂q(x, x′) =
∫ t

0

∫
Rn
êq(t− s, x, z) ((A1)xêq) (s, z, x′) dz ds

and all other (smooth) functions [Ci(t)]µ̂q(x, x′) can be expressed as well with convo-
lutions. Now, using the formula (A.2) in Appendix A, we have

eε, γ(t, x, x′) = e4ε,γ , νε, γ (t, x, x′) = 1
hε, γ(x′)e4ε, γ ,µ̂q(t, x, x

′)

where hε, γ = dνε, γ

dµ̂q
is the (smooth) density of νε, γ with respect to µ̂q. By Lemma 6.2,

hε, γ converges to 1 uniformly on Rn, and it depends smoothly on ε in C∞ topology,
hence hε, γ = 1 + εh1 + · · · + εNhN + o(|ε|N) at any order N , in C∞ topology.
Using (6.23), we conclude that

(6.24) eε, γ(t, x, x′) = êq(t, x, x′) +
N∑
i=1

εif qi (t, x, x′) + o
(
|ε|N

)
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at any order N , as ε→ 0, in C∞((0,+∞)×Rn ×Rn) topology, where the functions
f qi are smooth on (0,+∞)× Rn × Rn.
Recall that eε = e4ε, νε where 4ε is defined by (4.4).
Lemma 6.11. — We have

eε, γ(t, x, x′) = eε(t, x, x′) + O(|ε|∞)
as ε→ 0 in C∞((0,+∞)× Rn × Rn) topology.
Proof. — Let β > 0 small. By (6.16), we have

eε, γ(t, x, x′) = |ε|βQ(q)eε
1−β , γ−β

(
ε2βt, δεβ(x), δεβ(x′)

)
.

Since4ε1−β , γ−β coincides with4ε1−β on every compact, we infer from the localization
result, Theorem 3.2 (Section 3.2.1), that
|ε|βQ(q)eε

1−β ,γ−β
(
ε2βt, δεβ(x), δεβ(x′)

)
= |ε|βQ(q)eε

1−β (
ε2βt, δεβ(x), δεβ(x′)

)
+ O(|ε|∞)

as ε→ 0, on every compact subset of (0,+∞)×Rn×Rn. Besides, it follows from the
homogeneity property (4.5) that eε(t, x, x′) = λQ(q)eε/λ(λ2t, δλ(x), δλ(x′)) for λ > 0,
and taking λ = ε2β, we obtain

|ε|βQ(q)eε
1−β (

ε2βt, δεβ(x), δεβ(x′)
)

= eε(t, x, x′).
The Lemma 6.11 follows. �
We note again, in the above proof, the crucial role of the parameter γ in our

construction. Here, it has been instrumental to be able to apply the localization
result, and thus show that the small-time asymptotics of eε, γ and of eε coincide at
the infinite order.
Using (6.24) and Lemma 6.11, we finally obtain that

eε(t, x, x′) = êq(t, x, x′) +
N∑
i=1

εif qi (t, x, x′) + o
(
|ε|N

)
at any order N , as ε→ 0, in C∞((0,+∞)× Rn × Rn) topology.

6.4. End of the proof

The end of the proof is now similar to the proof of Theorem B. Thanks to repeated
applications of the localization result, Theorem 3.2 (hypoelliptic Kac’s principle),
we finally obtain

|ε|Q(q)e4, µ
(
ε2t, δε(x), δε(x′)

)
= êq(t, x, x′) +

N∑
i=1

εif qi (t, x, x′) + o
(
|ε|N

)
at any order N , as ε→ 0, in C∞ topology, which is exactly (1.3).
Let us next establish the homogeneity property for the (smooth) functions f qi .
Lemma 6.12. — For every i ∈ N∗ and every ε 6= 0, we have

f qi (t, x, x′) = ε−i|ε|Q(q)f qi
(
ε2t, δε(x), δε(x′)

)
for all (t, x, x′) ∈ (0,+∞)× Rn × Rn.
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Proof. — Given any fixed ε 6= 0, by (1.3), we have on the one part

|sε|Q(q)e4, µ
(
s2ε2t, δsε(x), δs ε(x′)

)
= êq(t, x, x′) +

N∑
i=1

(sε)if qi (t, x, x′) + o
(
sN
)

and on the other part

|sε|Q(q)e4, µ
(
s2ε2t, δsε(x), δs ε(x′)

)
= |ε|Q(q)êq

(
ε2t, δε(x), δε(x′)

)
+ |ε|Q(q)

N∑
i=1

sif qi
(
ε2t, δε(x), δε(x′)

)
+ o

(
sN
)

for every s ∈ R with |s| sufficiently small and all t > 0 and x, x′ ∈ Rn. The result
follows, since êq(t, x, x′) = |ε|Q(q)êq(ε2t, δε(x), δε(x′)) (see (3.3)). �

Remark 6.13. — Applying Lemma 6.12 with ε = −1, we obtain the “oddness”
property

f q2j−1(t, x, x′)
= −f q2j−1 (t, δ−1(x), δ−1(x′)) ∀ j ∈ N∗ ∀ (t, x, x′) ∈ (0,+∞)× Rn × Rn.

In particular, we have f q2j−1(t, 0, 0) = −f q2j−1(t, 0, 0) and thus f q2j−1(t, 0, 0) = 0 for
every j ∈ N∗ and for every t > 0. Note that, to obtain this property, it has been
necessary to consider dilations δε with ε < 0, whereas dilations are most often
considered only with ε > 0 in the existing literature. We realized this fact in a
discussion with Davide Barilari, whom we thank once again.

Case q regular. The case is treated exactly as in Section 4.4. We do not repeat
the argument.

Part 3. Appendix
Appendix A. Schwartz kernels, heat kernels

Let M be a smooth manifold. We set D(M) = C∞c (M) and we denote by D′
(M) the space of distributions on M , i.e., the topological dual of D(M) endowed
with the weak topology. Let µ be a smooth measure (density) on M .

Schwartz kernels. According to the Schwartz kernel theorem, there is a linear
bijection between D′(M × M) and the set of bilinear continuous functionals on
D(M)×D(M). Given a linear continuous mapping A : D(M)→ D′(M), the Schwartz
kernel ofA is the unique distribution [A] ∈ D′(M×M) defined by 〈Af, g〉D′(M),D(M) =
〈[A], g ⊗ f〉 for all f, g ∈ C∞c (M), where 〈·, ·〉 is the duality bracket.
When [A] ∈ C0(M ×M), identifying the distribution bracket by an integral with

respect to the measure µ⊗µ and denoting by [A]µ the density function, we have the
familiar formula

Af(q) =
∫
M
f(q′) [A]µ(q, q′) dµ(q′) ∀ q ∈M ∀ f ∈ D(M).
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We stress that, although the density function [A]µ depends on µ, given any q ∈M ,
the absolutely continuous measure [A]µ(q, ·) dµ(·) depends only on A: it does not
depend on the smooth measure µ, in the sense that [A]µ(q, ·) dµ(·) = [A]ν(q, ·) dν(·)
for any other smooth measure ν on M .
Actually, in geometric terms, [A] is a continuous section of the bundle π∗2(ΩM) on

M ×M , where ΩM is the line bundle of smooth measures (densities) on M and
π2 : M ×M →M is the projection defined by π2(q, q′) = q′.
Similarly, the diagonal part [A]µ(q, q) dµ(q) is an absolutely continuous measure,

which does not depend on µ. Denoting byMf the operator of multiplication by f ,
we have

Tr(AMf ) =
∫
M
f(q) [A]µ(q, q) dµ(q) ∀ f ∈ D(M).

Hilbert–Schmidt norm. When [A] ∈ L2(M × M,µ ⊗ µ), the operator A ∈
L(L2(M,µ)) is Hilbert–Schmidt and the Hilbert–Schmidt norm of A is

‖A‖HS = (Tr(A∗A))1/2 = ‖[A]µ‖L2(M×M,µ⊗µ)

and we recall that
‖A‖L(L2(M,µ)) 6 ‖A‖HS
‖AB‖HS 6 ‖A‖L(L2(M,µ))‖B‖HS
‖AB‖HS 6 ‖A‖HS‖B‖L(L2(M,µ))

where A and B are bounded operators on L2(M,µ), with A or B Hilbert–Schmidt
according to the inequality under consideration.

Action of pseudo-differential operators on Schwartz kernels. Given any
pseudo-differential operators T1 and T2 on M , we have [T1AT

∗
2 ]µ = (T1)q(T2)q′ [A]µ

(where T ∗2 is the transpose in L2(M,µ)), i.e.,

T1AT
∗
2 f(q) =

∫
M
f(q′) (T1)q(T2)q′ [A]µ(q, q′) dµ(q′).

Heat kernels. Let A : D(A) → L2(M,µ) be a densely defined operator on
L2(M,µ), generating a strongly continuous semigroup (etA)t> 0. For every t > 0, the
heat kernel eA(t) associated with A is the measure on M defined as the Schwartz
kernel of etA, i.e., eA(t) = [etA]. Of course, it does not depend on µ.
When this measure has a density [etA]µ with respect to µ which is locally integrable,

we define the heat kernel eA,µ(t, ·, ·) associated with A and with the measure µ by
eA,µ(t, q, q′) = [etA]µ(q, q′). This means that

u(t, q) =
(
etAf

)
(q) =

∫
M
f(q′) eA,µ(t, q, q′) dµ(q′)

is the unique solution to ∂tu−Au = 0 for t > 0, u(0, ·) = f(·), for every f ∈ C∞c (M).
In other words, we have

eA(t)(q, q′) =
[
etA
]

(q, q′) = eA,µ(t, q, q′) dµ(q′) ∀ t > 0 ∀ q, q′ ∈M.

As said above, this expression depends only on A, not on the smooth measure µ.
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Extending eA,µ by 0 for t < 0, for any fixed q′ ∈ M the mapping (t, q) 7→
eA,µ(t, q, q′) is also solution of (∂t−A)eA,µ(·, ·, q′) = δ(0, q′) in the sense of distributions,
where the distribution pairing is considered with respect to the measure dt× dµ(q)
on R×M .
We gather hereafter some useful facts.
• Let ϕ : M → M be a diffeomorphism, representing a change of variable in
the manifold M . We have ϕ∗µ = |Jµ(ϕ)|µ, where Jµ(ϕ) is the Jacobian of ϕ
with respect to µ, and where ϕ∗µ is the pullback of µ under ϕ. Then

eϕ∗Aϕ∗, µ(t, q, q′) = |Jµ(ϕ)(q′)| eA,µ(t, ϕ(q), ϕ(q′))

eA,ϕ∗µ(t, q, q′) = 1
|Jµ(ϕ)(q′)| eA,µ(t, q, q′)

eϕ∗Aϕ∗, ϕ∗µ(t, q, q′) = eA,µ (t, ϕ(q), ϕ(q′))

(A.1)

for all t > 0 and (q, q′) ∈M2. Note that the last one follows from the two first
ones, in which we have replaced A with ϕ∗Aϕ∗ in the second one. The two
first formulas in (A.1) are not symmetric, but there is no contradiction there:
indeed if A is selfadjoint in L2(M,µ) then eA,µ is symmetric, but A need not
be selfadjoint in L2(M,ϕ∗µ) and thus eA,ϕ∗µ need not be symmetric.
Actually, we have

eϕ∗Aϕ∗, µ(t, q, q′) d(ϕ∗µ)(q′) = eϕ∗Aϕ∗, ν(t, q, q′) dν(q′)
for any other smooth measure ν on M .
• As a particular case, given any λ > 0, we have λ eA, λµ = eA,µ.
• Given any ε > 0, the kernel associated with ε2A and with the measure ν is

eε2A, ν(t, q, q′) = eA, ν(ε2t, q, q′)
for all t > 0 and (q, q′) ∈M2.
• We assume that µ = hν with h a positive smooth function on M (density of
µ with respect to ν). Then h(q′)eA,µ(t, q, q′) = eA,ν(t, q, q′) for all (t, q, q′) ∈
(0,+∞)×M ×M , or equivalently,

(A.2) eA,µ(t, q, q′) dµ(q′) = eA, ν(t, q, q′) dν(q′).

Appendix B. Subelliptic estimates and smoothing
properties for hypoelliptic heat semigroups

This section can be read independently of the rest.
Let d ∈ N∗. We set Λ = (id−∑d

i=1 ∂
2
i )1/2. Denoting by ‖u‖L2(Rd) the L2 norm of a

function u ∈ L2(Rd) and by 〈 ·, · 〉L2(Rd) the corresponding inner product, we recall
that the Hilbert space Hs(Rd) is equipped with the norm ‖u‖Hs(Rd) = ‖Λsu‖L2(Rd)
and with the inner product 〈u, v〉Hs(Rd) = 〈u,Λ2sv〉L2(Rd).
Let p ∈ N∗ and let K be a compact set (in our applications, we will take either
K = [−ε0, ε0] or K = [−ε0, ε0] × K for some ε0 > 0 and for some compact subset
K of M). For every τ ∈ K, let Y τ

0 , Y
τ

1 , . . . , Y
τ
p be smooth vector fields on Rd and
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let Vτ be a smooth function on Rd, all of them depending continuously on τ in C∞
topology. We set

(B.1) Lτ =
p∑
i=1

(Y τ
i )2 + Y τ

0 − Vτ .

B.1. Local estimates

Let U be an arbitrary open subset of Rd. Of course, all local estimates hereafter
could be settled as well on a d-dimensional manifold.

B.1.1. Uniform local subelliptic estimates

Theorem B.1. — We assume that the Lie algebra Lie(Y τ
0 , Y

τ
1 , . . . , Y

τ
p ) gener-

ated by the vector fields is equal to Rd at any point of U , with a degree of nonholon-
omy r that is uniform with respect to τ ∈ K (uniform weak Hörmander condition
on U). Then there exists σ > 0 such that, for every s ∈ R, for all smooth functions
ζ and ζ ′ compactly supported in U with ζ ′ = 1 on the support of ζ,

‖ζu‖Hs+σ(Rd) 6 Cst (s, ζ, ζ ′)
(
‖ζ ′Lτu‖Hs(Rd) + ‖ζ ′u‖Hs(Rd)

)
∀ u ∈ C∞

(
Rd
)

∀ τ ∈ K.

This is a parameter-dependent version of the famous local subelliptic Hörmander
estimate (see [Hör67]). It is straightforward to obtain by following the classical
proofs, but for completeness, we provide the main steps (this is also useful in view
of deriving global subelliptic estimates, further). The proof given in [Hör67] gives
an optimal gain of regularity, which is σ = 2/r. Here, we rather follow the simpler
proof given by Kohn in [Koh73] (see also [HN05]), which does not give the optimal
gain of regularity and yields σ = 1/22r−1.
Note that, in the case where U is compact, Theorem B.1 implies that there exists

C > 0 such that Cst Λσ 6 C id−Lτ − (Lτ )∗ 6 Cst Λ2, for every τ ∈ K, where the
inequalities are written for positive selfadjoint operators on L2(U).
Taking s ∈ {s, s+ σ, . . . , s+ kσ}, we also infer from the theorem that, for every

k ∈ N, for all smooth functions ζ and ζ ′ compactly supported in U with ζ ′ = 1 on
the support of ζ, we have

(B.2) ‖ζu‖Hkσ(Rd)

6 Cst (k, ζ, ζ ′)
(∥∥∥ζ ′(Lτ )ku∥∥∥

L2(Rd) + · · ·+ ‖ζ ′Lτu‖L2(Rd) + ‖ζ ′u‖L2(Rd)

)
∀ u ∈ C∞

(
Rd
)

∀ τ ∈ K.

Another useful consequence is the following. For every k ∈ Z, we define the Hilbert
space Dτk as the completion for the norm ‖u‖Dτ

k
= ‖(C id−Lτ − (Lτ )∗)ku‖L2(Rd) of

the set of smooth functions on Rd of compact support. For k = 1, the set Dτ1 = {u ∈
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L2(Rd) | Lτu ∈ L2(Rd)} is the maximal domain of the operator Lτ on L2(Rd). It
follows from (B.2) that, for every k ∈ N, for all smooth functions ζ and ζ ′ compactly
supported in U with ζ ′ = 1 on the support of ζ, we have

Cst(k, ζ, ζ ′)‖ζu‖Hk σ(Rd) 6 ‖ζ ′u‖Dτk 6 Cst(k, ζ, ζ ′)‖ζ ′u‖H2k(Rd)
∀ u ∈ C∞

(
Rd
)

∀ τ ∈ K.

By duality, we have the converse inequalities for k negative.

Remark B.2. — Note that, in the statement of Theorem B.1, we use cut-off
functions ζ and ζ ′ (as in [Koh73]), in order to obtain the subelliptic estimates for any
smooth function u on Rd, and not only for any smooth function of compact support
on U . This is because, in Appendix B.1.2, we are going to apply these estimates to
solutions u(t) = etL

τ
f of the heat equation (∂t−Lτ )u = 0, which are not of compact

support.

Proof of Theorem B.1. — We only recall the main steps of the proof, without
providing all details. We modify the function Vτ and the vector fields Y τ

j (and thus
Lτ ) outside of U so that their coefficients and all their derivatives are uniformly
bounded on Rd, uniformly with respect to τ . Localization is performed by bracketting
(see the localization lemma in [Koh73]).
First of all, we note that (Y τ

j )∗ = −Y τ
j − (div Y τ

j ), where the dual is taken in
L2(Rd). It follows that, given any smooth function g on Rd, we have∣∣∣∣∣〈Y τ

j u, gu
〉
L2(Rd)

∣∣∣∣∣ = 1
2
〈
u,
(
g div Y τ

j + Y τ
j g
)
u
〉
L2(Rd)

∣∣∣∣∣
6 Cst(g)‖u‖2

L2(Rd) ∀ u ∈ C∞c
(
Rd
)

∀ τ ∈ K.

We easily infer that
p∑
i=1

∥∥∥Y τ
j u
∥∥∥2

L2(Rd) 6 Cst
(∣∣∣∣〈Lτu, u〉L2(Rd)

∣∣∣∣+ ‖u‖2
L2(Rd)

)

6 Cst
(
‖Lτu‖2

L2(Rd) + ‖u‖2
L2(Rd)

)
∀ u ∈ C∞c

(
Rd
)
∀ τ ∈ K.

For every σ ∈ (0, 1], let Pσ be the set of pseudo-differential operators P of order 0
satisfying

‖Pu‖Hσ(Rd) 6 Cst(σ)
(
‖Lτu‖L2(Rd) + ‖u‖L2(Rd)

)
∀ u ∈ C∞c

(
Rd
)

∀ τ ∈ K.

for every smooth function u on Rd of compact support. Note that 0 6 σ1 6 σ2
implies Pσ2 ⊂ Pσ1 . The proof consists of proving that:

(1) Pσ is stable by taking the adjoint, for every σ ∈ (0, 1/2];
(2) Pσ is a left and right ideal in the ring of pseudo-differential operators of order

0;
(3) Y τ

j Λ−1 ∈ Pσ for every j ∈ {0, 1, . . . , p}, for every σ ∈ (0, 1/2];
(4) if P ∈ Pσ then [Y τ

j , P ] ∈ Pσ/4, for every j ∈ {0, 1, . . . , p} and for every
σ ∈ (0, 1/2].
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Each of the steps is quite straightforward to establish, following [HN05, Koh73] and
using elementary properties of brackets and of pseudo-differential operators. Then,
noting that [Y τ

j , Y
τ
k ]Λ−1 = [Y τ

j , Y
τ
k Λ−1]−Y τ

k Λ−1Λ[Y τ
j ,Λ−1], using that Y τ

k Λ−1 ∈ P1/2
by the third property and thus that [Y τ

j , Y
τ
k Λ−1] ∈ P1/8, using that Λ[Y τ

j ,Λ−1] is a
pseudo-differential operator of order 0 and using the first and the third properties, we
have Y τ

k Λ−1Λ[Y τ
j ,Λ−1] ∈ P1/2, and we infer that [Y τ

j , Y
τ
k ]Λ−1 ∈ P1/8. By recurrence,

we get that Y τ
I Λ−1 ∈ P1/22k−1 , where Y τ

I is any Lie bracket of the vector fields Y τ
j of

length k.
Using the uniform Hörmander condition, it follows that P1/22r−1 coincides with

the ring of pseudo-differential operators of order 0. Indeed, we have proved that
Λ−1∂xi ∈ P1/22k−1 for every i ∈ {1, . . . , d}; using the properties of ideal and of
stability by taking the adjoint, we have then Λ−1∂2

xi
Λ−1 ∈ P1/22k−1 and thus Λ−2∂2

xi
=

Λ−1∂2
xi

Λ−1 + Λ−1[Λ−1∂2
xi

Λ−1,Λ] ∈ P1/22k−1 , and finally, id ∈ P1/22k−1 . The theorem is
thus proved for s = 0.
We then prove the result for any s ∈ R by applying the inequality established for

s = 0 to Λsu and by managing the bracket [Lτ ,Λs], using in particular the fact that
[(Y τ

i )2,Λs] = 2[Y τ
i ,Λs]Y τ

i + [Y τ
i , [Y τ

i ,Λs]]. �

B.1.2. Application: uniform local smoothing property for heat semigroups

Throughout the section, we assume that the operator Lτ defined by (B.1) on the
domain Dτ1 generates a strongly continuous semigroup (etLτ )t> 0 on L2(Rd), for every
τ ∈ K, satisfying the following uniform estimate: for all positive real numbers t0 < t1
we have

(B.3)
∥∥∥etLτ ∥∥∥

L(L2(Rd)) 6 Cst(t0, t1) ∀ t ∈ [t0, t1] ∀ τ ∈ K.

This is the case if Vτ is uniformly bounded below on Rd and if either Lτ is selfadjoint
for any τ or the vector fields Y τ

0 , Y
τ

1 , . . . , Y
τ
p are bounded on Rd as well as their first

derivatives uniformly with respect to τ . Indeed, under these assumptions, reasoning
as in the proof of Lemma 3.1, there exists C > 0 such that the operator Lτ − C id
on L2(Rd) is closed and dissipative, as well as its adjoint, and thus the strongly
continuous semigroup (et(Lτ−C id))t> 0 that it generates is a contraction semigroup,
and then (etLτ )t> 0 is a strongly continuous semigroup, with uniform norm estimates.
We denote by eτ the heat kernel associated with Lτ for the Lebesgue measure on

Rd. The function eτ is defined on (0,+∞)×Rd×Rd and depends on three variables
(t, x, y). In what follows, the notation ∂1 (resp., ∂2, ∂3) denotes the partial derivative
with respect to t (resp., to x, to y). The indices x in χ1 and y in χ2 below mean
that, when eτ is taken at (t, x, y), χ1 is taken at x and χ2 is taken at y.

Corollary B.3. — We assume that the Lie algebra Lie(Y τ
1 , . . . , Y

τ
p ) generated

by the vector fields Y τ
i , i = 1, . . . , p, is equal to Rd at any point of U , with a

degree of nonholonomy r that is uniform with respect to τ ∈ K (uniform strong
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Hörmander condition on U). Note that this assumption is more restrictive(9) than
in Appendix B.1.1, because we have excluded Y τ

0 .
For all χ1, χ2 ∈ C∞c (U), for all positive real numbers 0 < t0 < t1, for all s, s′ ∈ R,

for all (k, α, β) ∈ N× Nd × Nd, we have

(B.4)
∥∥∥(χ1)x(χ2)y∂k1∂α2 ∂

β
3 e

τ (·, ·, ·)
∥∥∥
L∞((t0,t1)×Rd×Rd)

6 Cst (χ1, χ2, t0, t1, k, α, β) ∀ τ ∈ K
and∥∥∥χ1e

tLτχ2f
∥∥∥
Hs(Rd)

6 Cst (χ1, χ2, t0, t1, s, s
′) ‖f‖Hs′(Rd) ∀ t ∈ [t0, t1] ∀ f ∈ C∞c

(
Rd
)
∀ τ ∈ K.

The corollary says that the family (eτ )τ ∈K is bounded in C∞((0,+∞)×Rn×Rn),
uniformly with respect to τ (for the Fréchet topology defined by seminorms on an
exhaustive sequence of compact subsets of (0,+∞)× Rn × Rn). It also states that,
with the above notations, χ1e

tLτχ2 ∈ L(Hs′(Rd), Hs(Rd)) for every t > 0, where the
norm of this operator can be bounded by a positive constant depending on χ1 and
χ2 but not depending on τ .
Proof. — Defining on R× Rd × Rd the vector fields

Ỹ τ
0 =

 −2
Y τ

0
(Y τ

0 )∗

 , Ỹ τ
i =

 0
Y τ
i

(Y τ
i )∗

 , i = 1, . . . , p,

we consider the operator

P τ = (Lτ )x + (Lτ )∗x′ − 2∂t =
p∑
i=1

(Ỹ τ
i )2 + Ỹ τ

0 − Vτ

on L2(R× Rd × Rd), where (Lτ )x = Lτ ⊗ id and (Lτ )∗x′ = id⊗(Lτ )∗ are differential
operators acting on functions g = g(x, x′). The uniform weak Hörmander condition
is satisfied on U for the p + 1 vector fields (Ỹ τ

0, Ỹ
τ
1, . . . , Ỹ

τ
p) on R1+2d. Applying

Theorem B.1 to the heat kernel eτ , which satisfies P τeτ = 0 on (0,+∞) × U × U ,
we obtain that ‖ζeτ‖Hs+σ(R1+2d) 6 Cst(s, ζ, ζ ′)‖ζ ′eτ‖Hs(R1+2d), and by recurrence,
‖ζeτ‖Hs+kσ(R1+2d) 6 Cst(s, k, ζ, ζ ′)‖ζ ′eτ‖Hs(R1+2d) ∀ τ ∈ K ∀ k ∈ N∗ ∀ s ∈ R

for all smooth functions ζ and ζ ′ on (0,+∞)×U×U with compact support, satisfying
ζ ′ = 1 on the support of ζ. In what follows, we take ζ = χ0 ⊗ χ1 ⊗ χ2 and ζ ′ =
χ′0 ⊗ χ′1 ⊗ χ′2. In order to obtain (B.4), we need an initialization, which is given in
the following lemma.

Lemma B.4. — There exists s ∈ R such that
‖(χ′0)t(χ′1)x(χ′2)x′eτ‖Hs(R1+2d) < +∞.

(9)This more restrictive assumption ensures that Lτ − ∂t is hypoelliptic. Otherwise hypoellipticity
may fail: take Y0 = ∂x1 and all Yi, i > 1, not depending on x1: then (Y0, Y1, . . . , Yn) satisfies the
Hörmander condition, but not (∂t + Y0, Y1, . . . , Yn).
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Proof of Lemma B.4. Recall that Λ = (id−∑d
i=1 ∂

2
i )1/2. Given any j ∈ Z, we define

on Rd the elliptic pseudo-differential operator Λ′j, j of order j by Λ′j, ju(x) = 〈x〉jΛju(x)
for every u ∈ C∞(Rd), where 〈x〉 = (1 + ‖x‖2

2)1/2 (Japanese bracket), with ‖ · ‖2 the
Euclidean norm in Rd. There exists m ∈ N∗ such that Λ′−m,−m is Hilbert–Schmidt
(as an operator on L2(Rd)), i.e., ‖Λ′−m,−m‖HS < +∞. Indeed, the Schwartz kernel
of Λ′−m,−m is[

Λ′−m,−m
]

(x, y) = 1
(2π)n

1
(1 + ‖x‖2

2)m/2
∫ ei(x−y).ξ

(1 + ‖ξ‖2
2)m/2 dξ

which is the product of (1 + ‖x‖2
2)−m/2 and of the Fourier transform taken at y − x

of the function ξ 7→ (1 + ‖ξ‖2
2)−m/2, and it is therefore square-integrable when m is

chosen large enough. Using the general facts (concerning Schwartz kernels) recalled
in Appendix A with A = etL

τ , T1 = Λ′−m,−mχ′1 and T2 = χ′2, we obtain that∥∥∥(χ0)t(Λ′−m,−m)x(χ′1)x(χ′2)x′eτ
∥∥∥
L2(R1+2d)

=
∥∥∥(χ0)tΛ′−m,−mχ′1etL

τ

χ′2
∥∥∥
HS
6
∥∥∥Λ′−m,−m∥∥∥HS ∥∥∥(χ0)tetL

τ
∥∥∥
L(L2(Rd)) 6 Cst(t0, t1)

when supp(χ0) ⊂ [t0, t1], where we have used the uniform estimate (B.3) to derive
the latter inequality. �
We have therefore proved (B.4). To get the estimate on the semigroup, it suffices

to write that, for all j, k ∈ Z,∥∥∥Λjχ1e
tLτχ2Λk

∥∥∥
L(L2(Rd)) 6

∥∥∥Λjχ1e
tLτχ2Λk

∥∥∥
HS

=
∥∥∥Λj

x(χ1)xΛk
x′(χ2)x′eτ (t, ·, ·)

∥∥∥
L2(Rd×Rd)

and then to apply (B.4). �

B.2. Global estimates

In the sequel, we use the notation 〈x〉 = (1 + ‖x‖2
2)1/2 for x ∈ Rd (Japanese

bracket), where ‖x‖2 is the Euclidean norm of x. Throughout the section, we assume
that there exists n ∈ N∗ such that the function Vτ and all coefficients of the vector
fields Y τ

0 , Y
τ

1 , . . . , Y
τ
p , as well as all their derivatives, are bounded by multiples of

〈x〉n. In other words, we assume that the growth at infinity of the vector fields Y τ
i

and of Vτ , as well as their derivatives, is at most polynomial.
The objective of this section is to establish global subelliptic estimates and global

smoothing properties of the corresponding heat semigroup and heat kernel. We
follow [EH03], where alternative global subelliptic Hörmander estimates can be
found (see [EH03, Theorems 3.1 and 4.1]) but are not sufficient for our needs.
Given any α ∈ R and β ∈ R, we define on L2(Rd) the elliptic selfadjoint pseudo-

differential operator Λα, β = 1
2(Λ′α, β + (Λ′α, β)∗) of order α, with

Λ′α, βu(x) = 〈x〉β
(

id−
d∑
i=1

∂2
xi

)α/2
u(x) = 〈x〉βΛαu(x).
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and we define the weighted Hilbert space Hα
β (Rd) as the completion of C∞c (Rd) for

the norm
‖u‖Hα

β (Rd) = ‖Λα, βu‖L2(Rn) .

The inner product is 〈u, v〉Hα
β

(Rd) = 〈Λα, βu,Λα, βv〉L2(Rn). We have the following
properties (see also [EH03]):

• Λα, β ∈ L(Hα′
β′ (Rd), Hα′−α

β′−β (Rd)).
• We have the continuous embedding Hα′

β′ (Rd) ↪→ Hα
β (Rd) whenever α′ > α

and β′ > β, with a compact embedding if both inequalities are strict.
• The dual of Hα

β (Rd) with respect to the pivot space L2(Rd) = H0
0 (Rd) is

H−α−β (Rd).
We denote by (Y τ

i )i> 0 the family of vector fields consisting of the vector fields
Y τ

0 , Y
τ

1 , . . . , Y
τ
p completed with all their successive Lie brackets.

B.2.1. Uniform global subelliptic estimates

Definition B.5. — Following [EH03], we say that the uniform polynomial weak
Hörmander condition is satisfied if there exist nonnegative integers N0 and N1 such
that

(B.5) ‖y‖2
2 6 Cst〈x〉2N0

N1∑
i=0
〈Y τ

i (x), y〉2 ∀ (x, y) ∈ Rd × Rd ∀ τ ∈ K.

Theorem B.6. — Under the uniform polynomial weak Hörmander condition,
there exist σ > 0 and N ∈ N such that

‖u‖Hs+σ
β (Rd) 6 Cst(s, β)

(
‖Lτu‖Hs

β+N(Rd) + ‖u‖Hs
β+N(Rd)

)
∀ s, β ∈ R ∀ u ∈ C∞c

(
Rd
)
.

For every k ∈ Z, for every β ∈ R, we define the Hilbert spaceDτk, β as the completion
of C∞c (Rd) for the norm

‖u‖Dτ
k, β

=
∥∥∥(C id−Lτ − (Lτ )∗)k u

∥∥∥
H0
β(Rd)

where C > 0 is a fixed constant such that (C id−Lτ−(Lτ )∗)k is a positive selfadjoint
operator on L2(Rd) (of maximal domain Dτk, 0). When β = 0, we denote simply
Dτk = Dτk, β. For k = 1, the set Dτ1 = {u ∈ L2(Rd) | Lτu ∈ L2(Rd)} is the maximal
domain of the operator Lτ on L2(Rd).
Note that the weight β in the iterated domains will be used only in the proof of

Corollary B.9 further.
By iteration, Theorem B.6 implies that

‖u‖Hs+kσ
β−kN(Rd) 6 Cst(s, k, β)

(
‖(Lτ )ku‖Hs

β(Rd) + · · ·+ ‖Lτu‖Hs
β(Rd) + ‖u‖Hs

β(Rd)
)

∀ s, β ∈ R ∀ k ∈ N∗ ∀ u ∈ C∞
(
Rd
)

∀ τ ∈ K
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and therefore we have the continuous embeddings

(B.6) H2k
β+2kN

(
Rd
)
↪→ Dτk, β ↪→ Hkσ

β−kN

(
Rd
)
∀ k ∈ N ∀ β ∈ R ∀ τ ∈ K

with constants depending on k but not on τ . By duality, we have

(B.7) H−kσβ+kN

(
Rd
)
↪→ Dτ−k, β ↪→ H−2k

β−2kN

(
Rd
)
∀ k ∈ N ∀ β ∈ R ∀ τ ∈ K.

Remark B.7. — Actually, by bracketting (see the sketch of proof of the theorem
hereafter), we obtain the following slight variant of Theorem B.6: for all smooth
functions ζ and ζ ′ on Rn, which are globally bounded as well as all their derivatives,
satisfying ζ ′ = 1 on the support of ζ, we have

‖ζu‖Hs+σ
β−N(Rd) 6 Cst(s, β, ζ, ζ ′)

(
‖ζ ′Lτu‖Hs

β(Rd) + ‖ζ ′u‖Hs
β(Rd)

)
∀ s, β ∈ R ∀ u ∈ C∞

(
Rd
)
∀ τ ∈ K.

Note that the functions ζ and ζ ′ are not assumed here to be of compact support.
This fact will be useful in Appendix B.2.2 to localize in time only (but not in space).

Proof of Theorem B.6. For every m ∈ R and every δ ∈ R, we define the following
class of global symbols Sm, δ, by considering their growth in x: a symbol a : Rd ×
Rd \ {0} → C (of order m) is a smooth function having an asymptotic expansion
a ∼ ∑+∞

j=0 am−j, where am−j is smooth and such that, for any k ∈ N, the function
ak = a−∑k−1

j=0 am−j satisfies∣∣∣∂αx∂βξ ak(x, ξ)∣∣∣ 6 Cst(α, β)〈x〉δ−|α|(1 + ‖ξ‖2)m−k−|β| ∀ α, β ∈ Nd.

We denote by Ψm, δ the set of pseudo-differential operators on Rd whose sym-
bol belongs to Sm, δ. We have the following useful property: if a ∈ Sm, δ then
Op(a) ∈ L(Hα

β (Rd), Hα−m
β−δ (Rd)). Here, Op is the usual left (for instance) quanti-

zation operator.
Now, if we consider in Sm, δ a family of symbols (aτ )τ ∈K, with the above constants

Cst(α, β) being uniform with respect to τ , then we have the uniform estimate
‖Op(aτ )‖L(Hα

β (Rd), Hα−m
β−δ (Rd)) 6 Cst(α, β) ∀ τ ∈ K.

Thanks to this general remark, we obtain that Y τ
i ∈ L(Hα

β (Rd), Hα−1
β−N(Rd)), that

Λ−1Y τ
i ∈ L(Hα

β (Rd), Hα
β−N(Rd)) and that [Y τ

i ,Λγ] ∈ L(Hα
β (Rd), Hα−γ

β−N(Rd)), with
uniform constants in the estimates (see also [EH03, Lemma 3.2] for other useful
properties of the spaces Hα

β (Rd)).
These preliminaries being done, we follow the steps of the proof of Theorem B.1,

keeping track of constants. It is then straightforward to establish that
p∑
j=1

∥∥∥Y τ
j u
∥∥∥2

L2(Rd) 6 Cst
(∣∣∣∣〈Lτu, u〉L2(Rd)

∣∣∣∣+ 〈x〉2N‖u‖2
L2(Rd)

)

‖u‖Hσ(Rd) 6 Cst〈x〉N
(
‖Lτu‖L2(Rd) + ‖u‖L2(Rd)

)
∀ u ∈ C∞c (B(x, 1)) ∀ x ∈ Rd ∀ τ ∈ K
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where N ∈ N is a sufficiently large integer. Then, noting that, roughly, ‖u‖Hα
β

(Rd) '
〈x〉β‖u‖Hα(Rd) for every u ∈ C∞c (B(x, 1)) and for all α, β ∈ R, using a partition of
unity (see [EH03, Proof of Theorem 4.1] for details), we obtain

‖u‖Hσ(Rd) 6 Cst
(
‖Lτu‖H0

N(Rd) + ‖u‖H0
N(Rd)

)
∀ u ∈ C∞c

(
Rd
)
∀ τ ∈ K.

Using the brackets [Λs, β, Y
τ
i ], [Λs, β, L

τ ], increasing the integer N if necessary (but
N remains uniform with respect to s and β), we then obtain

p∑
j=1

∥∥∥Y τ
j u
∥∥∥2

Hs
β(Rd)

6 Cst(s, β)
(∣∣∣∣〈Lτu, u〉Hs

β(Rd)
∣∣∣∣+ ‖u‖2

Hs
β+N(Rd)

)
∀ u ∈ C∞c

(
Rd
)
∀ τ ∈ K

and we then establish the global estimate of Theorem B.6. We do not provide any
details. �

Remark B.8. — It is interesting to note that the uniform polynomial weak Hör-
mander condition (B.5) is satisfied for any m-tuple (Y0, Y1, . . . , Yp) of polynomial
vector fields that satisfy the weak Hörmander condition at every point with a uniform
degree of nonholonomy.
Indeed, defining as above the family (Yi)i> 0 by completing the (p + 1)-tuple

(Y0, . . . , Yp) with their iterated Lie brackets, by the assumption, there exists a large
enough integer N1 such that the span of the finite family (Yi)06 i6N1 is equal to Rn

at every point. Defining the matrix
P (x) =

(
Y0(x) Y1(x) · · · YN1(x)

)
∀ x ∈ Rn,

we have to prove that there exists N0 ∈ N such that
(B.8) y>P (x)P (x)>y > Cst〈x〉−2N0‖y‖2

2 ∀ x, y ∈ Rn.

By [Hör58, Lemma 2], it is known that, for every polynomial function Q on Rn

such that Q(x) > 0 for every x ∈ Rn, there exists an integer N ∈ N such that
Q(x) > Cst

〈x〉2N . In other words, the decay at infinity of any polynomial is polynomial,
it cannot be arbitrarily small. This non-obvious fact follows from a Łojasiewicz
inequality combined with an inversion argument. The existence of N0 such that (B.8)
is satisfied follows.

B.2.2. Application: uniform global smoothing property of heat semigroups

We say that the uniform polynomial strong Hörmander assumption is satisfied if
there exist nonnegative integers N0 and N1 such that

(B.9) ‖y‖2
2 6 Cst 〈x〉2N0

N1∑
i=1
〈Y τ

i (x), y〉2 ∀ (x, y) ∈ Rd × Rd ∀ τ ∈ K.

Compared with (B.5), in (B.9) we have excluded the vector field Y τ
0 : the sum starts

at i = 1. By a similar argument as the one elaborated in Remark B.8, note that (B.9)
is satisfied for polynomial vector fields satisfying the strong H"ormander condition
at every point, with a uniform degree of nonholonomy.
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Throughout this section, we assume that the operator Lτ : D(Lτ ) = Dτ1 → L2(Rd)
generates a strongly continuous semigroup (etLτ )t> 0, for every τ ∈ K, satisfying the
uniform estimate: for all positive real numbers t0 < t1, we have

(B.10) ‖etLτ‖L(L2(Rd)) 6 Cst(t0, t1) ∀ t ∈ [t0, t1].

We denote by eτ the heat kernel associated with Lτ for the Lebesgue measure on
Rd. The function eτ is defined on (0,+∞)×Rd×Rd and depends on three variables
(t, x, y). In what follows, the notation ∂1 (resp., ∂2, ∂3) denotes the partial derivative
with respect to t (resp., to x, to y).

Corollary B.9. — Under the uniform polynomial strong Hörmander assump-
tion, there exist s0 > 0 and k0 ∈ N∗ such that, for all s > s0 and s′ > s0, for all
positive real numbers 0 < t0 < t1,∥∥∥(Λs,−k0s)x (Λs′,−k0s′)y e

τ (·, ·, ·)
∥∥∥
L2((t0, t1)×Rd×Rd) 6 Cst(s, s′, t0, t1) ∀ τ ∈ K

and ∥∥∥etLτ ∥∥∥
L

(
H−s

′
k0s′

(Rd),Hs
−k0s(Rd)

) 6 Cst(s, s′, t0, t1) ∀ t ∈ [t0, t1] ∀ τ ∈ K

This result is a global smoothing property for hypoelliptic heat kernels in Sobolev
spaces with polynomial weight.
Proof. — We follows the same lines as in the proof of Corollary B.3, by considering

the operator P τ . It follows from Remark B.7 that, for all s, β ∈ R, for every k ∈ N,
we have ‖ζeτ‖Hs+kσ

β−kN (R1+2d) 6 Cst(s, k, β, ζ, ζ ′)‖ζ ′eτ‖Hs
β

(R1+2d), for all smooth functions
ζ and ζ ′ on (0,+∞)×Rd×Rd satisfying ζ ′ = 1 on the support of ζ, and such that ζ
and ζ ′ and all their derivatives are bounded by constants. We choose ζ = (χ0)t and
ζ ′ = (χ′0)t only depending on t, in order to localize in time over t ∈ [t0, t1].
To initialize the bootstrap argument, we first observe that, like in the proof of

Corollary B.3, using (B.10), there exists m ∈ N∗ such that∥∥∥(χ′0)t (Λ−m,−m)x e
τ
∥∥∥
L2(R1+2d) 6 Cst(t0, t1)

(assuming that supp(χ′0) ⊂ [t0, t1]), hence

‖(χ′0)teτ‖H−m−m(R1+2d) 6 Cst(t0, t1).

Therefore, taking s = β = −m, we get that ‖(χ0)teτ‖H−m+kσ
−m−kN (R1+2d) 6 Cst(k, t0, t1)

for every k ∈ N∗. The result follows. �
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Appendix C. Global smoothing properties of sR heat
semigroups

This section can be read independently of the rest.

C.1. Global smoothing properties in iterated domains

Throughout this section, we consider a selfadjoint sR Laplacian

4sR = −
m∑
i=1

X∗iXi

(see Section 2.2) on L2(Rn), where X1, . . . , Xm are smooth vector fields on Rn,
satisfying the Hörmander condition at every point of Rn. We denote by (et4sR)t> 0
the associated sR heat semigroup, and by e the sR heat kernel.
We show how to use the Kannai transform to establish global smoothing properties

of the sR heat semigroup in the scale of Sobolev spaces associated with 4sR (iterated
domains D((id−4sR)j), for j ∈ Z). This technique is well known (see [CGT82]) and,
conveniently combined with complex analysis (e.g., Phragmen-Lindelöf principle,
see [CS08]), leads to exponential estimates of heat kernels. However, we recall some
of the precise arguments and we give statements that we have not been able to find
in this form in the existing literature.
Since the Kannai transform is based on the spectral theorem, it requires to consider

a selfadjoint operator. This is why, in this section, we only consider selfadjoint sR
Laplacians.

C.1.1. Rough global smoothing properties in iterated domains

Starting from the inequality(
1 + λ2

)k
e−tλ

2
6

Cst(k, t1)
tk

∀ λ > 0 ∀ t1 > 0 ∀ t ∈ (0, t1] ∀ k ∈ Z,

we infer from the spectral theorem applied to the selfadjoint operator 4sR that
‖(id−4sR)ket4sR‖L(L2(Rn)) 6

Cst(k, t1)
tk

. Hence, given any t > 0 and any j, k ∈ Z,
the operator et4sR is bounded as an operator from Dj = D((id−4sR)j) to Dk =
D((id−4sR)k), and we obtain the following result.
Lemma C.1. — Given any t > 0 and any j, k ∈ Z, the operator et4sR is bounded

as an operator from Dj = D((id−4sR)j) to Dk = D((id−4sR)k), and
∥∥∥et4sR

∥∥∥
L(Dj ,Dk)

6

Cst(k − j, t1) 1
t2(k−j) if k > j,

Cst(k) if k 6 j,
∀ t1 > 0 ∀ t ∈ (0, t1].

This property is completely general and is even true without any Hörmander con-
dition on the vector fields Xi: it is satisfied for any selfadjoint nonpositive operator.
We establish in Section C.1 much finer global smoothing properties, thanks to the

Kannai transform that we recall in the next section.
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C.1.2. Kannai transform

Hereafter, we recall a classical argument developed in [CGT82], consisting of
obtaining estimates of the heat semigroup (in the Riemannian case), via the Kannai
transform, Here, we are in the subelliptic case and we consider a sR Laplacian4sR on
Rn: this is a nonpositive selfadjoint operator on L2(Rn), of domainD(4sR). We define
the sR wave operator cos(t

√
−4sR) on L2(Rn) as follows: u(t, ·) = cos

(
t
√
−4sR

)
δy

is the solution to
(∂tt −4sR)u = 0,

u(0, ·) = δy,

∂tu(0, ·) = 0.
For every t ∈ R we have

(C.1)
∥∥∥∥cos

(
t
√
−4sR

)∥∥∥∥
L(L2(Rn))

6 1.

Given any smooth even real-valued function F ∈ L2(R), its Fourier transform is
defined by F̂ (s) =

∫
R F (λ) cos(λs) ds and we have

F (λ) = 1
2π

∫
R
F̂ (s) cos(λs) ds = 1

π

∫ +∞

0
F̂ (s) cos(λs) ds.

As a consequence of the spectral theorem, we have

F
(√
−4sR

)
= 1

2π

∫
R
F̂ (s) cos

(
s
√
−4sR

)
ds = 1

π

∫ +∞

0
F̂ (s) cos

(
s
√
−4sR

)
ds.

In particular, fixing some arbitrary t > 0 and taking F (λ) = e−tλ
2 , we have F̂ (s)

=
√

π
t
e−s

2/4t and thus

e−tλ
2 = 1

2
√
πt

∫
R
e−s

2/4t cos(sλ) ds = 1√
πt

∫ +∞

0
e−s

2/4t cos(sλ) ds

for every λ ∈ R, and therefore

et4sR = 1
2
√
πt

∫
R
e−s

2/4t cos
(
s
√
−4sR

)
ds = 1√

πt

∫ +∞

0
e−s

2/4t cos
(
s
√
−4sR

)
ds

for every t > 0. This formula is usually called transmutation, or Kannai transform
(see [Kan77]).
We also have

e−t(1+λ2) = 1
2
√
πt

∫
R
e−t−s

2/4t cos(sλ) ds = 1√
πt

∫ +∞

0
e−t−s

2/4t cos(sλ) ds.

Differentiating k times with respect to t, for some k ∈ N, one gets(
1 + λ2

)k
e−t(1+λ2) =

∫ +∞

0

dk

dtk

(
1√
πt
e−t−s

2/4t
)

cos(sλ) ds

i.e., (
1 + λ2

)k
e−tλ

2 =
∫ +∞

0

P2k(s, t)
t2k+1/2 e

−s2/4t cos(sλ) ds
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where P2k is a polynomial of the two variables s and t, of degree 2k (actually,
depending on s2 and of t), and thus

(C.2) (id−4sR)k et4sR =
∫ +∞

0

P2k(s, t)
t2k+1/2 e

−s2/4t cos
(
s
√
−4sR

)
ds

∀ t > 0 ∀ k ∈ N ∀ j ∈ Z.

C.1.3. Exponential estimates, using the finite speed propagation property

Let us establish an additional estimate, by using the finite speed propagation
property for the sR wave equation. The finite speed propagation property for sR
wave equations has been established in [Mel85]; actually, it follows from the finite
speed propagation property for usual Riemannian wave equations, by considering a
Riemannian ε-regularization of the sR Laplacian (see [Ge93]) and then passing to
the limit, using the fact that the ε-regularized Riemannian distance converges to the
sR distance as ε tends to 0 (see also [Gro96, Section 1.4.D] and [Var90, Appendix
A4]).
Let x ∈ Rn and let 0 < r1 < r2 be arbitrary. In what follows, we denote by

BsR(x, ri) the sR ball in Rn of center x and of radius ri, for the sR distance dsR
associated with 4sR (we assume that the Hörmander condition is satisfied).
Given any smooth function f on Rn such that supp(f) ⊂ BsR(x, r1), let us estimate
‖(id−4sR)ket4sRf‖L2(Rn\BsR(x, r2)). Since supp(f) ⊂ BsR(x, r1), we have, by the finite
speed propagation property,

supp
(

cos
(
s
√
−4sR

)
f
)
⊂ BsR(x, r1 + s) ∀ s > 0.

In other words, a minimal time s > r2 − r1 is required in order to transport infor-
mation from BsR(x, r1) to Rn \ BsR(x, r2). Therefore, using (C.1) and (C.2) we get
that

(C.3)
∥∥∥(id−4sR)k et4sRf

∥∥∥
L2(Rn\BsR(x, r2))

=
∥∥∥∥∥
∫ +∞

r2−r1

P2k(s, t)
t2k+1/2 e

−s2/4t cos
(
s
√
−4sR

)
f ds

∥∥∥∥∥
L2(Rn)

6
∫ +∞

r2−r1

|P2k(s, t)|
t2k+1/2 e−s

2/4t ds ‖f‖L2(Rn)

6 Cst(k)1 + t2k

t2k

(
1 + (r2 − r1)2k

)
e−(r2−r1)2/4t‖f‖L2(Rn)

∀ t > 0 ∀ k ∈ N ∀ f ∈ C∞c (Rn) s.t. supp(f) ⊂ BsR(x, r1).
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Note that r2− r1 = dsR(BsR(x, r1),Rn \BsR(x, r2)). To obtain the latter inequality,
we have used the inequalities (proved by recurrence)∫ +∞

a
e−s

2/4t ds 6 Cst
√
t e−a

2/4t,∫ +∞

a
sje−s

2/4t ds 6 Cst(j)t
(
1 + t(j−1)/2

) (
1 + aj−1

)
e−a

2/4t

∀ j ∈ N∗ ∀ a > 0 ∀ t > 0.
A consequence of this analysis is the following.
Proposition C.2. — Let χ and χ′ be smooth functions on compact support

on Rn, such that χ′ = 1 on supp(χ). Then, for every k ∈ N and every t > 0, the
operator (1− χ′)(id−4sR)ket4sRχ is bounded on L2(Rn), and∥∥∥(1− χ′)(id−4sR)ket4sRχ

∥∥∥
L(L2(Rn))

6 Cst(k, χ, χ′)1 + t2k

t2k
e−Cst(χ, χ′)/t ∀ t > 0.

The same property holds for the operator (id−4sR)k(1 − χ′)et4sRχ and (taking
the adjoint and by selfadjointness) for the operators χ(id−4sR)ket4sR(1− χ′) and
(id−4sR)kχet4sR(1− χ′).
Proof. — Using a partition of unity, we reduce the proof to the case where

supp(χ) ⊂ BsR(x̄, r) and χ′ = 1 on BsR(x̄, 2r) for some x̄ ∈ Rn and some r > 0, so
that supp(χ′) ⊂ Rn \ BsR(x̄, 2r). Then (C.3) gives the conclusion. �
Note that all estimates that we have obtained are uniform with respect to t > 0.

C.2. Global smoothing properties for nilpotent sR Laplacians

In this section, we consider the nilpotent sR Laplacian 4̂q, associated with the
nilpotentization (M̂ q, D̂q, ĝq) of the sR structure (M,D, g) at q. Recall that M̂ q is a
homogeneous space of a Carnot group (see Section 2.5.4), but is not a Carnot group
whenever q is singular.
We will establish global smoothing properties for the semi-group (et4̂q)t> 0 in

iterated domains and Sobolev spaces with polynomial weight.
Note that, since we deal in this section with polynomial vector fields, we could

apply the smoothing properties established in Appendix B.2 (more precisely, see
Corollary B.9) by deriving global subelliptic estimates in Sobolev spaces with poly-
nomial weight. But here, in this specific context, the global smoothing properties
that we are going to establish are much stronger.

C.2.1. Reminders on exponential estimates

There are various ways to establish exponential estimates for heat kernels. Such
estimates have been proved in [Var90] by means of large deviation theory, using
the probabilistic interpretation of the sR heat kernel (see also [KS88] for long time
estimates). We also refer the reader to [SC84] and [JSC86] for estimates of the sR
heat kernel and of its derivatives, established, however, on a compact manifold.
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In [CGT82] (see also [Mel85]) the authors show how to combine the Kannai trans-
form (i.e., the finite propagation speed of waves) with the Harnack principle and with
a classical Moser iteration argument. In [SC92], the author combines the Kannai
transform with the Harnack parabolic principle in the hypoelliptic case. In [CS08],
the authors use an elegant Phragmen-Lindelöf argument to obtain off-diagonal ex-
ponential estimates.
Finally, we quote the paper [Mah98], in which it is shown that all known exponential

estimates remain valid as well when considering a sR Laplacian on a homogeneous
space (thus, extending results of [Var90] that were established on Lie groups).
According to these references, denoting by êq the heat kernel of the sR Laplacian
4̂q = ∑m

i=1(X̂q
i )2, for every ε > 0, for all i1, . . . , is ∈ {1, . . . , m} with s ∈ N∗, we

have

(C.4)
∣∣∣∂mt XI

q ê
q(t, x, y)

∣∣∣ 6 Cst(ε, I)
tm+|I|/2

1
Vol

(
B̂q

(
y,
√
t
)) exp

(
−d̂q(x, y)2

4(1 + ε)t

)

∀ t > 0 ∀ x, y ∈ M̂ q ' Rn

where XI = X̂i1 · · · X̂is , I = (i1, . . . , is) and |I| = s. In other words, the heat
kernel êq and its derivatives are exponentially decreasing off the diagonal. Note
that Vol(B̂q(y,

√
t)) = tQ(y)/2. By symmetry of the heat kernel, one can obtain the

inequality (C.4) with tQ(y)/2 replaced by tQ(x)/2, or even by tQ(x)/4tQ(y)/4. Note anyway
that all these inequalities are different, because Q(x) 6= Q(y) in general, unless M̂ q

is a Carnot group (which is the case when q is regular).

C.2.2. Global smoothing properties

As in Appendix B.2.1, given any j ∈ Z and any α ∈ R, we define D̂qj, α as the
completion of C∞c (Rn) for the norm

‖u‖D̂qj, α =
∥∥∥∥(id−4̂q

)j
u
∥∥∥∥
H0
α(Rn)

=
∥∥∥∥〈x〉α (id−4̂q

)j
u

∥∥∥∥
L2(Rn)

.

Here, we recall that the Japanese bracket is defined by 〈x〉 = (1 + ‖x‖2
2)1/2 where

‖x‖2
2 = x2

1 + · · ·+ x2
n is the Euclidean norm.

It is useful to define the sR Japanese bracket by 〈x〉sR = (1 + ‖x‖2
sR)1/2, where the

sR pseudo-norm is defined by ‖x‖sR = ∑n
i=1 |xi|1/wi for every x = (x1, . . . , xn) ∈ Rn

in privileged coordinates around 0 (here, wi = wi(q)). Accordingly, we define D̂q,sRj, α

as the completion of C∞c (Rn) for the norm

‖u‖D̂q, sR
j, α

=
∥∥∥∥〈x〉αsR (id−4̂q

)j
u

∥∥∥∥
L2(Rn)

.

Setting r = wn (degree of nonholonomy at 0), we have the inequality

Cst 〈x〉1/r 6 〈x〉sR 6 Cst 〈x〉 ∀ x ∈ Rn
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from which it follows that

(C.5) Cst ‖u‖D̂q
j, α/r

6 ‖u‖D̂q, sR
j, α
6 Cst ‖u‖D̂qj, α

∀ j ∈ Z ∀ α > 0 ∀ u ∈ C∞c (Rn).

Proposition C.3. — Given any t > 0, any j, k ∈ Z and any real number β > 1,
the operator et4̂q is bounded as an operator from D̂q, sRj, β to D̂q, sRk, β , and
(C.6)

‖et4̂q‖
L(D̂q, sR

j, β
,D̂q, sR
k, β ) 6


Cst(j, k, β, t1)

tk−j
if k > j,

Cst(k, β, t1) if k 6 j,
∀ t ∈ (0, t1] ∀ t1 > 0.

This result states a global smoothing property in the iterated domains with poly-
nomial weight, by keeping the same weight β > 1. In particular, for j = k, we
have

(C.7)
∥∥∥∥et4̂qf∥∥∥∥

DsR
k, β

6 Cst(k, β) ‖f‖DsR
k, β

∀ t ∈ [0, 1] ∀ k ∈ Z ∀ β > 1 ∀ f ∈ C∞c (Rn).

This implies that (et4̂q)t> 0 is a C0 semigroup in the Hilbert space DsR
k, β, for every

k ∈ Z and every β > 1, which may not be a semigroup of contractions. Note that,
for k = 0, DsR

k, β is the space L2(Rn) with polynomial weight 〈x〉βsR and indeed, for
β > 1, 4̂q may not be dissipative in this Hilbert space.
Proof. — Since (id−4̂q)jet4̂q = et4̂

q(id−4̂q)j, it suffices to prove (C.6) for j = 0.
We proceed in two steps: we first establish (C.6) for t = 1, and then we show how
to obtain the estimate for every t ∈ (0, t1] by homogeneity.
Let β > 1 and k ∈ N be arbitrary. We follow and adapt a classical argument (Schur

test): by the Cauchy–Schwarz inequality, we have

(C.8)
(
〈x〉βsR

(
id−4̂q

)k
e4̂

q

f(x)
)2

=
(∫

Rn

〈x〉βsR
〈y〉βsR

(
id−4̂q

)k
x
êq(1, x, y)〈y〉βsRf(y) dy

)2

6
∫
Rn

(
〈x〉sR
〈y〉sR

)2β∣∣∣∣(id−4̂q
)k
x
êq(1, x, y)

∣∣∣∣dy ∫
Rn

∣∣∣∣(id−4̂q
)k
x
êq(1, x, y)

∣∣∣∣ 〈y〉2βsRf(y)2 dy

for every f ∈ C∞c (Rn).
We claim that Cst d̂q(0, x) 6 ‖x‖sR 6 Cst d̂q(0, x) for every x ∈ Rn (see [Jea14,

Lemma 2.1 p. 28]). Indeed, the distance d̂q(0, ·) is continuous (by the Hörmander
condition) and thus reaches its bounds on the compact set {x ∈ Rn | ‖x‖sR = 1};
the inequality follows by homogeneity. We infer that

(C.9) 〈x〉sR
〈y〉sR

6 Cst 1 + d̂q(0, x)
1 + d̂q(0, y)

6 Cst
(
1 + d̂q(x, y)

)
∀ x, y ∈ Rn.
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It follows from (C.4) and (C.9) that∫
Rn

(
〈x〉sR
〈y〉sR

)2β ∣∣∣∣(id−4̂q
)k
x
êq(1, x, y)

∣∣∣∣ dy
6 Cst(k)

∫
Rn

(
1 + d̂q(x, y)

)2β
e−d̂

q(x, y)2/8 dy

6 Cst(k)
∫
Rn

(
1 + d̂q(x, y)

)2β
e−d̂

q(x, y)2/8 dy

6 Cst(k, β)
∫
Rn
e−d̂

q(x, y)2/16 dy

= Cst(k, β)
and hence, plugging into (C.8), integrating with respect to x and using (C.4) again,
we obtain

(C.10)
∥∥∥∥e4̂qf∥∥∥∥2

D̂q, sR
k, β

=
∫
Rn

(
〈x〉βsR

(
id−4̂q

)k
e4̂

q

f(x)
)2
dx

6 Cst(k, β)
∫
Rn
e−d̂

q(x, y)2/8 dx
∫
Rn
〈y〉2βsRf(y)2 dy = Cst(k, β) ‖f‖2

D̂q, sR
0, β

.

We have obtained (C.6) for t = 1.
To obtain (C.6) for every t ∈ (0, t1], we make the changes of variable x = ϕ(z) and

y = ϕ(z) in (C.10), with ϕ = δ1/
√
t. Noting that ϕ∗4̂qϕ∗ = t4̂q, ϕ∗e4̂qϕ∗ = et4̂

q ,
ϕ∗dx = | det(ϕ)| dx = 1

tQ(q)/2 dx, and ‖ϕ(x)‖sR = 1√
t
‖x‖sR, we get from (C.10) that

1
tQ(q)/2

∫
Rn

((
1 + 1

t
‖z‖2

sR

)2β (
id−t4̂q

)k
et4̂

q(ϕ∗f)(z)
)2

dz

6 Cst(k, β) 1
tQ(q)/2

∫
Rn

(
1 + 1

t
‖z‖2

sR

)2β
(ϕ∗f)(z)2 dz

from which (C.6) is easily inferred. �
Using (C.5) and the embeddings (B.6) and (B.7), we infer the following result.

Corollary C.4. — Given any t > 0, any j, k ∈ Z and any real number β > 1,
the operator et4̂q is bounded as an operator from Hjσ

β−jN(Rn) when j 6 0 (resp.,
H2j
β+2jN(Rn) when j > 0) to H2k

β+2kN(Rn) when k 6 0 (resp., Hkσ
β−kN(Rn) when k > 0).

Moreover, for all t0, t1 ∈ (0,+∞), their norms are uniformly bounded with respect
to t ∈ [t0, t1].

Remark C.5. — Given any t > 0, it is not true that et4̂q maps continuously any
Hα
β (Rn) to any Hα′

β′ (Rn). Indeed, otherwise, using Hilbert–Schmidt norms we would
infer that its heat kernel e(t, ·, ·) is bounded in the Schwartz space S(Rn × Rn),
which is not true around the diagonal.
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