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Abstract. — Let F ∈ K[X,Y ] be a polynomial of total degree D defined over a perfect
field K of characteristic zero or greater than D. Assuming F separable with respect to Y , we
provide an algorithm that computes all singular parts of Puiseux series of F above X = 0 in
an expected Õ (D δ) operations in K, where δ is the valuation of the resultant of F and its
partial derivative with respect to Y . To this aim, we use a divide and conquer strategy and
replace univariate factorisation by dynamic evaluation. As a first main corollary, we compute
the irreducible factors of F in K[[X]][Y ] up to an arbitrary precision XN with Õ (D(δ +N))
arithmetic operations. As a second main corollary, we compute the genus of the plane curve
defined by F with Õ (D3) arithmetic operations and, if K = Q, with Õ ((h + 1)D3) bit
operations using probabilistic algorithms, where h is the logarithmic height of F .
Résumé. — Soit F ∈ K[X,Y ] un polynôme de degré total D défini au dessus d’un corps

parfait K de caractéristique zéro ou plus grande que D. Sous l’hypothèse que F est séparable
par rapport à la variable Y , nous décrivons un algorithme qui calcule l’ensemble des parties
singulières des séries de Puiseux de F au-dessus de X = 0 avec un nombre moyen d’opérations
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sur K borné par Õ (D δ), où δ est la valuation du résultant de F et sa dérivée partielle en Y .
Pour se faire, nous utilisons une stratégie de type “diviser pour régner” et nous remplaçons
l’utilisation de factorisation univariée par l’évaluation dynamique. Comme premier corollaire
principal, nous calculons les facteurs irréductibles de F dans K[[X]][Y ] à precision XN en
Õ (D(δ +N)) opérations arithmétiques. Comme second corollaire, nous calculons le genre de
la courbe algébrique plane définie par F en Õ (D3) opérations arithmétiques, et, si K = Q,
en Õ ((h + 1)D3) opérations binaires via des algorithmes probabilites, où h est la taille
logarithmique de F .

1. Introduction

This paper provides complexity results for computing Puiseux series of a bivariate
polynomial with coefficients over a perfect field of characteristic zero or big enough.

Context and main results

In this paper, K denotes a perfect field (e.g. K is a finite or number field), p
its characteristic, X and Y two indeterminates over K and F ∈ K[X, Y ] a bivari-
ate polynomial primitive and separable in Y . We denote D the total degree of F ,
dX = degX(F ) and dY = degY (F ); we always assume p = 0 or p > dY . Let K
be the algebraic closure of K and δ = υX(RF ) the X-valuation of the resultant
RF = ResY (F, FY ) of F and its Y -derivative FY . With our assumption on p, the
Puiseux theorem states that for any x0 ∈ K, the roots of F (viewed as a univariate
polynomial in Y ) may be expressed as fractional Laurent power series in (X − x0)
with coefficients in K. These are the (classical) Puiseux series(1) of F above x0, fun-
damental objects of the theory of algebraic curves [BK86, Wal50]. Many applications
are given in [PR12, PR15].
For the computation of singular parts of Puiseux series (that contain the relevant

information about the singularities of the associated curve; remaining terms can be
computed up to an arbitrary precision in quasi-linear time via Newton iterations),
we get:

Theorem 1.1. — There exists an algorithm(2) that computes singular parts of
Puiseux series of F above x0 = 0 in an expected Õ (dY δ) arithmetic operations
over K.

Here we use the classical Õ notation that omits logarithmic factors (see Sec-
tion 2.3). This improves the bound Õ (dY 2 δ) of [PR15]. From that we deduce:

Theorem 1.2. — There exists an algorithm that computes the singular part of
Puiseux series of F above all critical points in an expected Õ (dY 2dX) ⊂ Õ (D3)
arithmetic operations.
(1)Terms written in italics in this introduction are defined in Section 2 or 5.1.
(2)Our algorithms are Las Vegas, due to the computation of primitive elements; they should become
deterministic via [L19]. See Remark 3.12 and Sections 3.1 and 5.2.
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This improves the bound Õ (dY 2dX
3) ⊂ Õ (D5) of [PR08, PR11]; note that [PR15,

Proposition 12] suggests a bound Õ (dY 3dX) ⊂ Õ (D4). Via the Riemann–Hurwitz
formula, we get:
Corollary 1.3. — Assuming p = 0 or p > D, there exists an algorithm that

computes the genus of a given geometrically irreducible algebraic plane curve over
K of degree D in an expected Õ (D3) arithmetic operations.
Using the reduction criterion of [PR08, PR12], we can bound the bit complexity of

the genus computation (here ht(P ) stands for the maximum between the logarithm
of the denominator of P , and the logarithm of the infinite norm of its numerator):
Corollary 1.4. — LetK = Q(γ) be a number field, 0 < ε < 1 a real number and

F ∈ K[X, Y ]. Denote Mγ the minimal polynomial of γ and w its degree. Then there
exists a Monte Carlo algorithm that computes the genus of the curve F (X, Y ) = 0
with probability of error less than ε and an expected number of word operations in:

Õ
(
dY

2dXw
2 log2 ε−1 [ht(Mγ) + ht(F ) + 1]

)
.

With the same notations as in Corollary 1.4, we have:
Corollary 1.5. — Assuming that the degree of the square-free part of

ResY (F, FY ) is known, there exists a Las Vegas algorithm that computes the genus
of the curve F (X, Y ) = 0 with an expected number of word operations in:

Õ
(
dY

2dXw
2 [ht(Mγ) + ht(F ) + 1]

)
.

Finally, our algorithm induces a fast analytic factorisation of F :
Theorem 1.6. — There exists an algorithm that computes the irreducible ana-

lytic factors of F in K[[X]][Y ] with precision N ∈ N in an expected Õ (dY (δ +N))
arithmetic operations in K, plus the cost of one univariate factorisation of degree at
most dY .
This has a particular interest with regards to factorisation in K[X, Y ] or K[X, Y ]:

when working along a critical fibre, one can take advantage of some combinatorial
constraints imposed by ramification when recombining analytic factors into rational
factors [Wei16].

Main ideas and organisation of the paper

Classical definitions related to Puiseux series and description of the rational New-
ton–Puiseux algorithm [Duv89] are given in Section 2. The paper is then organised
accordingly to these main ideas:
Idea 1. — Concentrate on the monic case. The roots above (0,∞) require special

care (cf Section 4.5). This is why we use δ = υX(ResY (F, FY )) and not υX(DiscY (F ))
6 δ.
Idea 2. — Use tight truncation bounds for the powers of X in the course of the

algorithm. The bound n = δ can be reached for some Puiseux series, but we prove
in Section 3 that we can compute at least half of them using a bound n ∈ O(δ/dY ).
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1064 A. POTEAUX & M. WEIMANN

Idea 3. — A divide and conquer algorithm. From Idea 2, we prove that F is
irreducible (and get its Puiseux series) or get a factorisation F = GH mod Xn

where n ∈ O(δ/dY ), G corresponds to the computed Puiseux series, and H satisfies
degY (H) 6 dY /2. The fibre X = 0 being critical, G(0, Y ) and H(0, Y ) are not
coprime, and the classical Hensel lemma does not apply. But it can be adapted to
our case to lift the factorisation F = GH up to precision δ. This requires a Bézout
relation U G + V H = Xκ with κ ∈ O(δ/dY ), computed via [MS16]. Finally, we
recursively compute the Puiseux series of H, defining a divide and conquer algorithm
to compute an analytic factorisation of F mod Xδ+1, together with the singular
parts of its Puiseux series above x0 = 0. See Section 4.
Idea 4. — We rely on dynamic evaluation. The next step is to get rid of univariate

factorisations, which are too expensive for our purpose. In Section 5, we use dynamic
evaluation [DDD85, DSMM+05] to avoid this bottleneck, leading us to work over
product of fields: we have to pay attention to zero divisors and perform suitable
splittings when required.
These ideas allow us to compute the desingularisation of the curve above all

its critical points in Section 6. We get a complexity bound, as good as, up to
logarithmic factors, the best known algorithm to compute bivariate resultants. This
is Theorem 1.2.
Finally, we develop a fast factorisation algorithm and prove Theorem 1.6 in Sec-

tion 7.
To conclude, we add further remarks in Section 8, showing in particular that any

Newton–Puiseux like algorithm would not lead to a better worst case complexity.

A brief state of the art

In [Duv89], D. Duval defines the rational Newton–Puiseux algorithm over a field
K with characteristic 0. From the complexity analysis therein, it takes less than
O(dY 6 dX

2) operations in K when F is monic (no fast algorithm is used). This
algorithm uses the D5-principle, and can be generalised when p > dY .
In [PR08, PR11], an algorithm with complexity Õ (dY δ2 + dY δ log(pc)) is pro-

vided over K = Fpc , with p > dY . From this bound is deduced an algorithm that
computes the singular parts of Puiseux series of F above all critical points in
Õ (dY 3 dX

2 log(pc)). In [PR15], still considering K = Fpc , an algorithm is given to
compute the singular part of Puiseux series over x0 = 0 in an expected Õ (ρ dY δ +
ρ dY log(pc)) arithmetic operations, where ρ is the number of rational Puiseux ex-
pansions above x0 = 0 (bounded by dY ). These two algorithms use univariate
factorisation over finite fields, thus cannot be directly extended to the zero charac-
teristic case. This also explains why the second result does not provide an improved
bound for the computation of Puiseux series above all critical points.
There are other methods to compute Puiseux series or analytic factorisation, as

generalised Hensel constructions [AAMM17, KS99], or the Montes algorithm [BNS13,
Per99] (which works over general local fields). Several of these methods and a few
others have been commented in previous papers by the first author [PR12, PR15].

ANNALES HENRI LEBESGUE



Fast Puiseux series computation 1065

Also, there exist algorithms for the genus based on linear differential operators and
avoiding the computation of Puiseux series [BCS+07, CSTU02]. To our knowledge,
none of these methods have been proved to provide a complexity which fits in the
bounds obtained in this paper.

Acknowledgements
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Rybowicz and the first author in the beginning of 2012, that led to [PR15] as a first
step towards the divide and conquer algorithm presented here. We also thank François
Lemaire for many useful discussions on dynamic evaluation, and the anonymous
referee for carefully proofreading the paper and providing valuable suggestions.

2. Main definitions and classical algorithms

2.1. Puiseux series

We keep notations of Section 1. Up to a change of variable X ← X + x0, it is
sufficient to give definitions and properties for the case x0 = 0. Under the assump-
tion that p = 0 or p > dY , the well known Puiseux theorem asserts that the dY
roots of F (viewed as a univariate polynomial in Y ) lie in the field of Puiseux series
∪e∈NK((X1/e)). See [BK86, Eic66, Wal50] or most textbooks about algebraic func-
tions for the 0 characteristic case. When p > dY , see [Che51, Chapter IV, Section 6].
It happens that these Puiseux series can be grouped according to the field extension
they define. Following Duval [Duv89, Theorem 2], we consider decompositions into
irreducible elements (ζei

∈ K is a primitive eth
i root of unity; they are chosen so that

ζbab = ζa):

F =
ρ∏
i=1

Fi with Fi irreducible in K[[X]][Y ]

Fi =
fi∏
j=1

Fij with Fij irreducible in K[[X]][Y ]

Fij =
ei−1∏
k=0

(
Y − Sij

(
X1/eiζkei

))
with Sij ∈ K((X))

Definition 2.1. — The dY fractional Laurent series Sijk(X) = Sij(X1/eiζkei
) ∈

K((X1/ei)) are called the classical Puiseux series of F above 0. The integer ei ∈ N is
the ramification index of Sij. If Sij ∈ K[[X]], we say that Sij is defined at x0 = 0.

Proposition 2.2. — The {Fij}16 j 6 fi
have coefficients in a degree fi extension

Ki of K. They are conjugated by the action of the Galois group of Ki/K. We call Ki

the residue field of any Puiseux series of Fi and fi its residual degree. We have the
relation ∑ρ

i=1 ei fi = dY .
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Proof. — First claim is [Duv89, Section 1]. Second one is e.g. [Che51, Chapter 4,
Section 1]. �
This leads to the definition of rational Puiseux expansions (classical Puiseux series

can be constructed from a system of rational Puiseux expansions [PR15, Section 2]):

Definition 2.3. — A system of rational Puiseux expansions over K (K-RPE)
of F above 0 is a set {Ri}16 i6 ρ such that:

• Ri(T ) ∈ Ki((T ))2;
• Ri(T ) = (Xi(T ), Yi(T )) = (γiT ei ,

∑∞
l=ni

βilT
l), with ni ∈ Z, γi 6= 0 and

βi, ni
6= 0;

• Ri is a parametrisation of Fi, i.e. Fi(Xi(T ), Yi(T )) = 0;
• the parametrisation is irreducible, i.e. ei is minimal.

We call (Xi(0), Yi(0)) the center of Ri. We have Yi(0) =∞ if ni < 0, which happens
only for non monic polynomials.

Throughout this paper, we will truncate the powers of X of polynomials or series.
To that purpose, we introduce the following notation: given τ ∈ Q and a Puiseux
series S = ∑

α∈Q cαX
α, we denote dSeτ = ∑

α6 τ cαX
α (this sum having thus a finite

number of terms). We generalise this notation to polynomials with coefficients in the
field of Puiseux series by applying it coefficient-wise. In particular, if H ∈ K[[X]][Y ]
is defined as

H =
∑
i

∑
k> 0

αikX
k

Y i, then dHeτ =
∑
i

 bτc∑
k=0

αikX
k

Y i.

Definition 2.4. — The regularity index r of a Puiseux series S of F with
ramification index e is the least integer N > min(0, e υX(S)) such that, if dSeN

e =
dS ′eN

e for some Puiseux series S ′ of F , then S = S ′. We call dSe r
e the singular part

of S in F .

Roughly speaking, the regularity index is the number of terms necessary to “sepa-
rate” a Puiseux series from all the others (with a special care when υX(S) < 0).

Example 2.5. — Consider F1 ∈ F29[X, Y ] defined as

F1 =
3∏
i=1

(Y − Si(X)) +X19Y

with
Si = X +X2 +X3 + 17X4 +X5 +X6 +X7 + (−1)iX15/2, 1 6 i 6 2

and
S3 = X +X2 +X3 +X4.

The singular parts of the Puiseux series of F1 are precisely the Si, with regularity
indices respectively r1 = r2 = 15 and r3 = 4.

Since regularity indices of all Puiseux series corresponding to the same rational
Puiseux expansion are equal, we define:
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Definition 2.6. — The singular part of a rational Puiseux expansion Ri of F is
the pair γiT ei ,Γ(T ) =

ri∑
k=ni

βikT
k

 ,
where ri is the regularity index of Ri, i.e. the one of any Puiseux series associated
to Ri.

Once such a singular part has been computed, the implicit function theorem ensures
us that one can compute the series up to an arbitrary precision. This can be done in
quasi-linear time by using a Newton operator [KT78, Corollaries 5.1 and 5.2, page
251].

Notations. In the remaining of the paper, we will denote (Ri)16 i6 ρ the rational
Puiseux expansions of F . To any Ri, we will always associate the following notations:

• ei, fi and ri will respectively be the ramification index, the residual degree
and the regularity index of Ri,
• we define vi ∈ Q as υX(FY (S)) for any Puiseux series S associated to Ri.

Same notations will be used if Si (or Sijk) denotes a Puiseux series. If we omit any
index i, we will use the notations e, f and r for the three first integers.

2.2. The rational Newton–Puiseux algorithm

Our algorithm in Section 3 is a variant of the well known Newton–Puiseux algo-
rithm [BK86, Wal50]. We now explain (roughly speaking) the idea of this algorithm
via an example, and then describe the variant of D. Duval [Duv89, Section 4] (we
use its improvements).

Tools and idea of the algorithm. Let F0(X, Y ) = Y 6 + Y 5X + 5Y 4X3 −
2Y 4X + 4Y 2X2 +X5− 3X4 and consider its Puiseux series computation. From the
Puiseux theorem, the first term of any such series S(X) is αX

m
q for some α ∈ K

and (m, q) ∈ N2. We have F0(X,αX
m
q + · · · ) = α6X

6 m
q + α5X

5 m
q

+1 + 5α4X
4 m

q
+3

− 2α4X
4 m

q
+1 + 4α2X

2 m
q

+2 +X5− 3X4 + · · · . To get F0(X,S(X)) = 0, at least two
terms of the previous sum must cancel one another, i.e. (m, q) must be chosen so
that two or more of the exponents coincide. To that purpose, we use the following
definition:

Definition 2.7. — The support of

F =
∑
i, j

αijX
j Y i is the set

{
(i, j) ∈ N2

∣∣∣αij 6= 0
}
.

Note that the powers of Y are given by the horizontal axis. The condition on
(m, q) can be translated as: two points of the support of F0 belong to the same line
ma + q b = l. To increase the X-order of the evaluation, no point must be under
this line. Here we have two such lines, a + 2 b = 6 and a + b = 4, that define the
Newton polygon of F0:

TOME 4 (2021)



1068 A. POTEAUX & M. WEIMANN

Definition 2.8. — The Newton polygon N (F ) of F is the lower part of the
convex hull of its support.

We are now considering the choice of α corresponding to a + 2 b = 6. We have
F2(T 2, α T ) = (α6 − 2α4 + 4α2)T 6 + α5 T 7 − 3T 8 + (5α4 + 1)T 10, meaning that α
must be a non zero root of P (Z) = Z6 − 2Z4 + 4Z2. Then, to get more terms, we
recursively apply this strategy to the polynomial F2(X2, X (Y + α)). Actually, it is
more interesting to consider a root ξ = α2 of the polynomial φ(Z) = Z2 − 2Z + 4
(we have P (Z) = Z2 φ(Z2) and we are obviously not interested in the root α = 0),
which is the characteristic polynomial [Duv89]:

Definition 2.9. — If F = ∑
αijX

jY i, then the characteristic polynomial φ∆ of

∆ ∈ N (F ) is φ∆(T ) =
∑

(a, b)∈∆
αabT

a−a0
q

where a0 is the smallest value such that (a0, b0) belongs to ∆ for some b0.

Description of the algorithm. We now give a formal definition of the RNPuiseux
algorithm for monic polynomials (see Section 4.5 for the non monic case); it uses
two sub-algorithms, for each we only provide specifications:

• Bézout, given (q,m) ∈ Z2 with q > 0, computes (u, v) ∈ Z2 s.t. u q−mv = 1
and 0 6 v < q.
• Factor, given K a field and φ a univariate polynomial over K, computes the
factorisation of φ over K, given as a list of factors and multiplicities.

This algorithm also uses an additional definition, themodified Newton polygon [PR15,
Definition 6]. The latter enables RNPuiseux to output precisely the singular part. We
will not use it in our strategy, except for the proof of Lemma 3.16 (see Remark 3.17).
For the sake of completeness, we recall it:

Definition 2.10. — If F = ∑dY
i=0 αi(X)Y i, the modified Newton polygon N ?(H)

is constructed as follows: if α0 = 0 (resp. α0 6= 0 and the first edge, starting from the
left, ends at (1, vX(α1))), add to N (F ) (resp. replace the first edge by) a fictitious
edge joining the vertical axis to (1, vX(α1)) such that its slope is the largest (negative
or null) integer less than or equal to the slope of the next edge (see Figure 2.1a).

The key improvement of this rational version is the distribution of ξ to both X
and Y variables (line 10). This avoids to work with α = ξ1/q and to introduce any
useless field extension due to ramification (see [Duv89, Section 4]).

Truncated Newton polygon. In this paper, we will use low truncation bounds;
in particular, we may truncate some points of the Newton polygon. In order to certify
the correctness of the computed slopes, we will use the following definition:

Definition 2.11. — Given F ∈ K[X, Y ] and n ∈ N, the n-truncated Newton
polygon of F is the set Nn(F ) composed of edges ∆ of N (dF en) that satisfy l

q
6 n

if ∆ belongs to the line ma+ q b = l. In particular, any edge of Nn(F ) is an edge of
N (F ).

ANNALES HENRI LEBESGUE
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Algorithm: RNPuiseux(F,K, π)
In: F ∈ K[X, Y ] monic in Y , K a field and π the result of previous

computations (π = (X, Y ) for the initial call)
Out: A set of singular parts of rational Puiseux expansions above (0, 0) of

F with their base field.
1 R ← {}; // results of the algorithm will be grouped in R
2 foreach ∆ ∈ N ?(F ) do // we consider only negative slopes
3 Compute m, q, l, φ∆ associated to ∆;
4 (u, v) ← Bézout(m, q);
5 foreach (φ,M) in Factor(φ∆) do
6 Take ξ a new symbol satisfying φ(ξ) = 0;
7 π1 = π(ξvXq, Xm (Y + ξu));
8 if M = 1 then R ← R ∪ {(π1(T, 0),K(ξ))};
9 else

10 H(X, Y ) ← F (ξvXq, Xm (Y + ξu))/X l ; // Puiseux
transform

11 R ← R ∪ RNPuiseux(H,K(ξ), π1);

12 return R; Fast Puiseux series computation 9
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Figure 2.1. The modified and truncated Newton polygons

But the edge [(3, 3), (2, 5)] is not part of N7(F2), as it belongs to 2 a + b = 9, and
that there are points (i, j) so that 2 i + j 6 9 and j > 7: from the knowledge of
dF2e7, we cannot guarantee that N (F2) contains an edge belonging to 2 a+ b = 9.
This is indeed wrong here, since N (F2) = [(10, 0), (6, 1), (4, 2), (3, 3), (0, 8)].

2.3. Complexity model.

In this paper, we use two models of computations ; both are RAM models: the
algebraic RAM of Kaltofen [Kal88, Section 2] and the Boolean one. The latter is
considered only for Corollaries 1.2 and 1.3, where we just estimate word operations
generated by arithmetic operations in various coefficient fields (assuming for instance
a constant time access to coefficients of polynomials). For the arithmetic model, we
only count the number of arithmetic operations (addition, multiplication, division)
in our base field K. Most sub-algorithms are deterministic; for them, we consider the
worst case. However, computation of primitive elements uses a probabilistic of Las
Vegas type algorithm. Their running times depend on random choices of element in
K; hence, we use average running times, that propagate to our main results.
Our complexity results use the classical notations O() and Õ () that respectively

hide constant and logarithmic factors. See e.g. [GG13, Chapter 25, Section 7].

Polynomial multiplication. We finally recall some classical complexity results,
starting with the multiplication of univariate polynomials:
Definition 10. — A (univariate) multiplication time is a map M : N→ R s.t.:
• for any ring A, polynomials of degree less than d in A[X] can be multiplied
in at most M(d) operations (multiplication or addition) in A;
• for any 0 < d 6 d′, the inequality M(d) d′ 6 M(d′) d holds.

Lemma 2.2. — Let M be a multiplication time. Then we have:
(1) M(d+ d′) > M(d) + M(d′) for any d, d′ ∈ N,

TOME 1 (-1)
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hide constant and logarithmic factors. See e.g. [GG13, Chapter 25, Section 7].

Polynomial multiplication. We finally recall some classical complexity results,
starting with the multiplication of univariate polynomials:
Definition 10. — A (univariate) multiplication time is a map M : N→ R s.t.:
• for any ring A, polynomials of degree less than d in A[X] can be multiplied
in at most M(d) operations (multiplication or addition) in A;
• for any 0 < d 6 d′, the inequality M(d) d′ 6 M(d′) d holds.

Lemma 2.2. — Let M be a multiplication time. Then we have:
(1) M(d+ d′) > M(d) + M(d′) for any d, d′ ∈ N,

TOME 1 (-1)

(b) N7(F2) for F2 = Y 10 +XY 6 +X2Y 4 +
X3Y 3 +X5Y 2 +X8

Figure 2.1. The modified and truncated Newton polygons

Example 2.12. — Let us consider F2 = Y 10 +X Y 6 +X2 Y 4 +X3 Y 3 +X5 Y 2 +X8

and n = 7. Figure 2.1b provides the truncated Newton polygon of F2 with precision
7. Here we have dF2e7 = F2 −X8 and N (dF2e7) = [(10, 0), (6, 1), (4, 2), (3, 3), (2, 5)].
But the edge [(3, 3), (2, 5)] is not part of N7(F2), as it belongs to 2 a + b = 9, and
that there are points (i, j) so that 2 i + j 6 9 and j > 7: from the knowledge of
dF2e7, we cannot guarantee that N (F2) contains an edge belonging to 2 a + b = 9.
This is indeed wrong here, since N (F2) = [(10, 0), (6, 1), (4, 2), (3, 3), (0, 8)].
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2.3. Complexity model

In this paper, we use two models of computations ; both are RAM models: the
algebraic RAM of Kaltofen [Kal88, Section 2] and the Boolean one. The latter is
considered only for Corollaries 1.4 and 1.5, where we just estimate word operations
generated by arithmetic operations in various coefficient fields (assuming for instance
a constant time access to coefficients of polynomials). For the arithmetic model, we
only count the number of arithmetic operations (addition, multiplication, division)
in our base field K. Most sub-algorithms are deterministic; for them, we consider the
worst case. However, computation of primitive elements uses a probabilistic of Las
Vegas type algorithm. Their running times depend on random choices of element in
K; hence, we use average running times, that propagate to our main results.
Our complexity results use the classical notations O() and Õ () that respectively

hide constant and logarithmic factors. See e.g. [G13, Chapter 25, Section 7].

Polynomial multiplication. We finally recall some classical complexity results,
starting with the multiplication of univariate polynomials:
Definition 2.13. — A (univariate) multiplication time is a map M : N→ R s.t.:
• for any ring A, polynomials of degree less than d in A[X] can be multiplied
in at most M(d) operations (multiplication or addition) in A;
• for any 0 < d 6 d′, the inequality M(d) d′ 6 M(d′) d holds.

Lemma 2.14. — Let M be a multiplication time. Then we have:
(1) M(d+ d′) > M(d) + M(d′) for any d, d′ ∈ N,
(2) M(1) + M(2) + · · ·+ M(2k−1) + M(2k) 6 M(2k+1) for any k ∈ N.
Proof. — First point is [G13, Exercise 8.33]. Second one is a direct consequence.

�
The best known multiplication time gives M(d) ∈ O(d log(d) log(log(d))) ⊂
Õ (d) [CK91, SS71]. Note that for this value of M(), we do not have M(d) M(d′)
6 M(d d′) but only M(d) M(d′) 6 M(d d′) log(d d′). This is why we use Kronecker
substitution.

Multiplication of multivariate polynomials. Consider two polynomials be-
longing to A[Z1, · · · , Zs]. Denote di a bound for their degrees in Zi. Then, by Kro-
necker substitution, they can be multiplied in less than O(M(2s−1 d1 · · · ds)) op-
erations in A (it is straightforward to adapt [G13, Corollary 8.28, page 247] to
any number of variables). In particular, if s is constant, the complexity bound is
O(M(d1 · · · ds)).
Bivariate polynomials defined over an extension of K. Given an irreducible

polynomial P ∈ K[Z], we denote KP := K[Z]/(P (Z)) and dP := degZ(P ). In
Sections 3 and 4, we multiply two polynomials in KP [X, Y ] as follows: first perform
the polynomial multiplication over K[X, Y, Z] as stated in the previous paragraph;
then apply the reduction modulo P on each coefficient. Denoting dX (resp. dY ) a
bound for the degree in X (resp. Y ) of the considered polynomials, the total cost is
O(M(dX dY dP )) (see [G13, Theorem 9.6, page 261] for the second point).
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Matrix multiplication. Primitive elements computation are expressed via the
classical 2 6 ω 6 3 exponent (so that one can multiply two square matrices of size d
in less than O(dω) operations over the base ring). We have ω < 2.373 [LG14]. Note
however that our results do not require fast matrix multiplication: they stand if we
take ω = 3.
Finally, note that we postpone the discussion concerning the complexity of opera-

tions modulo triangular sets (needed for dynamic evaluation) in Section 5.2.

3. Refined truncation bounds
We keep notations of Sections 1, 2.1 and 2.3 (KP and dP ). Additionally, we assume

F to be monic. The aim of this section is to prove that we can compute at least half
of the Puiseux series of F in less than Õ (dY δ) arithmetic operations, not counting
the factorisation of univariate polynomials. Our algorithms and intermediate results
will use the following notion:
Definition 3.1. — We say that S0 ∈ K((X1/e0)) is a Puiseux series of F known

with precision n if there exists a Puiseux series S of F s.t. dS0en = dSen. We say
that R0 = (γ0 T

e0 ,Γ0(T )) is a RPE of F known with precision n if dΓ0((X/γ0)1/e0)en
is a Puiseux series of F known with precision n.
Theorem 3.2. — There exists an algorithm that computes some RPEs R1, · · · ,

Rλ of F known with precision at least 4 δ/dY , containing their singular parts, and
such that ∑λ

i=1 ei fi > dY

2 . Not taking into account univariate factorisations, this can
be done in an expected O(M(dY δ) log(dY )) ⊂ Õ (dY δ) arithmetic operations over
K.
Algorithms Half-RNP in Section 3.2 will be such an algorithm. It uses previous

improvements by the first author and M. Rybowicz [PR08, PR11, PR15], and one
additional idea, namely Idea 2 of Section 1.

3.1. Previous complexity improvements and Idea 2

Lemma 3.3. — Let n ∈ N, F ∈ KP [X, Y ] and ξ ∈ KP for some irreducible P ∈
K[Z]. Denote ∆ an edge of N (F ) belonging to ma+qb=l, and (u, v)=Bézout(m, q).
The Puiseux transform F (ξvXq, Xm(ξu + Y ))/X l modulo Xn can be computed as
n univariate polynomial shifts over KP . It takes less than O(nM(dY dP )) operations
over K.
Proof. — This is [PR11, Lemma 2, page 210]; Figure 3.1 page 1075 illustrates the

idea. Complexity also uses Kronecker substitution. �
Using the Abhyankar’s trick [Abh90, Chapter 12], we reduce the number of recur-

sive calls of the rational Newton–Puiseux algorithm from δ to O(ρ log(dY )).
Lemma 3.4. — Let F = Y dY + ∑dY −1

i=0 Ai(X)Y i ∈ K[X, Y ] with dY > 1. If the
Newton polygon of F (X, Y − AdY −1/dY ) has a unique edge (∆)ma + q b = l with
q = 1, then φ∆ has at least two roots in K.
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In other words, after performing the Tschirnhausen transform Y ← Y −AdY −1/dY ,
we are sure to get at least either a branch separation, a non integer slope, or a non
trivial factor of the characteristic polynomial. This happens at most O(ρ log(dY ))
times.
Example 3.5. — Let’s consider once again the polynomial F1 of Example 2.5

page 1066. Its Newton polygon has a unique edge with integer slope, and the associ-
ated characteristic polynomial has a unique root. The Abhyankar’s trick is applied
with 1

3 A2 = X +X2 +X3 + 2X4 + 20X5 + 20X6 + 20X7. Then, the shifted poly-
nomial has still a unique edge, but its characteristic polynomial has two different
roots: it separates S3 from the two other Puiseux series.
Lemma 3.6. — Let F = Y dY + ∑dY −1

i=0 Ai(X)Y i ∈ KP [X, Y ]. One can compute
the truncated shift dF (X, Y − AdY −1/dY )en in less than O(M(n dY dP )) operations
in K.
Proof. — From our assumption on the characteristic of K, this computation can

be reduced to bivariate polynomial multiplication via [BP94, Problem 2.6, page 15].
The result follows (see Section 2.3). �
In order to provide the monicity assumption of Lemma 3.4, the well-known Weier-

strass preparation theorem [Abh90, Chapter 16] is used.
Proposition 3.7. — LetG ∈ KP [X, Y ] not divisible byX. There exists unique Ĝ

and U in KP [[X]][Y ] s.t. G = Ĝ U , with U(0, 0) 6= 0 and Ĝ a Weierstrass polynomial
of degree degY (Ĝ) = υY (G(0, Y )). Moreover, RPEs of G and Ĝ centered at (0, 0) are
the same.
The following result provides a complexity bound.
Proposition 3.8. — Let G ∈ KP [X, Y ] as in Proposition 3.7 and n ∈ N. Denote

Ĝ the Weierstrass polynomial of G. There exists an algorithm WPT that computes
dĜen in less than O(M(n degY (G) dP )) operations in K.
Proof. — This is [G13, Theorem 15.18, page 451], using Kronecker substitution for

multivariate polynomial multiplication. This theorem assumes that lcY (G) is a unit,
which is not necessarily the case here. However, formulæ in [G13, Algorithm 15.10,
pages 445 and 446] can still be applied in our context: this is exactly [Mus75,
Algorithm Q, page 33]. �

Representation of residue fields. As explained in [PR11, Section 5.1], repre-
senting residue fields as multiple extensions can be costly. Therefore, we need to
compute primitive representations each time we get a characteristic polynomial φ
with degree 2 or more. Note that algorithms we use here are Las-Vegas (this is the
only probabilistic part concerning our results on Puiseux series computation).
Proposition 3.9. — Let P ∈ K[Z] and φ ∈ KP [W ] be two irreducible polyno-

mials of respective degrees dP = degZ(P ) and dφ = degW (φ). Denote d = dP dφ, and
assume that there are at least d2 elements in K. There exists a Las-Vegas algorithm
Primitive that computes an irreducible polynomial P1 ∈ K[Z] with degree d to-
gether with an isomorphism Ψ : KP,φ ' KP1 . It takes an expected O(dω+1

2 ) arithmetic
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operations plus a constant number of irreducibility tests in K[Z] of degree at most
d. Also, given α ∈ KP,φ, one can compute Ψ(α) with O(dP M(d)) operations over K.
Proof. — See [PS13b, Section 2.2]; few details are in the proof of Proposition 5.16.

�
Remark 3.10. — We do not precisely pay attention to the assumption about the

number of elements in K in this paper. Note that we will always have d 6 dY in our
context. Therefore, if K is a finite field without enough elements, it is sufficient to
build a degree 2 field extension since p > dY .
Remark 3.11. — The above complexity result can actually be expressed as O(dω0)

where 3
2 6 ω0 6 2 denotes an exponent so that one can multiply a d×

√
d matrix and

a square
√
d×
√
d one with O(dω0) operations in K. One has ω0 < 1.667 from [HP98],

which is better than the best known bound ω+1
2 < 1.687 [LG14]. This however does

not improve our main results, since we could take ω = 3 for our results to stand.
Remark 3.12. — [L19, Section 4] provides an almost linear deterministic algorithm

to compute modulo tower of fields by computing “accelerated towers” instead of
primitive elements. Such a strategy would lead to a version of Theorem 3.2 with a
deterministic algorithm and a complexity bound O(dY 1+o(1) δ). [L20] deals similarly
with dynamic evaluation, so that this bound should propagate for our main results.

3.2. The Half-RNP algorithm

We detail the algorithm of Theorem 3.2. It computes truncated parametrisations
of F , i.e. maps π = (γ Xe,Γ(X) + αXτ Y ) s.t. π(T, 0) is a RPE of F known
with precision τ

e
(see Definition 3.1). Except possibly at the first call, H therein is

Weierstrass.
Remark 3.13. — We have degX(π) 6 n ei for any RPE deduced from π. This is

obvious when π is defined from line 1; changing X by Xq on line 9 is also straight-
forward. Also, we have m 6 n ei, since m

q
6 l

q
6 n from Definition 2.11.

Theorem 3.2 is a direct consequence of the following result, proved in Section 3.4.
Proposition 3.14. — Half-RNP(F,Z, 6 δ/dY , (X, Y ))) outputs a set of RPEs.

It contains a set R1, · · · , Rλ known with precision at least 4 δ/dY > ri/ei, with
vi < 2 δ/dY and ∑λ

i=1 ei fi > dY

2 . Not taking into account the cost of univariate
factorisations, it takes an expected O(M(dY δ) log(dY )) ⊂ Õ (dY δ) operations in K.
Remark 3.15. — The key idea is to use tighter truncation bounds than in [PR11,

PR15]. Proposition 3.14 says that n ∈ O(δ/dY ) is enough to get some information (at
least half of the singular parts of Puiseux series). This requires a slight modification
of [PR15, Algorithm ARNP]: n is updated in a different way. When there is a transform
X ← Xq, it must be multiplied by q; also, it cannot be divided by the degree t of the
found extension anymore. These points are compensated by algorithm WPT, which
divides the degree in Y by the same amount (it eliminates all conjugates). The size
of the input polynomial H is thus bounded by O(δ) elements of K (cf Section 3.4).
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Algorithm: Half-RNP(H,P, n, π)
In: P ∈ K[Z] irreducible, H ∈ KP [X, Y ] separable and monic in Y with

d := degY (H) > 0, n ∈ Q (truncation order) and π the current
truncated-parametrisation (P = Z and π = (X, Y ) for the initial call).

Out: all RPE’s Ri of H s.t. n− vi > ri, with precision (n− vi)/ei > ri/ei.
1 R ← {} ; B ← Ad−1/d ; π1 ← dπ(X, Y −B)en ; // H = ∑d

i=0AiY
i

2 if d = 1 then return π1(T, 0) else H1 ← dH(X, Y −B)en;
3 foreach ∆ in Nn(H1) do // ∆ belongs to ma+ q b = l
4 foreach (φ,M) in Factor(KP , φ∆) do
5 if degW (φ) = 1 then ξ, P1, H2, π2 = −φ(Z, 0), P,H1, π1;
6 else
7 (P1,Ψ) ← Primitive(P, φ);
8 ξ,H2, π2 ← Ψ(W ),Ψ(H1),Ψ(π1) ; // Ψ : KP, φ → KP1

isomorphism
9 π3 ← π2(ξvXq, Xm (Y + ξu)) mod P1 ; // u, v = Bézout(m, q)

10 H3 ← dH2(ξvXq, Xm (Y + ξu))en1 mod P1; // n1 = q n− l
11 H4 ← WPT(H3, n1) ;
12 R ← R ∪ Half-RNP(H4, P1, n1, π3)

13 return R;

3.3. Using tight truncation bounds

By a careful study of the RNPuiseux algorithm, we get an optimal truncation bound
to compute a RPE of a monic polynomial F with this algorithm or Half-RNP. From
this study, we also deduce an exact relation between δ and this optimal bound. In
this section, for 1 6 i 6 ρ, we denote mi, h a+ qi, h b = li, h, 1 6 h 6 gi the successive
edges encountered during the computation of the expansion Ri with RNPuiseux, and

Ni :=
gi∑
h=1

li, h
qi, 1 · · · qi, h

.

Lemma 3.16. — For any 1 6 i 6 ρ, we have Ni = ri

ei
+ vi.

Proof. — Denote Ri = (γiXei ,Γi(X, Y )) with Γi(X, Y ) = Γi, 0(X)+Xri Y . By the
definition of the Puiseux transformations, we have (0, 1) ∈ N (Gi) for

Gi(X, Y ) := F (γiXei ,Γi(X, Y ))
XNi ei

,

i.e. υX (∂YGi(X, 0)) = 0. This is υX(Xri FY (γiXei ,Γi, 0(X))) = Ni ei, or:

Ni = ri + υX(FY (γiXei ,Γi, 0(X)))
ei

= ri
ei

+υX(FY (X,Γi, 0((X/γi)1/ei))) = ri
ei

+vi. �

Remark 3.17. — This result shows that Ni does not depend on the algorithm.
Nevertheless, the proof above relies on algorithm RNPuiseux because it computes
precisely the singular part of all Puiseux series thanks to the modified Newton
polygon [PR15, Definition 6]. The algorithm Half-RNP introduces two differences:

ANNALES HENRI LEBESGUE

algo:RNP
algo:ARNP
algo:RNP
algo:RNP
algo:ARNP


Fast Puiseux series computation 1075
Fast Puiseux series computation 15

0
H(X,Y ) known up to Xn

∆m
i+
qj =

l

l
q

m
i+
qj =

q n

n

m
i+
qj =

k

k
q

dY

=⇒

0
H ′(X,Y ) = H(ξvXq, XmY )

q n

k

l

dY

=⇒

0

H∆,ξ(X,Y ) = H′(X,Y+ξu)
Xl

q n− l

dY

Figure 3.1. Change of variables for a Puiseux transform

Lemma 3.15. — Let n0 ∈ N. To compute the RPE Ri with certified precision
n0 > ri

ei
, it is necessary and sufficient to run Half-RNP with truncation bound

n = n0 + vi. In particular, to ensure the computation of the singular part of Ri, it is
necessary and sufficient to use a truncation bound n > Ni.

Proof. — First note that starting from H known up to Xn, the greatest n1 so that
we can certify H∆,ξ := H(ξvXq, Xm (Y + ξu))/X l up to Xn1 is precisely n1 = q n− l
(see Figure 3.1; details are in [PR11, Proof of Lemma 2, pages 210 and 211]). This
explains the truncation update of line 10.
Let’s first assume that the last computed Newton polygon provides exactly the

singular part for the associated RPE. Then, starting from a truncation bound n =
n′+Ni, we get n1 = q n′+ q Ni− l. By construction, q Ni− l is precisely the “Ni” of
the associated RPE of H∆,ξ. By induction, we finish at the last call of the algorithm
associated to the RPE Ri with a truncation bound n = ei n

′. Moreover, we have
degY (H) = 1 and π = (γiXei ,Γi(X) + αiX

ri Y ). Hence, the output Ri is known
with precision n′ + ri

ei
. We conclude thanks to Lemma 3.13 by taking n′ = n0 − ri

ei
.

If our assumption is false, this means that the considered RPE is associated to an
edge ((0, l), (1, l − η)) of the last Newton polygon. If so, we get at this stage of the
algorithm a RPE π = (γiXei ,Γi(X) + αiX

ηi Y ) with ηi > ri.This means that we
computed some coefficients additionally to the singular part (precisely ηi− ri = η−1
coefficients). But we factorise this additional power of X at line 10, and remove the
same precision ηi − ri to our truncation bound. This therefore does not change the
result. See Example 5. �

Example 5. — Consider a polynomial F ∈ Q[[X]][Y ] with Puiseux series S1(X) =
1 + X + X2 + X4 + 2X8, S2(X) = 1 + X + X2 − 3X3 − X8 and S3 = 1 + X +
X2 − X3 − X4 − X8. They all have a regularity index equal to 3. Let us assume
that we want to compute R3 the RPE associated to S3 with precision n0 = 8.
We start with precision n = n0 + v1 = 14. We first compute B = A2(X)/3 =
−1 − X − X2 + X3, π1 = (X, Y + 1 + X + X2 − X3) and F1 = dF (Y −B)e14 =
Y 3 + (−4X6 + 2X7 − X8 − 6X11 + 3X12)Y + 4X10 − 2X11 − 4X14. The asso-
ciated Newton polygon has two edges 3 a + b = 9 and 4 a + b = 10. The second
one has a characteristic polynomial φ = −4 (T − 1). We use the change of variable
(X, Y ) ← (X,X4 (Y + 1)) and run algorithm WPT with precision n1 = n − 10 = 4,

TOME 1 (-1)
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• The Abhyankar’s trick does not change the value of the Ni. After apply-
ing it, the next value l

q
is just the addition of the li

qi
we would have found

with RNPuiseux (the concerned slopes being the sequence of integer slopes
that compute common terms for all Puiseux series, plus the next one), as
we do not factorise any power of X when making the change of variables
Y ← Y + Ad−1(X)/d, but only when performing the Puiseux transform at
line 10 of algorithm Half-RNP; on another hand, each integer slope correspond-
ing to a non essential element implies a factorisation of the corresponding
power of X at line 10 of algorithm RNPuiseux. See Example 3.18 below.
• Not using the modified Newton polygon N ? can only change the last value

l
q
(before the last Puiseux transform, we might get an edge of the Newton

polygon that do not correspond exactly to the exponent r
e
; see Example 3.20).

This has no impact on the proof of Lemma 3.19 below.
In the remaining of this paper, we will define Ni as ri

ei
+ vi.

Example 3.18. — Let’s assume that F is an irreducible polynomial with Puiseux
series S(X) = X1/2 +X +X3/2 +X2 +X9/4. The successive values for (l, q) are:

• (4, 2), (2, 1), (2, 1), (2, 1) and (2, 2) with the RNPuiseux algorithm. We thus
get N = 2 + 1 + 1 + 1 + 1

2 = 11
2 .

• (4, 2), (14, 2) with the Half-RNP algorithm (assuming high enough truncation).
We thus get N = 2 + 7

2 = 11
2 .

Lemma 3.19. — Let n0 ∈ N. To compute the RPE Ri with certified precision
n0 > ri

ei
, it is necessary and sufficient to run Half-RNP with truncation bound

n = n0 + vi. In particular, to ensure the computation of the singular part of Ri, it is
necessary and sufficient to use a truncation bound n > Ni.
Proof. — First note that starting from H known up to Xn, the greatest n1 so that

we can certify H∆, ξ := H(ξvXq, Xm (Y + ξu))/X l up to Xn1 is precisely n1 = q n− l
(see Figure 3.1; details are in [PR11, Proof of Lemma 2, pages 210 and 211]). This
explains the truncation update of line 10.
Let’s first assume that the last computed Newton polygon provides exactly the

singular part for the associated RPE. Then, starting from a truncation bound n =
n′+Ni, we get n1 = q n′+ q Ni− l. By construction, q Ni− l is precisely the “Ni” of
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the associated RPE of H∆, ξ. By induction, we finish at the last call of the algorithm
associated to the RPE Ri with a truncation bound n = ei n

′. Moreover, we have
degY (H) = 1 and π = (γiXei ,Γi(X) + αiX

ri Y ). Hence, the output Ri is known
with precision n′ + ri

ei
. We conclude thanks to Lemma 3.16 by taking n′ = n0 − ri

ei
.

If our assumption is false, this means that the considered RPE is associated to an
edge ((0, l), (1, l − η)) of the last Newton polygon. If so, we get at this stage of the
algorithm a RPE π = (γiXei ,Γi(X) + αiX

ηi Y ) with ηi > ri.This means that we
computed some coefficients additionally to the singular part (precisely ηi− ri = η−1
coefficients). But we factorise this additional power of X at line 10, and remove the
same precision ηi − ri to our truncation bound. This therefore does not change the
result. See Example 3.20. �
Example 3.20. — Consider a polynomial F ∈ Q[[X]][Y ] with Puiseux series

S1(X) = 1 + X + X2 + X4 + 2X8, S2(X) = 1 + X + X2 − 3X3 − X8 and S3
= 1 + X + X2 − X3 − X4 − X8. They all have a regularity index equal to 3. Let
us assume that we want to compute R3 the RPE associated to S3 with precision
n0 = 8. We start with precision n = n0 + v1 = 14. We first compute B = A2(X)/3
= −1 − X − X2 + X3, π1 = (X, Y + 1 + X + X2 − X3) and F1 = dF (Y − B)e14

= Y 3 + (−4X6 + 2X7 − X8 − 6X11 + 3X12)Y + 4X10 − 2X11 − 4X14. The
associated Newton polygon has two edges 3 a+ b = 9 and 4 a+ b = 10. The second
one has a characteristic polynomial φ = −4 (T − 1). We use the change of variable
(X, Y ) ← (X,X4 (Y + 1)) and run algorithm WPT with precision n1 = n − 10 = 4,
getting π3 = (X,X4 Y + 1 +X+X2−X3 +X4) and H4 = Y +X4. After a recursive
call, we finally output the RPE (X,S3(X)). Here the computed π3 represents more
than the singular part (X,X3 Y + 1 +X +X2 −X3), but this changes nothing as
we factorised the already computed term X4 (we have X4 Y instead of X3 Y for the
singular part).
We proved that Ni is an optimal bound to compute the singular part of the RPE

Ri. We now bound it.
Lemma 3.21. — We have ri

ei
6 vi.

Proof. — This is written in the proof of [PR11, Proposition 5, page 204]. �
Corollary 3.22. — We have vi 6 Ni 6 2 vi.
Proof. — Straightforward consequence of Lemmas 3.16 and 3.21. �
We finally deduce global bounds:
Proposition 3.23. — At least dY

2 Puiseux series Si,j,k satisfy vi < 2 δ/dY and
Ni < 4 δ/dY .
Proof. — Assume the Ri ordered s.t. vi 6 vi+1, and let λ s.t.
λ−1∑
i=1

ei fi <
dY
2 6

λ∑
i=1

ei fi (i.e.
ρ∑

i=λ+1
ei fi 6

dY
2 <

ρ∑
i=λ

ei fi by Proposition 2.2).

Then we have

δ =
ρ∑
i=1

vi ei fi >
ρ∑
i=λ

vi ei fi > vλ

ρ∑
i=λ

ei fi > vλ
dY
2 ,
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the first equality being a resultant property (see e.g. [G13, Exercise 6.12]). Hence,
for all i 6 λ, we have vi 6 vλ < 2δ/dY , thus Ni < 4δ/dY by Corollary 3.22. The
claim follows. �

3.4. Complexity results and proof of Theorem 3.2

Proposition 3.24. — Not taking into account the cost of univariate factori-
sations, running Half-RNP(F,Z, n, (X, Y )) takes an expected O(M(n dY 2) log(dY ))
operations over K.

Proof. — We consider a function call to Half-RNP(H,P, nH , π), denote dP
= degZ(P ) and distinguish two kind of lines (for both, note the bound n dY > nH
degY (H) dP ):

(Type 1) By Lemma 3.6, line 2 takes less than O(M(n dY )) operations over K. So do
Lines 1 and 9, by respectively Lemmas 3.6 and 3.3, using Remark 3.13 and
ei fi 6 dY .

(Type 2) Lines 10 and 11 are O(M(q dφ n dY )) from respectively Lemma 3.3 and Propo-
sition 3.8. By Proposition 3.9, so is line 7, while line 8 costs O((dPdφ)ω+1

2 ).
From Lemma 3.4, when q = dφ = 1, we must have a branch separation. Therefore,

this happens at most ρ− 1 times (more precisely, the number of pairs (∆, φ) with
q = dφ = 1 while considering all recursive calls is bounded by ρ). This means that
the sum of the costs for these cases is less than O(ρM(n dY )) ⊂ O(M(n dY 2)).
To conclude the proof, we still have to deal with all the cases where q > 1 or

dφ > 1. Then, Type 2 lines cost more than Type 1 ones. Moreover, we can bound q
by ei and dPdφ by fi for any RPE Ri issued from (∆, φ). But for each RPE Ri, such
situation cannot happen more than log(ei fi) 6 log(dY ) times (before and/or after
separation of this branch with other ones). From Lemma 2.14, that means we can
bound the total cost for all these cases by

O
((

M
( ρ∑
i=1

ei fi n dY

)
+

ρ∑
i=1

f
ω+1

2
i

)
log(dY )

)
⊂ O

(
M
(
n dY

2
)

log(dY )
)
.

�
Proof of Proposition 3.14. — As far as correctness is concerned, we only have to

take care of truncations and the precision of the output: other points are considered in
previous papers of the first author (see e.g. [PR15, Proposition 6] ; note also [Duv89,
Section 4.1] concerning the construction of the output). From Lemma 3.19, a function
call Half-RNP(F,Z, 6δ/dY , (X, Y ))) provides (at least) the Puiseux series satisfying
vi < 2δ/dY with precision 4δ/dY or greater. As ri/ei 6 vi from Lemma 3.21, their
singular parts are known. Also, from Proposition 3.23, we get at least half of the
Puiseux series of F . Complexity is Proposition 3.24. �
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4. A divide and conquer algorithm
We keep notations of Sections 1 and 3, and prove in this section the following

result:
Theorem 4.1. — Not taking into account the cost of univariate factorisations,

there exists an algorithm that computes the singular part of all rational Puiseux
expansions of F above x0 = 0 in less than O(M(dY δ) log(dY δ) + M(dY ) log2(dY ))
arithmetic operations.
Assuming that F is monic, our strategy can be summarised as follows:
(1) Run Half-RNP(F,Z, 6 δ/dY , (X, Y )). If this provides all RPEs of F , we are

done. If not, from Section 3, we get at least half of the Puiseux series of F ,
satisfying vi < 2 δ/dY , and known with precision 4 δ/dY or more.

(2) From these Puiseux series, construct the associated irreducible factors and
their product G with precision 4 δ/dY ; cf Section 4.1. Note that degY (G)
> dY /2.

(3) Compute its cofactor H by euclidean division modulo X4 δ/dY +1.
(4) Compute the Bézout relation U G+ V H = Xκ mod Xκ+1 via [MS16, Algo-

rithm 1]. We prove in Section 4.2 that κ 6 2 δ/dY .
(5) Using this relation, lift the factorisation F = GH mod X4 δ/dY +1 to precision

δ using a variant of the Hensel lemma. See Section 4.3.
(6) Finally, apply the main algorithm recursively on H; as the degree in Y is at

least divided by two each time, this is done at most log(dY ) times, for a total
cost only multiplied by 2. This is detailed in Section 4.4.

If F is not monic (this assumption is not part of Theorem 4.1), first use Hensel lifting
to compute the factor F∞ corresponding to RPE’s centered at (0,∞) up to precision
Xδ . Then, compute the RPE’s of F∞ as “inverse” of the RPE’s of its reciprocal
polynomial (which is monic by construction). Details are provided in Section 4.5.

4.1. Computing the norm of a RPE
Lemma 4.2. — Let R1, · · · , Rλ be a set of K-RPEs not centered at (0,∞). For

each Ri, we denote (Sijk)jk its associated Puiseux series. Let
ν = max

16 i6λ

∑
(i′, j′, k′)
6= (i, j, k)

υX (Sijk(X)− Si′j′k′(X))

and assume that the Ri are known with precision n > ν. Then there exists an
algorithm NormRPE that computes G ∈ K[X, Y ] monic with degY (G) = ∑λ

i=1 ei fi,
degX(G) = n+ ν, and such that the RPE of G with precision n are precisely the Ri.
It takes less than O(M(n degY (G)2) log(n degY (G))) ⊂ Õ (n degY (G)2) arithmetic
operations over K.
Proof. — Denote Pi ∈ K[Z] so that Ri = (γi(Z)T ei ,Γi(Z, T )) is defined over KPi

.
Compute

Ai =
ei−1∏
j=0

Y − Γi

Z, ζjei

(
X

γi

) 1
ei

 mod (Xn+ν+1, Pi(Z))
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for 1 6 i 6 λ. As n > ν, it takes O(M(e2
i n fi) log(ei)) operations in K using a sub-

product tree. Then, compute Gi = ResZ(Ai, Pi) mod Xn+ν+1. Adapting [G13, Corol-
lary 11.21, page 332] to a polynomial with three variables, this is O(fi M(n ei fi) log
(n ei fi)). Summing over i these two operations, this fits into our bound. Finally, com-
pute G the product of the Gi modulo Xn+ν+1 in less than O(M(n degY (G)) log(degY
(G))) using a sub-product tree [G13, Algorithm 10.3, page 297]. It has the required
properties. �

4.2. Lifting order

Our algorithm requires to lift some analytic factors G,H of F which are not
coprime modulo (X). To this aim, we will generalise the classical Hensel lifting. The
first step is to compute a generalised Bézout relation UG + V H = Xκ with κ ∈ N
minimal.

Definition 4.3. — Let G,H ∈ K[[X]][Y ] coprime. The lifting order of G and H
is:

κ(G,H) := inf
{
k ∈ N, Xk ∈ (G,H)

}
.

We now provide an upper bound for the lifting order that is sufficient for our
purpose.

Proposition 4.4. — If F = G ·H with H monic, then

κ(G,H) 6 max
H(S)=0

υX(FY (S)).

Proof. — Let U G + V H = Xκ in K[[X]][Y ], with κ = κ(G,H) minimal. Up to
performing the euclidean division of U by H, we may assume degY (U) < degY (H)
=: d. Moreover, minimality of κ and monicity of H impose υX(U) = 0. Denoting
S1, · · · , Sd the Puiseux series of H, we have U(Si)G(Si) = Xκ for 1 6 i 6 d. Using
interpolation, we get

U =
d∑
i=1

Xκ

G(Si)HY (Si)
∏
j 6=i

(Y − Sj) =
d∑
i=1

Xκ

FY (Si)
∏
j 6=i

(Y − Sj).

As υX(U) = 0 and υX(Sj) > 0 (H is monic), we have κ 6 max16 i6 d υX(FY (Si)). �

Corollary 4.5. — If F ∈ K[[X]][Y ] is a non irreducible monic polynomial, then
there exists a factorisation F = GH in K[[X]][Y ] such that κ(G,H) 6 2 δ/dY .

Proof. — From Proposition 3.23, there exist λ > 1 RPE R1, · · · , Rλ of F such that
vi < 2 δ/dY for all i 6 λ. Take H = ∏λ

i=1 Fi and G = ∏ρ
i=λ+1 Fi (with Fi the analytic

factor associated to Ri - see Section 2.1), and conclude from Proposition 4.4. �
From [MS16, Corollary 1], computing the relation U G + V H = Xκ mod Xκ+1

takes O(M(dY κ) log(κ) + M(dY )κ log(dY )), i.e. O(M(δ) log(δ)) for (G,H) of Corol-
lary 4.5.
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4.3. Adaptation of Hensel’s lemma to our context

We generalise the classical Hensel lemma [G13, Section 15.4] when polynomials are
not coprime modulo X. First, the following algorithm “double the precision” of the
lifting: given F , G, H, U , V ∈ K[X, Y ] with H monic in Y , and n0, κ ∈ N satisfying

• F = GH mod Xn0 with n0 > 2κ,
• UG+V H = Xκ mod Xn0−κ with degY (U) < degY (H), degY (V ) < degY (G),

it outputs polynomials G̃, H̃, Ũ , Ṽ ∈ K[X, Y ] with H̃ monic in Y such that:
• F = G̃ H̃ mod X2 (n0−κ), with G̃ = G mod Xn0−κ and H̃ = H mod Xn0−κ,
• Ũ G̃+ Ṽ H̃ = Xκ mod X2n0−3κ ; degY (Ṽ ) < degY (G̃), degY (Ũ) < degY (H̃).

In what follows, QuoRem denotes the classical euclidean division algorithm.

Algorithm: HenselStep(F,G,H,U, V, n0, κ)
1 α← X−κ(F −GH) mod X2 (n0−κ);
2 Q,R← QuoRemY (Uα,H) mod X2 (n0−κ);
3 G̃← G+ αV +QG mod X2 (n0−κ);
4 H̃ ← H +R mod X2 (n0−κ);
5 β ← X−κ(UG̃+ V H̃)− 1 mod X2n0−3κ;
6 S, T ← QuoRemY (Uβ, H̃) mod X2 (n0−κ);
7 Ũ ← U − T mod X2n0−3κ;
8 Ṽ ← V − βV − SG̃ mod X2n0−3κ;
9 return G̃, H̃, Ũ , Ṽ

Lemma 4.6. — Algorithm HenselStep is correct; it runs in O(M(n0 dY )) opera-
tions in K.

Proof. — From α ≡ 0 mod Xn0−κ (thus Q ≡ 0 mod Xn0−κ and R ≡ 0
mod Xn0−κ from [G13, Lemma 15.9(ii), page 445]) and UG + V H − Xκ ≡ 0
mod Xn0−κ, we have G̃ ≡ G mod Xn0−κ, H̃ ≡ H mod Xn0−κ and

F − G̃H̃ ≡ F − (G+ αV +QG)(H + αU −QH)
≡ α(Xκ − V H − UG)− α2UV −Qα(UG− V H) +Q2GH

≡ 0 mod X2 (n0−κ).

From β ≡ 0 mod Xn0−2κ and UG̃+ V H̃ −Xκ ≡ 0 mod Xn0−κ, we have:
ŨG̃+ Ṽ H̃ −Xκ ≡ (U − Uβ + SH̃)G̃+ (V − βV − SG̃)H̃ −Xκ

≡ UG̃+ V H̃ −Xκ − β(UG̃+ V H̃)
≡ β(Xκ − UG̃− V H̃) ≡ 0 mod X2n0−3κ.

Conditions on the degrees in Y for H̃ and Ũ are obvious (thus is the monicity of
H̃). The complexity result is similar to [G13, Theorem 9.6, page 261]. �
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If we start from a relation F = GH mod X2κ+1 with a Bézout relation U G
+ V H = Xκ mod Xκ+1, we thus can iterate this algorithm up to the wanted
precision:
Lemma 4.7. — Given F,G,H as in the input of algorithm HenselStep with

n0 = 2κ + 1, there exists an algorithm Hensel that computes polynomials (G̃, H̃)
as in the output of HenselStep for any precision n ∈ N, additionally satisfying:

• G̃ = G mod Xκ+1, H̃ = H mod Xκ+1 and F = G̃H̃ mod Xn+2κ;
• if there are G?, H? ∈ K[X, Y ] satisfying F = G?H? mod Xn+2κ, then
G̃ = G? mod Xn and H̃ = H? mod Xn.

It takes less than O(M(n dY ) + M(κ dY ) log(κ dY )) operations in K.
Proof. — The algorithm runs as follows:

(1) Compute U, V ∈ K[X, Y ] s.t. UG+ V H = Xκ mod Xκ+1 [MS16, Algorithm 1].
(2) Double the value n0 − 2κ at each call of HenselStep, until n0 − 2κ > n+ κ.
Correctness and complexity follow from Lemma 4.6 (using [MS16, Corollary 1] for
the computation of U and V ). Finally, uniqueness of the result is an adaptation
of [G13, Theorem 15.14, page 448] (this works because we take a precision satisfying
n0 − 2κ > n+ κ). �
Remark 4.8. — Note that if G(0, Y ) and H(0, Y ) are coprime, then κ = 0 and

this result is the classical Hensel lemma.

4.4. The divide and conquer algorithm for monic polynomials

We provide our divide and conquer algorithm. Algorithm Quo outputs the quotient
of the euclidean division in K[[X]][Y ] modulo a power of X, and #R is the cardinal
of R.

Algorithm: MonicRNP(F, n)
In: F ∈ K[X, Y ], separable and monic in Y ; n ∈ N “big enough”.
Out: the singular part (at least) of all the RPE’s of F above x0 = 0.

1 if dY < 6 then return Half-RNP(F,Z, n, (X, Y )) else η ← 6n/dY ;
2 R ← Half-RNP(F,Z, η, (X, Y )) ;
3 Keep in R the RPE’s with vi < η/3; // known with precision > 2η/3
4 if #R = dY then return R;
5 G ← NormRPE(R, 2η/3);
6 H ← Quo(F,G, 2η/3);
7 G,H ← Hensel(F,G,H, n);
8 return R ∪ MonicRNP(H,n);

Proposition 4.9. — If n > δ, MonicRNP(F, n) returns the correct output in an
expected O(M(dY n) log(dY n)) operations in K, plus the cost of univariate factori-
sations.
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Proof. — We start with correctness. As precision n > δ is sufficient to compute
the singular parts of all Puiseux series via algorithm Half-RNP, the output is correct
when dY < 6. When dY > 6, line 2 provides a set of RPEs (Ri)16 i6λ known
with precision η − vi by Lemma 3.19. At line 5, we keep in R the RPEs Ri such
that vi < η/3; they are thus known with precision at least 2 η/3. Also, we have
degY (G) > dY /2 > degY (H) from Proposition 3.23. Finally, input of the Hensel
algorithm is correct since κ(G,H) is less than η/3 by Proposition 4.4 and we know
the factorisation F = G ·H mod X2 η/3+1.
We now focus on complexity. By Proposition 3.24, lines 1 (dY is constant) and 2

are respectively O(M(n)) and O(M(n dY ) log(dY )). Lines 5, 6 and 7 take respec-
tively O(M(n dY ) log(n dY )), O(M(n dY )) and O(M(n dY ) + M(δ) log(δ)) by resp.
Lemma 4.2, division via Newton iteration [G13, Theorem 9.4] and Lemma 4.7. This
fits into our result (remember n > δ). Finally, as degY (H) 6 dY /2, we conclude from
Lemma 2.14. �

4.5. Dealing with the non monic case: proof of Theorem 4.1

Proposition 4.10. — There exists an algorithm Monic that given n ∈ N and
F ∈ K[X, Y ] primitive in Y , returns u ∈ K[X] and F0, F∞ ∈ K[X, Y ] s.t. F =
uF0F∞ mod Xn, with F0 monic in Y , F∞(0, Y ) = 1, and u(0) 6= 0 with O(M(n dY ))
operations over K.
Proof. — This is [Mus75, Algorithm Q, page 33] (see the proof of Proposition 3.8

page 1072). �
We can now give our main algorithm RNP. It computes the singular part of all

RPE’s of F above x0 = 0, including those centered at (0,∞). This algorithm, called
with parameters (F, δ) is the algorithm mentioned in Theorem 4.1.

Algorithm: RNP(F, n)
In: F ∈ K[X, Y ], separable in Y and n ∈ N “big enough”.
Out: the singular part (at least) of all the RPE’s of F above x0 = 0

1 (u, F0, F∞)← Monic(F, n);
2 F̃∞ ← Y degY (F∞)F∞(X, 1/Y );
3 R∞ ← MonicRNP(F̃∞, n) ;
4 Inverse the second element of each R ∈ R∞;
5 return MonicRNP(F0, n) ∪ R∞;

The proof of Theorem 4.1 follows immediately from the following proposition:
Proposition 4.11. — Not taking into account the cost of univariate factorisa-

tions, RNP(F, δ) returns the correct output with an expected O(M(dY δ) log(dY δ))
arithmetic operations.
There is one delicate point in the proof of Proposition 4.11: we need to invert the

RPE’s of F̃∞ and it is not clear that the truncation bound n = δ is sufficient for
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recovering in such a way the singular part of the RPE’s of F∞ (see also Remark 4.14
below). We will need the two following results:
Proposition 4.12. — Let F∞ ∈ K[X, Y ] with F∞(0, Y ) = 1 and denote F̃∞ its

reciprocal polynomial according to Y . For each RPE Ri = (λiXei ,Γi) of F∞, denote
si := υX(Γi) (so si < 0), ri its regularity index and R̃i the associated RPE of F̃∞.
The function call MonicRNP(F̃∞, δF∞) computes each RPE R̃i with precision at least
ri−2 si

ei
.

Proof. — Denote d = degY (F∞), v = υX(lcY (F∞)), S1, · · · , Sd the Puiseux series
of F∞ and Ski

one of them associated to the RPE Ri of F∞ we are considering.
Then si

ei
= υX(Ski

) and υX(Ski
− Sj) 6 ri

ei
for j 6= ki by definition of ri. Let i0

satisfying υX(Ski
− Si0) = maxj 6=ki

υX(Ski
− Sj) (several values of i0 are possible).

We distinguish three cases:
(1) υX(Ski

) = υX(Si0); then by definition of i0 either υX(Ski
− Si0) = ri

ei
, or

ei0 = q ei with q > 1. In the latter case, there are q conjugates Puiseux series
S

[0]
i0 , · · · , S

[q−1]
i0 of Si0 such that

υX(Ski
− Si0) = υX

(
Ski
− S[j]

i0

)
, thus

q−1∑
j=0

υX
(
Ski
− S[j]

i0

)
> ri
ei

;

see [PR11, Case 3 in Proof of Proposition 5, pages 204 and 205] for details.
(2) υX(Ski

) > υX(Si0). Then υX(Ski
) > υX(Sj) for j 6= ki by definition of i0.

(3) υX(Ski
) < υX(Si0). Then υX(Ski

− Si0) = si = ri. We can also assume that
υX(Sj) 6= υX(Ski

) for all j 6= ki: if υX(Sj) = υX(Ski
), then υX(Ski

− Sj)
= υX(Ski

− Si0) and one could use i0 = j and deal with it as Case (1).
We now prove Proposition 4.12. For Case (1), it is enough to know 1

Ski
with

precision

ṽi := υX

(
∂Y F̃∞

(
1
Ski

))
:

we have ṽi =
∑
j 6=i

υX

(
1
Ski

− 1
Sj

)
=
∑
j 6=i

υX (Ski
− Sj)− υX(Ski

)− υX(Sj)

by definition of a valuation. As either

υX(Ski
− Si0)− υX(Ski

)− υX(Si0)

= ri − 2 si
ei

or
q−1∑
j=0

υX
(
Ski
− S[j]

i0

)
− υX(Ski

)− υX
(
S

[j]
i0

)
> ri − 2 si

ei
,

we are done.
Then, concerning Case (2), the fact that υX(Ski

) > υX(Sj) for j 6= ki is equivalent
to υX( 1

Ski
) > υX( 1

Sj
) for j 6= ki, meaning that r̃i = υX( 1

Ski
) = − si

ei
= ri−2 si

ei
.

Finally, Case (3) requires more attention (see Example 4.13 for an illustration).
Let’s first assume that υX(Ski

) > υX(Sj) for some j 6= i; then

υX(Ski
− Sj)− υX(Ski

)− υX(Sj) = υX(Ski
) = −si

ei
,
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and we are done since ri = si. If not, then we have υX(Ski
) < υX(Sj) for all j. This

means that ei = fi = 1, and that N (F̃∞) has an edge [(0, v), (1, v − si)], which is
associated to R̃i. It is enough to prove that the truncation bound used when dealing
with this Puiseux series is at least v. As long as this is not the case, this edge is not
considered from the definition of Nn(H); also, at each recursive call of MonicRNP
(line 8), the value of the truncation bound η increases (since the degree in Y is at
least divided by 2). In the worst case, we end with a degree 1 polynomial, thus using
η = δF∞ > v. This concludes the proof of Proposition 4.12. �

Example 4.13. — Consider F∞ = 1+X Y 31 +X8 Y 32, thus F̃∞ = Y 32 +X Y +X8.
Here we have δF∞ = 40. As dY > 6, we compute η = 15

2 < 8. Running Half-RNP, we
compute Nη(F̃∞) = [(1, 1), (32, 0)], therefore not computing the Puiseux series X7

(in particular, we do not output a Puiseux series equal to 0, which is the singular part
of X7 considered as a Puiseux series of F̃∞). However, a recursive call of MonicRNP
with H = Y −X7 will be done, and this time Half-RNP is called with precision 32,
outputting the Puiseux series X7 as expected.

Proof of Proposition 4.11. — Let us show that the truncation bound for F̃∞ is
sufficient for recovering the singular part of the Puiseux series of F∞. First note that
the inversion of the second element is done as follows: consider

R̃i(T ) =
(
γi T

ei , Γ̃i(T ) =
τi∑
k=0

α̃i, k T
k

)
and denote si = −υT

(
Γ̃i(T )

)
< 0 ;

we compute the inverse of T si Γ̃i(T ) (that has a non zero constant coefficient) via
quadratic Newton iteration [G13, Algorithm 9.3, page 259]; it takes less than O(M(τi
+si)) arithmetic operations [G13, Theorem 9.4, page 260]. In order to get the singular
part of the corresponding RPE Ri of F∞, we need to know Ri with precision ri

ei
, i.e. to

know at least ri−si+ 1 terms. It is thus sufficient to know R̃i with precision ri−2 si.
This holds thanks to Proposition 4.12. Correctness and complexity of Algorithm RNP
then follow straightforwardly from Propositions 4.9 and 4.10. �
Remark 4.14. — Note that precision υX(DiscY F ) is not always enough to get the

singular part of the Puiseux series centered at (0,∞), as shows the following example.
Consider F3(X, Y ) = 1 + X Y d−1 + Xd+1 Y d. The singular parts of its RPE’s are
(T, −1

T d ) and (−T d−1, 1
T

). Its reciprocal polynomial is F̃ 3 = Y d + X Y + Xd+1, with
RPE’s singular parts (T, 0) and (−T d−1, T ). Here we have υX(DiscY F ) = d, and
dF̃ 3ed = Y d + X Y . The singular parts of dF̃ 3ed are indeed the same than the one
of F̃ 3, but we cannot recover the RPE (T, −1

T d ) of F from the RPE (T, 0) of dF̃ 3ed.
Nevertheless, the precision δF3 = υX(lcY (F3)) + υX(DiscY F3) = 2d+ 1 is sufficient.

Proof of Theorem 4.1. Compute δ in less than O(M(dY δ) log(dY δ)) operations
from [MS16, Lemma 12], then run RNP(F, δ) and conclude from Proposition 4.11. �
Remark 4.15. — Another way to approach the non monic case is the one used

in [PR11]. The idea is to use algorithms MonicRNP and Half-RNP even when F is
not monic. This would change nothing as far as these algorithms are concerned, but
the proof concerning truncation bounds must be adapted:
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(1) define si := min(0, υX(Si)), N ′i := Ni − si

ei
dY and v′i := vi − si

ei
dY ;

(2) prove N ′i = ri

ei
+ v′i (use [PR11, Figure 3] for possible positive slopes of the

initial call);
(3) replace vi by v′i and Ni by N ′i in the remaining results of Section 3.3; proofs

use some intermediate results of [PR11] (in particular, to prove ri

ei
6 v′i, we

need to use some formulæ in the proof of [PR11, Proposition 5, page 204]).
We chose to consider the monic case separately, since it makes one of the main
technical results of this paper (namely tight truncation bounds) less difficult to
apprehend, thus the paper more progressive to read.

5. Avoiding univariate factorisation

We proved Theorem 1.1 up to the cost of univariate factorisations. To conclude the
proof, one would additionally need to prove that the cost of all univariate factorisa-
tions computed when calling Algorithm Half-RNP is in Õ (δ dY ). As δ can be small,
we would need a univariate factorisation algorithm for a polynomial in K[Y ] of degree
at most d with complexity Õ (d). Unfortunately, this does not exist. We will solve this
point via Idea 4; relying on the “dynamic evaluation” technique [DSMM+05, DDD85]
(also named “D5 principle”) of Della Dora, Dicrescenzo and Duval. This provides
a way to compute with algebraic numbers, while avoiding factorisation (replacing
it by square-free factorisation). In this context, we will consider polynomials with
coefficients belonging to a direct product of field extensions of K; more precisely to
a zero-dimensional emphnon integral K-algebra KI = K[Z]/I, where I is defined
as a triangular set in K[Z] := K[Z1, · · · , Zs]. As a consequence, zero divisors might
appear, causing triangular decomposition and splittings (see Section 5.1 for details).
Four main subroutines of the Half-RNP algorithm can lead to a decomposition of
the coefficient ring:

(i) computation of Newton polygons,
(ii) square-free factorisations of characteristic polynomials,
(iii) subroutine WPT, via the initial gcd computation,
(iv) computation of primitive elements.

There are two other points that we need to take care of for our main program:
(v) subroutine Hensel, via the initial use of [MS16, Algorithm 1];
(vi) the initial factorisation of algorithm RNP (when computing Puiseux series

above all critical points).

Remark 5.1. — Dynamic evaluation is not the key point of this paper, and has
been already considered for computing Puiseux series (see e.g. [DDD85]). We could
have simply said “split when required”. However, keeping quasi-linear algorithms
when dealing with dynamic evaluation in not an easy task, especially in our context
where splittings may occur in many various subroutines. Hence, we decided to detail
all steps and to be precise and self-contained about dynamic evaluation in our context.
This makes this section relatively long and technical, but the reader may skip it at
a first reading.
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Example 5.2. — Let us see a basic example to illustrate the behaviour of dynamic
evaluation. We consider F = F1 F2 F3 ∈ Q[X, Y ] with F1 = Y 4 − 2X3Y 2 − 4X5Y +
X6 − X7, F2 = Y 6 − 12X3Y 4 − 2X5Y 3 + 48X6Y 2 − 24X8Y − 64X9 + X10 and
F3 = Y 2 − 2X2Y −X3 +X4, with Puiseux series S1 = X

3
2 +X

7
4 , S2 = 2X 3

2 +X
5
3

and S3 = X
3
2 + X2. N (F ) has a single edge 3 a + 2 b = 36, with characteristic

polynomial φ∆(Z) = (Z2 − 5Z + 4)3. As we do not use univariate factorisation, we
do not know Z2−5Z+4 = (Z−1) (Z−4). We thus consider the residue class ξ of Z in
Q[Z]/(Z2−5Z+4), and run WPT to the Puiseux transform F (ξ X2, X3 (Y +ξ2))/X36,
getting the polynomial

G(X, Y ) = Y 3 + 1
3(ξ − 4)XY 2 + 1

3(ξ − 4)XY + 1
3(ξ − 4)X2 + 210

3 (1− ξ)X.
Now, ξ − 4 and ξ − 1 happen to be zero divisors, forcing a case distinction. More
precisely, when computingN (G), we will compute gcd(Z−4, Z2−5Z+4), discovering
the factorisation Z2−5Z+4 = (Z−1) (Z−4). At this point, the algorithm splits: we
pursue the algorithm separately on G1 = Y 3−XY 2−XY −X2 and G4 = Y 3−210X
(we replace ξ by respectively 1 and 4).
To simplify the comprehension of this section, we will not mention logarithmic

factors in our complexity results, using only the Õ notation. This section is divided
as follows:

(1) We start by recalling a few definitions on triangular sets and in particular
our notion of D5 rational Puiseux expansions in Section 5.1.

(2) The key point of this section is to deal with these splitting with almost linear
algorithms; to do so, we mainly rely on [DSMM+05]. We briefly review in
Section 5.2 their results; additionally, we introduce a few algorithms needed
in our context. In particular, this section details points (iv) and (v) above.

(3) Points (i) and (ii) above are grouped in a unique procedure Polygon-Data,
detailed in Section 5.3.

(4) We provide D5 versions of algorithms Half-RNP, MonicRNP and RNP in Sec-
tion 5.4.

(5) Finally, we prove Theorem 1.1 in Section 5.5.

5.1. Triangular sets and dynamic evaluation

Definition 5.3. — A (monic, autoreduced) triangular set of K[Z1, · · · , Zs] is a
set of polynomials P1, · · · , Ps such that:

• Pi ∈ K[Z1, · · · , Zi] is monic in Zi,
• Pi is reduced modulo (P1, · · · , Pi−1),
• the ideal (P1, · · · , Ps) of K[Z] is radical.

We abusively call an ideal I ⊂ K[Z] a triangular set if it can be generated by a
triangular set (P1, . . . , Ps). We denote by KI the quotient ring K[Z]/(I).
This defines a zero-dimensional lexicographic Gröbner basis for the order Z1

< · · · < Zs with a triangular structure. Such a product of fields contains zero
divisor:
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Definition 5.4. — We say that a non-zero element α ∈ KI is regular if it is not
a zero divisor. We say that a polynomial or a parametrisation defined over KI is
regular if all its non zero coefficients are regular.

Triangular decomposition. Given a zero divisor α of KI , one can divide I as
I = I0 ∩ I1 with I0 + I1 = (1), α mod I0 = 0 and α mod I1 is invertible. Moreover,
both ideals I0 and I1 can be represented by triangular sets of K[Z].
Definition 5.5. — A triangular decomposition of an ideal I is I = I1 ∩ · · · ∩ Ik

s.t. every Ii can be represented by a triangular set and Ii+Ij = (1) for 1 6 i 6= j 6 k.
Thanks to the Chinese remainder theorem, the K-algebra KI is isomorphic to

KI1 ⊕ · · · ⊕KIk
for any triangular decomposition of I. We extend this isomorphism

coefficient wise for any polynomial or series defined above KI .
Definition 5.6. — Consider any polynomial or series defined above KI . We

define its splitting according to a triangular decomposition I = I1 ∩ · · · ∩ Ik the
application of the above isomorphism coefficient-wise.
A key point (as far complexity is concerned) is the concept of non critical triangular

decompositions. We recall [DSMM+05, Definitions 1.5 and 1.6]:
Definition 5.7. — Two polynomials a, b ∈ KI [X] are said coprime if the ideal

(a, b) ⊂ KI [X] is equal to (1).
Definition 5.8. — Let (P1, · · · , Ps) and (P̃ 1, · · · , P̃ s) be two distinct triangular

sets. We define the level l of these two triangular sets to be the least integer such that
Pl 6= P̃ l. We say that these triangular sets are critical if Pl and P̃ l are not coprime
in K[Z1, · · · , Zl−1]/(P1, · · · , Pl−1). A triangular decomposition I = I1 ∩ · · · ∩ Ik is
said non critical if it has no critical pairs ; otherwise, it is said critical.

D5 rational Puiseux expansions. We conclude this section by defining systems
of D5-RPE’s over fields and product of fields. Roughly speaking, a system of D5-RPE
over a perfect field K is a system of RPE’s over K grouped together with respect
to some square-free factorisation of the characteristic polynomials, hence without
being necessarily conjugated over K. We have to take care of two main points:

(1) We want correct information (e.g. regularity indices) before fields splittings.
To do so, the parametrisations we compute are regular (no zero divisors).

(2) We want to recover usual system of RPE’s after fields splittings.
In particular, the computed parametrisations will fit the following definition:
Definition 5.9. — Let F ∈ K[X, Y ] be separable with K a perfect field. A

system of D5 rational Puiseux expansions over K of F above 0 is a set {Ri}i such
that:

• Ri ∈ KPi
((T ))2 for some square-free polynomial Pi,

• Denoting Pi = ∏
j Pij the univariate factorisation of Pi over K and {Rij}j the

splitting of Ri according to the decomposition KPi
= ⊕jKPij

, then the set
{Rij}i, j is a system of K-RPE of F above 0 (as in Definition 2.3).

In order to deal with all critical points in Section 6, we will compute the RPE’s
of F above a root of a square-free factor Q of the resultant RF :
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Definition 5.10. — Let F ∈ KQ[X, Y ] separable for some Q ∈ K[X] square-
free. We say that F admits a system of D5-RPE’s over KQ above 0 if there exists
parametrisations as in Definition 5.9 that are regular over KQ. Then, a system of
D5 rational Puiseux expansions over K of F above the roots of Q is a set {Qi,Ri}i
such that:

• Q = ∏
iQi,

• Ri is a system of D5 RPE’s over KQi
of F (X + zi, Y ) above 0 (in the sense

of definition above), where zi is the residue class of Z modulo Qi(Z).

5.2. Complexity of dynamic evaluation

Results of [DSMM+05]. We start by recalling the main results of [DSMM+05],
providing them only with the Õ notation (i.e. forgetting logarithmic factors). In
particular, we take M(d) ∈ Õ (d) in the following. In our paper, we also assume the
number of variables defining triangular sets to be constant (we usually have s = 2).

Definition 5.11. — An arithmetic time is a function I 7→ As(I) with real
positive values and defined over all triangular sets in K[Z1, · · · , Zs] such that:
(1) For every triangular decomposition I = I1∩· · ·∩Ih, As(I1)+ · · ·+As(Ih) 6 As(I).
(2) Any addition or multiplication in KI can be made in As(I) operations over K.
(3) Given a triangular decomposition I = I1∩· · ·∩Ih, one can compute a non-critical

triangular decomposition of I that refines it in less than As(I) arithmetic
operations. We denote removeCriticalPairs such an algorithm.

(4) Given α ∈ KI and a non-critical triangular decomposition I = I1 ∩ · · · ∩ Ih, one
can compute the splitting of α in less than As(I) operations in K. We denote
Split such an algorithm.

Theorem 5.12. — Let I = (P1, · · · , Ps) be a triangular set, and denote di =
degZi

(Pi). Assuming s to be constant, one can take As(I) ∈ Õ (d1 · · · ds)

Proof. — This is a special case of [DSMM+05, Theorem 8.1]. �

Proposition 5.13. — Let I = (P1, · · · , Ps), and A, B ∈ KI [Y ] with degrees in
Y less than d. Assuming s constant, one can compute the extended greatest common
divisor of A and B in less than Õ (d · d1 · · · ds) operations over K.

Proof. — This is [DSMM+05, Proposition 4.1]. �

Splitting all coefficients of a polynomial. In the remaining of this section, we
focus on the case s = 2, denoting I = (Q,P ), dQ = degZ1(Q), dP = degZ2(P ) and
dI = dQ dP .

Lemma 5.14. — There exists an algorithm ReducePol that, given H ∈ KI [X, Y ],
returns a collection {(Ik, Hk)k} such that I = ∩kIk is a non critical triangular
decomposition and the polynomials Hk = H mod Ik are regular over Ik. This
algorithm performs at most Õ (degX(H) degY (H) dI) operations over K.
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Proof. — As for [DSMM+05, Algorithm monic], for each coefficient of H, we split
it according to the decomposition of I found so far. For each reduced coefficient
we get, we test its regularity using gcd computation. This gives us a new (possibly
critical) decomposition of I. We run Algorithm removeCriticalPairs on it. At the
end, we split H according to the found decomposition. Complexity follows from
Theorem 5.12 and Proposition 5.13. �

Square-free decomposition above KI . We say that φ ∈ KI [Y ] monic is square-
free if the ideal I + (φ) is radical.φ = ∏

i φ
ni
i is the square-free factorisation of φ over

KI if the φi are coprime square-free polynomials in KI [Y ] and ni < ni+1 for all i.

Proposition 5.15. — Consider K a perfect field with characteristic p and φ ∈
KI [Y ] a monic polynomial of degree d. Assuming p = 0 or p > d, there exists an
algorithm SQR-Free that computes a set {(Ik, (φk, l,Mk, l)l)k} such that I = ∩kIk
is a non critical triangular decomposition and φk = ∏

l φ
Mk, l

k, l is the square-free
factorisation of φk := φ mod Ik. It takes less than Õ (d dI) operations over K.

Proof. — We compute successive gcd’s and euclidean divisions, using Yun’s algo-
rithm [G13, Algorithm 14.21, page 395] (this result is in characteristic 0, but works
in positive characteristic when p > d). Each gcd computation is Proposition 5.13.
We just need to add splitting steps (if needed) in between two calls. The complexity
follows by using Proposition 5.13 in the proof of [G13, Theorem 14.23, page 396],
since there are less than d calls to the algorithm removeCriticalPairs. �

Keeping a constant number of variables. We extend the result of Proposi-
tion 3.9 above KQ with Q square-free. This requires additional attention on splittings.

Proposition 5.16. — Let φ ∈ KI [Z3] square-free, d = dP degZ3(φ). IfK contains
at least d2 elements, there is a Las-Vegas algorithm that computes (Qk, P

′
k, ψk)k s.t.:

• Q = ∏
kQk,

• P ′k is a square-free polynomial of degree d over KQk
,

• ψk : KIk
→ KI′

k
is an isomorphism, where Ik = (Qk, P, φ) and I ′k = (Qk, P

′
k).

We call BivTrigSet such an algorithm. It takes Õ (dω+1
2 dQ) operations over K. Given

H ∈ KIk
[X, Y ], one can compute ψk(H) in less than Õ (degX(H) degY (H) dP d dQk

).

Proof. — We follow the Las Vegas algorithm(3) corresponding to the second item
of [PS13b, Lemma 4]. Note that we only consider here the elements related to
dynamic evaluation, and refer the reader to [PS13a, PS13b] otherwise. First, trace
computation of the monomial basis takes O(M(d dQ)) operations in K (it is reduced
to polynomial multiplication thanks to [PS06, Proposition 8]). Then, picking a
random element A, we compute the 2 d traces of powers of A by power projection.
Methods based on [Sho94] involve only polynomial, transposed polynomial and
matrix multiplications, for a total in O(dω+1

2 M(dQ)) operations in K. Finally, our
candidate for P ′ can be deduced via Newton’s method in O(M(d dQ)). It remains to
test its square-freeness, involving gcd over KQ. It takes less than Õ (d dQ) operations

(3)here the assumption on the number of elements of K is used
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over K from Proposition 5.13. If a factorisation of Q appears, we run some splittings
and Theorem 5.12 concludes.
To compute ψk, we first need d additional traces; this is once again power projection.

Then, one solves a linear system defined by a Hankel matrix (see [Sho94, Proof of
Theorem 5]). This is done via the algorithm described in [BGY80], reducing the
problem to extended gcd computation, i.e. potential decomposition of Q. This is
once again Õ (d dQ) operations over K (using removeCriticalPairs if needed).
To conclude, using e.g. Horner’s scheme [PR11, Section 5.1.3, page 209], rewriting

the coefficients of H ∈ KIk
[X, Y ] can be done in Õ (degX(H) degY (H) dP d dQk

). �

Remark 5.17. — Algorithm BivTrigSet keeps the number of variables constant
(at most two) for the triangular sets we are using during the whole algorithm. We
do not work with univariate triangular sets for two reasons:

(1) Computing such triangular set (starting from a bivariate one) would lead to
a bound in d

ω+1
2

Q , that can be Dω+1 when the factor Q of the resultant has
high degree (see Section 6). As ω > 2, this is too much.

(2) Q (factor of the resultant) and P (residual extension) do not provide the
same geometrical information.

Extending WPT and Hensel to the D5 context. We conclude by providing
trivial extension of the Hensel algorithms: we only need to pay attention to the
initial gcd-computation (for WPT) or its generalised version of [MS16] (for Hensel).

Proposition 5.18. — Let G ∈ KI [X, Y ] and n ∈ N. There exist an algorithm
that computes a set (Ik, dĜken) such that I = ∩kIk is a non critical decompo-
sition of I and Ĝk the Weierstrass polynomial of G mod Ik. It takes less than
O(M(n degY (G) dI)) operations in K. We still denote WPT such an algorithm.

Proof. — First run ReducePol if needed (it is not in our context), getting a
set (Ii, G′i). Then, for each i, denoting Mi = υY (Gi(0, Y ), use the extended Eu-
clidean algorithm with parameters (Y Mi , Y −Mi Gi(0, Y )); this gives a decomposition
Ii = ∩jIij and associated Bézout relations. Compute a non triangular decomposition
I = ∩kIk that refines ∩i ∩j Iij, and reduce G and the Bézout relations accordingly.
Finally, run the Hensel lemma (that does not generate any splitting) on each Gk,
using the associated Bézout relation. Complexity follows from Lemma 5.14, Propo-
sition 5.13, Theorem 5.12 and Proposition 3.8. �

Lemma 5.19. — Given G, H ∈ KI [X, Y ] of degrees in Y bounded by d, one
can compute a set (Ik, Gk, Hk, Uk, Vk, ηk)k such that I = ∩kIk is a non critical
decomposition of I, Gk = G mod Ik, Hk = H mod Ik and Uk · Gk + Vk · Hk

= Xηk mod Xηk+1 with ηk the lifting order of (Gk, Hk). This takes Õ (d dI maxk ηk)
operations over K.

Proof. — As in the proof of Proposition 5.16, we are only focusing on the dynamic
evaluation part of the proof, this result in the classical case being one main element
of the paper [MS16]. As said in the introduction of their paper, [MS16, Algorithm 1]
is “a suitable adaptation of the half-gcd algorithm”: a call to their algorithm uses
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polynomial multiplication (more precisely multiplications of 2×2 matrices of univari-
ate polynomials), two recursive calls and one computation of the “pseudo-division
operator” Q [MS16, Section 3.1], which includes euclidean division, extended Eu-
clidean algorithm and Hensel lifting ([Mus75, Algorithm Q] to compute “normal
form” of polynomials). Whence a finite number of call that induce splittings, all
considered in [DSMM+05] (multiplication induces no splitting, Euclidean algorithm
is the key point of [DSMM+05], and [Mus75, Algorithm Q] induces possible splitting
only once, via the extended Euclidean algorithm). �
Proposition 5.20. — Let n ∈ N, F , G, H ∈ KI [X, Y ] with H monic in Y ,

F = GH mod X2 η+1 and η > κ(G,H). There is an algorithm that computes a
set {Ik, Gk, Hk}k such that I = ∩kIk is a non critical decomposition of I, Gk = G
mod (Ik, Xηk+1), Hk = H mod (Ik, Xηk+1) and F mod Ik = GkHk mod Xn+2 ηk ,
where ηk = κ(Gk, Hk). Moreover, if G?

k, H?
k ∈ KIk

[X, Y ] satisfy F mod Ik = G?
kH

?
k

mod Xn+2 ηk , then Gk = G?
k mod Xn and Hk = H?

k mod Xn. It takes less than
O(M(n dY dI)) operations in K. We still denote Hensel such an algorithm.

Proof. — Adapt Hensel as follows: use Lemma 5.19, then run HenselStep as many
times as necessary for each (Ii, Gi, Hi, Ui, Vi, κi), as in the proof of Lemma 4.7. �

5.3. Computing polygon data in the D5 context

To simplify the writing of the Half-RNP3 algorithm, we group in Polygon-Data
below the computation of the Newton polygon and the square-free decomposition of
associated characteristic polynomials. Given H ∈ KI [X, Y ] known with precision n,
it returns a list {(Ii, Hi,∆ij, φijk)}i, j, k such that:

• I = ∩Ii is a non critical triangular decomposition;
• Hi := H mod Ii is regular;
• Nn(Hi) = {∆ij}j;
• ∏k φ

Mijk

ijk is the square-free factorisation of φ∆ij
.

Capital letters in this algorithm represent sets (and running algorithm on sets means
that we actually run a loop that calls this algorithm for each element of the set).

Proposition 5.21. — Algorithm Polygon-Data is correct. It takes less than
Õ (degX(H) degY (H)dI) operations in K.

Proof. — This algorithm works similarly to [DSMM+05, Algorithm monic]. Ex-
actness and complexity follow from Proposition 5.15 and Theorem 5.12, using∑
j deg(φ∆ij

) 6 dY (H) for all i and ∑h deg(I ′h) = ∑
i deg(Ii) = dI . �

5.4. Computing half Puiseux series using dynamic evaluation

In order to compute also the RPE’s of F above the roots of any square-free factor
Q of the resultant, we are led to consider I = (Q,P ) instead of P as an input
for Half-RNP3, the D5 variant of Half-RNP. The input is a set H, I, n, π such that:
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Algorithm: Polygon-Data(H, I, n)
In: I a bivariate triangular set and H ∈ KI [X, Y ] known modulo Xn+1. We

assume n > 0 and degY (H) > 0.
Out: A list {(Ii, Hi,∆ij, φijk,Mijk)} as explained above.

1 foreach (Hi, Ii) in ReducePol(H, I) do
2 {∆ij}j=1, ..., s ← Nn(Hi) ; // Hi is regular
3 Ii ← {Ii};
4 for j = 1, . . . , s do
5 Φij ←Split(φ∆ij

, {Ii}, Ii);
6 {Iij, Φijk, Mijk} ← SQR-Free(Φij, Ii);
7 Ii ← Iij;

8 Hi ←Split(Hi, {Ii}, Ii); // Ii = {I ′h}h and Hi = {H ′h}h
9 foreach i, j, k do

10 {Φ′mjk}mjk ←Split(Φijk, Iij, Ii)
11 return {(I ′h, H ′h,∆i(m)j, φ

′
mjk,Mi(m)jk)}m, j, k; // correct I ′h,H ′h and i(m)

• I = (Q,P ) is a bivariate triangular set over K (P = Z2 initially, Q = Z1
admitted);

• H ∈ KI [X, Y ] separable, monic in Y , with d := degY (H) > 0;
• n ∈ N is the truncation order we will use for the powers ofX during the algorithm;
• π the current truncated parametrisation (π = (X, Y ) for the initial call).

The output is a set {Ii,Ri}i such that:
• I = ∩iIi is a non critical decomposition,
• Ri = {Rij} is a set of D5-RPE’s of Hi := H mod Ii satisfying n− vij > rij
and given with precision at least (n− vij)/eij > rij/eij > 0,

where we let vij := υX (∂YHi(S)) for any Puiseux series S associated to Rij. We
refer to the field version Half-RNP for all notations which are not specified here.
Proposition 5.22. — Let Q ∈ K[Z] be square-free and F ∈ KQ[X, Y ] be monic

and separable in Y . The function call Half-RNP3(F, (Q,Z), n, (X, Y )) returns a
correct answer in an expected Õ (dQ n dY 2) operations over K.
Proof. — Just adapt the proof of Proposition 3.24 to the D5 context, using Propo-

sitions 5.16, 5.18 and 5.21, together with Theorem 5.12. �

5.5. Proof of Theorem 1.1.

We finally conclude the proof of Theorem 1.1, providing the D5 variants of algo-
rithms MonicRNP and RNP, namely algorithms MonicRNP3 and RNP3 below.

The monic case. As in Section 4, we begin with the monic case. Therein, we
assume that the Hensel algorithm is a D5 version, as explained in Section 5.2. Also,
we recall that vij denotes υX (∂YHi(S)) for any Puiseux series S associated to Rij.
Recall the notations RF = ResY (F, FY ) and δ = υX (RF ). We obtain:
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Algorithm: Half-RNP3(H, I, n, π)
1 B ← Ad−1/d ; π′ ← dπ(X, Y −B)en ; // H = ∑d

i=0AiY
i

2 if d = 1 then return (I, π′(T, 0)) else H ′ ← dH(X, Y −B)en;
3 (Ii, Hi,∆i, φi)i ← Polygon-Data(H ′, I, n);
4 {πi}i ← Split(π′, {Ii}i); // taking only once each different Ii
5 forall i do
6 if deg(φi) = 1 then ξi1, Ii1, Hi1, πi1 = −φi(0), Ii, Hi, πi;
7 else
8 {Iij,Ψij}j ← BivTrigSet(Ii, φi);
9 {H ′ij}j ← Split(Hi, {Iij}j) ; {π′ij}j ← Split(πi, {Iij}j);

10 forall j do ξij, Hij, πij ← Ψij(Z),Ψij(H ′ij),Ψij(π′ij) ;
11 forall j do // ∆i belongs to mi a+ qi b = li ;

ui, vi = Bézout(mi, qi)
12 π′′ij ← πij(ξvi

ij X
qi , Xmi (Y + ξui

ij )) mod Iij ;
13 H ′′ij ← dHij(ξvi

ij X
qi , Xmi (Y + ξui

ij ))eni mod Iij ; // ni = qi n− li
14 {(Iijk, Hijk)} ← WPT(H ′′ij, ni) ;
15 πijk ← Split(π′′ij, {Iijk}ijk);
16 forall k do {Iijkl,Rijkl}l ← Half-RNP3(Hijk, Iijk, ni, πijk) ;

17 R ← {} ; {I ′h}h ← removeCriticalPairs({Iijkl}ijkl);
18 forall i, j, k, l do // taking the subset of {I ′h}h refining Iijkl
19 R ← R ∪ Split(Rijkl, {I ′h}h)
20 return R; // each element of R coupled to their associated I ′h

Proposition 5.23. — Assuming that n > δ and that the trailing coefficient of
RF is not a zero divisor in KQ, a function call MonicRNP3(F,Q, n) returns a correct
answer in an expected Õ (dQ dY n) operations over K.

Proof. — The assumption on the trailing coefficient of the resultant of F is needed
only to ensure that the truncation bound δ is enough over all factors of Q. Otherwise,
this is just an adaptation of the proof of Proposition 4.9 to the D5 context, using
Propositions 5.20 and 5.22, together with Theorem 5.12 once again (subroutine Quo
is used only with monic polynomials, and the remaining operations do not include
any division). �

The general case. Algorithm RNP3 below computes a system of singular part (at
least) of D5-RPE’s of a primitive polynomial F above the roots of any square-free
factor Q of its resultant RF . We follow the same strategy as in Algorithm RNP, but we
take care of triangular decompositions due to division by zero divisors. In particular,
we assume that algorithm Monic is a D5 version (it contains one call to the extended
Euclidean algorithm). Also, inversion of the RPE’s of F̃∞ can lead to some splittings
(while inverting the trailing coefficient of the series). However, we do not detail these
further splittings for readability.
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Algorithm: MonicRNP3(F,Q, n)
In: Q ∈ K[Z] square-free, F ∈ KQ[X, Y ] separable and monic in Y , and

n ∈ N.
Out: {(Qi,Ri)}i, with Q = ∏

Qi and Ri a system of singular parts of
D5-RPE’s of F mod Qi above 0.

1 η ← min(n, 6n/dY ) ; R ← {};
2 {Ii,Ri}i ← Half-RNP3(F, (Q,Z2), η, π) ; // Ii = (Qi, Z2)
3 {Fi}i ← Split(F, {Qi}i);
4 forall i do
5 Keep in Ri the Rij such that vij < η/3; // known with precision

> 2η/3
6 if #Ri = dY then R ← R∪ {Qi,Ri} ; continue ;
7 Gi ← NormRPE(Ri, 2η/3) ;
8 Hi ← Quo(Fi, Gi, 2η/3); // no splitting since Gi is monic
9 {Qij, Gij, Hij}j ← Hensel(Fi, Gi, Hi, n) ;

10 forall j do {(Qijk,Rijk)}k ← MonicRNP3(Hij, Qij, n, π) ;
11 {R′ijk} ← Split(Ri, {Qijk}j, k);
12 R ← R∪ {(Qijk,Rijk ∪ R′ijk)j, k};
13 return R

Algorithm: RNP3(F,Q, n)
In: Q ∈ K[Z1] square-free, F ∈ K[X, Y ] separable in Y with dY > 0, and

n ∈ N big enough.
Out: A system of singular parts (at least) of D5-RPE’s of F above the

roots of Q.
1 R ← {} ; F̃ ← dF (X + Z1, Y ) mod Qen; // thus F̃ ∈ KQ[X, Y ]
2 {Qi, Fi,0, Fi,∞}i ← Monic(F̃ , n);
3 forall i do
4 F̃ i,∞ ← Y degY (Fi,∞)Fi,∞(X, 1/Y );
5 {Qij,Rij}j ← MonicRNP3(Fi,0, Qi, n) ;
6 {Q′ik,R′ik}k ← MonicRNP3(F̃ i,∞, Qi, n) ;
7 forall k do
8 Inverse the second element of each R ∈ R′ik;
9 Split {Q′ik,R′ik} if required;

10 {Q′′il}l ← removeCriticalPairs({Qij}j ∪ {Q′ik}k);
11 forall k, j do R ← R ∪ Split(Rij,{Q′′il}l) ∪ Split(R′ik,{Q

′′
il}l) ;

12 return R; // elements of R with the same Q′′il grouped together
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Proposition 5.24. — Assuming that Q is a square-free factor of RF with multi-
plicity nQ 6 n, a function call RNP3(F,Q, n) returns the correct answer in less than
Õ (dQ dY n) operation overs K.
Proof. — The correctness follows from Propositions 4.11 and 5.23 (the trailing

coefficient of the resultant of Fi, 0 and Fi,∞ is not a zero divisor by construction).
The complexity follows from Propositions 3.7 and 5.23, Theorem 5.12, together with
the relations degY (Fi, 0) + degY (Fi,∞) = dY and ∑i deg(Qi) = dQ. �
Proof of Theorem 1.1. — The algorithm mentioned in Theorem 1.1 is Algorithm

RNP3, run with parameters Q = Z1 and n = δ, which can be computed via [MS16,
Algorithm 1] in the aimed bound. Note that as we consider the special case Q = Z1,
F has coefficients over a field and this operation does not involve any dynamic
evaluation. The function call RNP3(F,Z1, δ) fits into the aimed complexity thanks to
Proposition 5.24. �

6. Desingularisation and genus of plane curves
It is now straightforward to compute a system of singular parts of D5 rational

Puiseux expansions above all critical points. We include the RPE’s of F above x0 =
∞, defined as RPE’s above x0 = 0 of the reciprocal polynomial F̃ := XdXF (X−1, Y ).
We have υX(RF̃ ) = dX (2 dY − 1)− deg(RF ).
Definition 6.1. — Let F ∈ K[X, Y ] be a separable polynomial over a field K. A

D5-desingularisation of F over K is a collection {(R1, Q1), . . . , (Rs, Qs),R∞} such
that:

• Qk ∈ K[X] are pairwise coprime, square-free and satisfy RF = ∏s
k=1 Q

nk
k ,

nk ∈ N∗;
• Rk is a system of singular parts (at least) of D5-RPE’s of F above the roots
of Qk;
• R∞ is a system of singular parts (at least) of D5-RPE’s of F above X =∞.

Note the following points:
• we can deduce from a D5-desingularisation of F the singular part of the
RPE’s of F above any root of RF ,
• we allow nk = nl for k 6= l (the factorisation RF = ∏s

k=1Q
nk
k is not necessarily

a square-free factorisation).
We obtain the following algorithm Desingularise(F ) on the next page.
Proposition 6.2. — Algorithm Desingularise(F ) works as specified. It takes

an expected Õ (dX dY 2) operations over K.
Proof. — Correctness is straightforward from Proposition 5.24. The computation

of the resultant RF fits in the aimed bound [G13, Corollary 11.21, page 332], so is
its square-free factorisation [G13, Theorem 14.20, page 4]. The complexity is then
a consequence of Proposition 5.24, using the classical formula ∑k deg(Qk)nk + δF̃
= dX (2 dY − 1). �
Proof of Theorem 1.2. — It follows immediately from Proposition 6.2. �
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Algorithm: Desingularise(F )
In: F ∈ K[X, Y ] separable and primitive in Y , with dY > 0.
Out: The D5-desingularisation of F over K

1 R ← {};
2 forall (Q, n) ∈ SQR-Free(RF ) do R ← R∪ RNP3(F,Q, n) ;
3 n← dX (2 dY − 1)− deg(RF );
4 if n > 0 then R ← R∪ RNP3(dXdXF (X−1, Y )en, Z, n);
5 return R

Computing the genus of plane curves: proof of Corollaries 1.3, 1.4
and 1.5. Consider {(Qk,Rk)}k a D5-desingularisation of F . Since the D5-RPE’s
Rki ∈ Rk are regular by construction, the ramification indices of all classical Puiseux
series (i.e with coefficients in K) determined by Rki are equal. If F is irreducible over
K, the Riemann–Hurwitz formula determines the genus g of the projective plane
curve defined by F as

g = 1− dY + 1
2
∑
k

deg(Qk)
ρk∑
i=1

fki(eki − 1),

where fki and eki are respectively the residual degrees and ramification indices of the
RPE Rki. This proves Corollary 1.3. Corollaries 1.4 and 1.5 follow from [PR08, PR12],
where the authors show that we can reduce F modulo a well chosen small prime
within the given bit complexities.

7. Factorisation in K[[X]][Y ]
Our aim is to compute the irreducible analytic factors of F in K[[X]][Y ] with

precision XN , and to do so in at most Õ (dY (δ + N)) operations over K, plus the
cost of one univariate factorisation of degree at most dY . The idea is to first compute
a factorisation modulo Xδ , and then to lift this factorisation thanks to the following
result:
Proposition 7.1. — Let F ∈ K[[X]][Y ], separable of degree d. Suppose given a

modular factorisation
(7.1) F ≡ uF1 · · ·Fk mod Xn, n > 2κ
where u ∈ K[[X]]×, for all i either Fi or its reciprocal polynomial F̃ i is monic, and

κ = κ(F1, . . . , Fk) := max
I, J

κ(FI , FJ),

the maximum of the lifting orders being taken over all disjoint subsets I, J ⊂
{1, . . . , k}, with FI = ∏

i∈ I Fi. Then there exists uniquely determined analytic
factors F ∗1 , . . . , F ∗k such that F = u∗F ∗1 · · ·F ∗k , where

F ∗i ≡ Fi mod Xn−κ and u∗ ∈ K[[X]], u∗ ≡ u mod Xn−κ.

Moreover, starting from (7.1), we can compute the F ∗i up to an any precision N >
n− κ in Õ (dN) operations over K.
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Proof. — Replace in [G13, Algorithm 15.17] the use of [G13, Algorithm 15.10]
(line 6) by the HenselStep algorithm, and the extended Euclidean algorithm (line 4)
by [MS16, Algorithm 1]. Existence and uniqueness of the lifting follow from Lem-
ma 4.7. So does the complexity result. �
Remark 7.2. — This results improves [Cas86, Lemma 4.1], where κ is replaced by

δ/2 > κ. Note that if κ = 0, this is the classical multi-factor Hensel lifting. Otherwise,
note that instead of starting from a univariate factorisation, we need to know the
initial factorisation modulo a higher power of X.

Proof of Theorem 1.6. — We proceed as follows:
(1) Compute δ in the aimed bound.
(2) Adapt RNP3 (called with parameters F , Z and δ):

• Make the NormRPE call (line 7 of MonicRNP3) additionally output min-
imal polynomials of the computed RPE’s (i.e. the polynomials Gi of
Section 4.1);
• Replace the Hensel call (line 9 of MonicRNP3) by its multi-factor version
(i.e. Proposition 7.1);
• Output the lifted factors instead of the RPE’s in MonicRNP3.

(3) We get factors F̃ i known modulo Xδ+1, with coefficients in a product of fields
KPi

and ∑ deg(Pi) = ∑
fi 6 dY . Perform the univariate factorisation of the

Pi and split accordingly the F̃ i to get a factorisation F = u∗F ∗1 · · ·F ∗k modulo
Xδ .

(4) If n > δ, use Proposition 7.1 to lift this factorisation to the required precision.
�

8. Concluding remarks

In this paper, we provide worst-case complexity bounds for the local and global
desingularisation which are equivalent (up to a logarithmic factor) to the compu-
tation of respectively the first non-zero coefficient of the resultant RF [MS16] and
the resultant computation. However, this provides for the moment only a theoretical
algorithm: our algorithm is a combination of many subroutines, and the implemen-
tation of a fast efficient version would require a huge amount of work, especially
due to the dynamic evaluation part. Moreover, there might be algorithm easier to
implement that we plan to study in future work (see below).

Worst case complexity is sharp. We begin this section by providing a family
of polynomial for which our complexity bounds are reached.

Example 8.1. — Let d > 3 be divisible by 2 and consider F = Y d + (Y −Xd/2)2,
so that dX = dY = D = d. By Hensel’s lemma, we have F = GH ∈ Q[[X]][Y ]
with G(0, Y ) = Y d−2 + 1 and H(0, Y ) = Y 2. As G(0, Y ) is square-free, we deduce
immediately the singular parts of the Puiseux series of G (that is, their constant
term here). In order to compute the singular parts of (at least half) the Puiseux
series of H above 0 using algorithm RNP3, we need to lift further the factorisation
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F = GH mod X up to precision σ ∈ Θ(δH/ degY (H)), and this precision is sharp
from Lemma 3.19. We have δH = δ = d2 while degY (H) = 2 is constant. Hence the
required precision is in Θ(d2) and the lifting step costs Θ(d3) = Θ(D3), leading to a
cubic complexity in the total degree.

Irreducibility test via Half-RNP is Ω(dY δ). The previous example shows the
sharpness of the divide and conquer strategy. But even the first step (algorithm
Half-RNP3) is sharp, due to the “blowing up” of the Puiseux transform. As a con-
sequence, even for an irreducible polynomial (where there is no need of the divide
and conquer strategy), complexity of Theorem 1.1 is sharp, as shows the following
example:
Example 8.2. — Let d > 12 be divisible by 4 and consider F to be the minimal

polynomial of the Puiseux series S(X) = X
4
d + X + X

d+1
d . We have dY = d, δ =

7 d− 13 and υX(FY (S)) = 7− 13
d
, and Lemma 3.19 proves that we need to consider

dF en with n = 8− d
12 >

δ
d
, i.e. F mod X8. We have Nn(F ) = ((0, 4), (d, 0)) with

characteristic polynomial (T − 1)4, so that m1 = 1, q1 = d
4 and l1 = d. We therefore

need to compute the Puiseux transform G(X, Y ) = dF (X d
4 , X (Y + 1))/Xden1 with

n1 = d
4 n−d = d−3. As G has size d n1 ∈ Ω(dY δ), so is the complexity of Lemma 3.3,

thus of Theorem 1.1.
As a consequence, this blowing-up step prevents any Newton–Puiseux like method

for providing an irreducibility test in K[[X]][Y ] (or K[[X]][Y ]) in Õ (δ) operations in
K. We plan to investigate the approach of Abhyankar [Abh89] to improve that point;
in particular, we hope such an approach to improve the practical implementation of
the algorithm.

The reverse role strategy. If we only want Puiseux series centered at (0, 0),
we can try to invert the roles played by X and Y : thanks to the inversion for-
mula [GBGPPP17, Proposition 4.2], we can recover the singular parts of the Puiseux
series of F centered at (0, 0) with respect to Y from those of F̃ (X, Y ) = F (Y,X).
Considering Example 8.1, the polynomial F̃ ∈ K[[X]][Y ] is then Weierstrass of

degree d. One can compute δF̃ = d2 + 2 (d− 1). Hence, we need a lifting precision
σ̃ ∈ Θ(δF̃/d) = Θ(d) in order to compute at least half of the Puiseux series of F̃ ,
for a total cost Θ(d2). As F̃ has edge polynomial (Y d/2 −X)2, we deduce that we
will in fact separate the singular parts of all Puiseux series of F̃ with precision σ̃ -
recovering then those of F by applying the inversion formula - for a total quadratic
cost Θ(d2) = Θ(D2) assuming that we may apply the inversion formula within this
bound.
Remark 8.3. — We did not check that applying the inversion formula really fits

in the aimed bound. This problem is closely related to the computation of the
reciprocal series of a series S ∈ XK[[X]]∗, that is the series S̃ ∈ XK[[X]]∗ such
that S ◦ S̃ = X. We did not pursue further this investigation as Example 8.4 below
shows that the reverse role strategy fails in general - even assuming fast inversion
formula. [GBGPPP17, Theorem 4.4] shows at least that computing the characteristic
monomials of the Puiseux series of F centered at (0, 0) assuming that those of F̃ are
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given fits in the aimed bound. This data is of particular importance as it allows to
compute the topological type of the branches of the germ of curve defined by F at
(0, 0).

We could hope that there is always such a nice way to choose a suitable system
of local coordinates in order to compute all the Puiseux series centered at (0, 0)
– or at least their characteristic monomials – in less than cubic complexity in the
total degree. Unfortunately, Example 8.4 below shows that this is hopeless. With
the notations above, we have δH = µ + nY − 1 and δH̃ = µ + nX − 1 thanks
to [Tei74, Chapter II, Proposition 1.2, page 317], with nY := degY (H) = υY (F (0, Y )),
nX := degY (H̃) = υX(F (X, 0)) and µ := (FX , FY )0 the Milnor number of the germ
of curve defined by F at the origin. Thanks to the inversion formula, computing (the
characteristic monomials of) at least half of the Puiseux series emphcentered at (0, 0)
with RNP3 while allowing the reverse role strategy costs Θ(µmin(dY /nY , dX/nX)).
Unfortunately, this can be Θ(D3):

Example 8.4. — Let d > 6 be divisible by 6, F = (φ + Xd/2)2 − φd/3 of total
degree D = d, with φ = Y 3 −X2. We have FY = Y 2(6 (φ + Xd/2) − d φd/3−1) and
FX = X((dXd/2−1 − 4) (φ + Xd/2) + 2d

3 φ
d/3−1). d > 12 implies (X, 6 (φ + Xd/2)

− d φd/3−1)0 = 3 and (Y, U (φ+Xd/2) + 2d
3 φ

d/3−1)0 = 2. We also have( (
3 dXd/2−1 − 12

) (
φ+Xd/2

)
+ 2 d φd/3−1, 6

(
φ+Xd/2

)
− d φd/3−1

)
0

=
(

3 dXd/2−1
(
φ+Xd/2

)
, 6
(
φ+Xd/2

)
− d φd/3−1

)
0

=3 (d/2− 1) +
((
φ+Xd/2

)
, φd/3−1

)
0

= −3 + d2/2

We finally get µ = (FX , FY )0 = 6+d2/2 ∈ Θ(d2). Since nY = 6 and nX = 4 we obtain
min(dY µ/nY , dXµ/nX) = d3/12 + d ∈ Θ(d3) = Θ(D3). The reverse role strategy is
thus not helpful in that case.

More generally the Milnor number is invariant under local diffeomorphic change
of coordinates π : (K2, 0) → (K2, 0). In Example 8.4, we can check that we al-
ways have max(nX(π∗F ), nY (π∗F )) = max(nX , nY ), and – assuming π polynomial
– we check further that we always have min(degX(π∗F ), degY (π∗F )) > min(dX , dY ).
Hence, there is no hope to reduce the polynomial F to a nicer polynomial G having
faster desingularisation at (0, 0) (or even faster irreducibility test) using polynomial
diffeomorphism of (K2, 0) before applying RNP3. This shows that our complexity
results are sharp, and so independently of the choice of a polynomial local change
of coordinates in (K2, 0).
Note that this example is particularly sparse, but one could for instance consider

the “dense” polynomial

F = Y d/3 +
d/6−1∑
k=0

(
φ+Xd/2

)2
φk

that will lead to the same conclusion than the one of Example 8.4.
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