Metadata
Abstract
We study the (covering) gonality of abelian varieties and their orbits of zero-cycles for rational equivalence. We show that any orbit for rational equivalence of zero-cycles of degree has dimension at most . Building on the work of Pirola, we show that very general abelian varieties of dimension have (covering) gonality at least , where grows like . This answers a question asked by Bastianelli, De Poi, Ein, Lazarsfeld and B. Ullery. We also obtain results on the Chow ring of very general abelian varieties of dimension , e.g., if , the set of divisors such that in is at most countable.
References
[AP93] Rational orbits on three-symmetric products of abelian varieties, Trans. Am. Math. Soc., Volume 337 (1993) no. 2, pp. 965-980 | DOI | MR | Zbl
[BDPE + 17] Measures of irrationality for hypersurfaces of large degree, Compos. Math., Volume 153 (2017) no. 11, pp. 2368-2393 | DOI | MR | Zbl
[Bea82] Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une variété abélienne, Algebraic geometry (Tokyo/Kyoto, 1982) (Lecture Notes in Mathematics), Volume 1016, Springer, 1982, pp. 238-260 | DOI | Zbl
[Bea83] Variétés kählériennes dont la première classe de Chern est nulle, J. Differ. Geom., Volume 18 (1983) no. 4, pp. 755-782 | DOI | Zbl
[Blo76] Some elementary theorems about algebraic cycles on Abelian varieties, Invent. Math., Volume 37 (1976) no. 3, pp. 215-228 | DOI | MR | Zbl
[CvG93] Note on curves in a Jacobian, Compos. Math., Volume 88 (1993) no. 3, pp. 333-353 | Numdam | MR | Zbl
[Her07] Algebraic cycles on the Jacobian of a curve with a linear system of given dimension, Compos. Math., Volume 143 (2007) no. 4, pp. 883-899 | DOI | MR | Zbl
[Huy14] Curves and cycles on K3 surfaces, Algebr. Geom., Volume 1 (2014) no. 1, pp. 69-106 | MR | Zbl
[Mat58] Cycles on abelian varieties, Proc. Am. Math. Soc., Volume 9 (1958), pp. 88-98 | DOI | MR | Zbl
[Mum69] Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ., Volume 9 (1969), pp. 195-204 | DOI | MR | Zbl
[MZ17] On the group of zero-cycles of holomorphic symplectic varieties (2017) (https://arxiv.org/abs/1711.10045)
[Pir89] Curves on generic Kummer varieties, Duke Math. J., Volume 59 (1989), pp. 701-708 | DOI | MR | Zbl
[Pir95] Abel-Jacobi invariant and curves on generic abelian varieties, Abelian varieties (Egloffstein, 1993), Walter de Gruyter, 1995, pp. 237-249 | MR | Zbl
[Voi92] Sur les zéro-cycles de certaines hypersurfaces munies d’un automorphisme, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 19 (1992) no. 4, pp. 473-492 | Zbl
[Voi15a] Rational equivalence of 0-cycles on K3 surfaces and conjectures of Huybrechts and O’Grady, Recent advances in algebraic geometry (London Mathematical Society Lecture Note Series), Volume 417, Cambridge University Press, 2015, pp. 422-436 | DOI | MR | Zbl
[Voi15b] Some new results on modified diagonals, Geom. Topol., Volume 19 (2015) no. 6, pp. 3307-3343 | DOI | MR | Zbl
[Voi16] Rational equivalence of 0-cycles on K3 surfaces and conjectures of Huybrechts and O’Grady, K3 surfaces and their moduli (Progress in Mathematics), Birkhäuser/Springer, 2016, pp. 365-399 | Zbl