Metadata
Abstract
We prove the convergence of the density on the scale to the density of the Bohr atom with infinitely many electrons (strong Scott conjecture) for a model that is known to describe heavy atoms accurately.
References
[Bau76] The Thomas–Fermi-theory as result of a strong-coupling-limit, Commun. Math. Phys., Volume 47 (1976) no. 3, pp. 215-219 | DOI | MR
[BE11] Spectral Analysis of Relativistic Operators, World Scientific, 2011 | Zbl
[Bet33] Chapter 3, Quantenmechanik der Ein-und Zwei-Elektronenatome, Springer, 1933, pp. 273-560
[BG67] The effect of relativity on atomic wave functions, Proc. Phys. Soc., Volume 90 (1967) no. 2, pp. 297-314 | DOI
[Bha97] Matrix Analysis, Graduate Texts in Mathematics, 169, Springer, 1997 | DOI
[BR51] On the interaction of two electrons, Proc. R. Soc. Lond., Volume 208 (1951), pp. 552-559 | MR | Zbl
[Car10] Trace inequalities and quantum entropy: an introductory course, Entropy and the Quantum. Arizona School of Analysis With Applications, March 16–20, 2009, University of Arizona, Tucson, AZ, US. (Sims, Robert et al., eds.) (Contemporary Mathematics), Volume 529, American Mathematical Society, 2010, pp. 73-140 | MR | Zbl
[Cha31] The maximum mass of ideal white dwarfs, Astrophys. J., Volume 74 (1931), pp. 81-82 | DOI | Zbl
[Dar28] The wave equation of the electron, Proc. R. Soc. Lond., Volume 118 (1928), pp. 654-680 | DOI
[Dav57] A Schwarz inequality for convex operator functions, Proc. Am. Math. Soc., Volume 8 (1957), pp. 42-44 | DOI | MR | Zbl
[Dir30] A theory of electrons and protons, Proc. R. Soc. Lond., Volume 126 (1930), pp. 360-365 | Zbl
[EPS96] The spectrum of relativistic one-electron atoms according to Bethe and Salpeter, Commun. Math. Phys., Volume 178 (1996) no. 3, pp. 733-746 | DOI | MR | Zbl
[Fer27] Un metodo statistico per la determinazione di alcune proprietá dell’atomo, Rend. Accad. Naz. Lincei, Volume 6 (1927) no. 12, pp. 602-607
[Fer28] Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente, Z. Phys., Volume 48 (1928), pp. 73-79 | DOI | Zbl
[FG16] Refined semiclassical asymptotics for fractional powers of the Laplace operator, J. Reine Angew. Math., Volume 712 (2016), pp. 1-37 | DOI | MR | Zbl
[FLT20] The Scott correction in Dirac–Fock theory, Commun. Math. Phys., Volume 378 (2020) no. 1, pp. 569-600 | DOI | MR | Zbl
[FMS20] Relativistic strong Scott conjecture: A short proof (2020) (https://arxiv.org/abs/2009.02474, to appear in the proceedings of “Density Functionals for Many-Particle Systems: Mathematical Theory and Physical Applications of Effective Equations”, September 2-27, 2019, Institute for Mathematical Sciences of the National University of Singapore)
[FMS21] Equivalence of Sobolev norms involving generalized Hardy operators, Int. Math. Res. Not., Volume 2021 (2021) no. 3, pp. 2284-2303 | DOI | MR | Zbl
[FMSS20] Proof of the strong Scott conjecture for Chandrasekhar atoms, Pure Appl. Funct. Anal., Volume 5 (2020) no. 6, pp. 1319-1356 | MR | Zbl
[FO34] On the theory of the electron and positive, Phys. Rev., Volume 45 (1934), pp. 245-262 | DOI | Zbl
[FSW08] The ground state energy of heavy atoms: Relativistic lowering of the leading energy correction, Commun. Math. Phys., Volume 278 (2008) no. 2, pp. 549-566 | DOI | MR | Zbl
[FSW09] The energy of heavy atoms according to Brown and Ravenhall: the Scott correction, Doc. Math., Volume 14 (2009), pp. 463-516 | MR | Zbl
[Gor28] Die Energieniveaus des Wasserstoffatoms nach der Diracschen Quantentheorie, Z. Phys., Volume 48 (1928), pp. 11-14 | DOI | Zbl
[Hei25] Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, Z. Phys., Volume 33 (1925) no. 1, pp. 879-893 | DOI | Zbl
[HL95] The electron density near the nucleus of a large atom, Phys. Rev., Volume 52 (1995) no. 5, pp. 3628-3643 | DOI
[HS15] The ground state energy of heavy atoms: the leading correction, Commun. Math. Phys., Volume 339 (2015) no. 2, pp. 589-617 | DOI | MR | Zbl
[Hug86] An Atomic Energy Lower Bound that Gives Scott’s Correction, Ph. D. Thesis, University of Princeton, Department of Mathematics, USA (1986)
[Hug90] An atomic lower bound that agrees with Scott’s correction, Adv. Math., Volume 79 (1990) no. 2, pp. 213-270 | DOI | MR | Zbl
[Ian97] The electron density in intermediate scales, Commun. Math. Phys., Volume 184 (1997) no. 2, pp. 367-385 | DOI | MR | Zbl
[ILS96] Proof of a conjecture about atomic and molecular cores related to Scott’s correction, J. Reine Angew. Math., Volume 472 (1996), pp. 177-195 | MR | Zbl
[IS01] Asymptotic behavior of the one-particle density matrix of atoms at distances from the nucleus, Math. Z., Volume 236 (2001) no. 4, pp. 787-796 | DOI | MR | Zbl
[Ivr19] Strong Scott conjecture (2019) (https://arxiv.org/abs/1908.05478)
[Kal76] The virial theorem in relativistic quantum mechanics, J. Funct. Anal., Volume 21 (1976) no. 4, pp. 389-396 | DOI | MR | Zbl
[KW78] Characterization and uniqueness of distinguished self-adjoint extensions of Dirac operators, Commun. Math. Phys., Volume 64 (1978), pp. 171-176 | DOI | Zbl
[Lie79] , Mathematical Problems in Theoretical Physics. Proceedings of the International Conference on Mathematical Physics. Lausanne 1979 (Lecture Notes in Physics), Volume 116 (1979), pp. 553-569 | DOI
[Lie81] Thomas–Fermi and related theories of atoms and molecules, Rev. Mod. Phys., Volume 53 (1981) no. 4, pp. 603-641 | DOI | MR | Zbl
[Lie82] Analysis of the Thomas–Fermi–von Weizsäcker equation for an infinite atom without electron repulsion, Commun. Math. Phys., Volume 85 (1982) no. 1, pp. 15-25 | DOI | Zbl
[LL82] Numerical calculation of the Thomas–Fermi–von Weizsäcker function for an infinite atom without electron repulsion, 1982 no. LA-9186-MS | DOI
[LS77] The Thomas–Fermi theory of atoms, molecules and solids, Adv. Math., Volume 23 (1977) no. 1, pp. 22-116 | DOI | MR | Zbl
[Lüd51] Über die Zustandsänderung durch den Meßprozeß, Ann. der Physik, VI. F., Volume 8 (1951), pp. 322-328 | Zbl
[Mit81] Theory of relativistic effects on atoms: Configuration-space Hamiltonian, Phys. Rev., Volume 24 (1981) no. 3, pp. 1167-1175 | DOI
[MM17] Lower bounds on the moduli of three-dimensional Coulomb–Dirac operators via fractional Laplacians with applications, J. Math. Phys., Volume 58 (2017) no. 7, 072302, 22 pages | MR | Zbl
[MMS04] The optimal size of the exchange hole and reduction to one-particle Hamiltonians, Theoretical Chemistry Accounts, Volume 111 (2004) no. 1, pp. 49-53 | DOI
[MS10] Spectral theory of no-pair Hamiltonian, Rev. Math. Phys., Volume 22 (2010) no. 1, pp. 1-53 | DOI | MR | Zbl
[Nen76] Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms, Commun. Math. Phys., Volume 48 (1976) no. 3, pp. 235-247 | DOI | MR | Zbl
[NZ99] Fractional powers of self-adjoint operators and Trotter-Kato product formula, Integral Equations Oper. Theory, Volume 35 (1999) no. 2, pp. 209-231 | DOI | MR | Zbl
[Oel19] On Domain, Self-Adjointness, and Spectrum of Dirac Operators for Two Interacting Particles, Ph. D. Thesis, Fakultät für Mathematik, Informatik und Statistik, Ludwig-Maximilians-Universität München, Deutschland (2019)
[Pau26] Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik, Z. Phys., Volume 36 (1926) no. 5, pp. 336-363 | DOI | Zbl
[Pil05] Relativistic Quantum Mechanics, Texts and Monographs in Physics, Springer, 2005 | DOI | MR
[Sch72] Distinguished selfadjoint extensions of Dirac operators, Math. Z., Volume 129 (1972), pp. 335-349 | DOI | MR | Zbl
[Sch80] Thomas–Fermi model: The leading correction, Phys. Rev. A, Volume 22 (1980) no. 5, pp. 1827-1832 | DOI | MR
[Sco52] The binding energy of the Thomas–Fermi atom, Philos. Mag., Volume 48 (1952) no. 343, pp. 859-867 | DOI
[Sim84] Fifteen problems in mathematical physics, Perspectives in Mathematics, Birkhäuser, 1984 | Zbl
[Som16] Zur Quantentheorie der Spektrallinien, Ann. Phys. (Berlin), Volume 356 (1916) no. 17, pp. 1-94 | DOI
[SSS10] Relativistic Scott correction for atoms and molecules, Commun. Pure Appl. Math., Volume 63 (2010) no. 1, pp. 39-118 | DOI | MR | Zbl
[Suc80] Foundations of the relativistic theory of many-electron atoms, Phys. Rev. A, Volume 22 (1980) no. 2, pp. 348-362 | DOI | MR
[Suc84] Foundations of the relativistic theory of many-electron bound states, International Journal of Quantum Chemistry, Volume 25 (1984) no. 1, pp. 3-21 | DOI
[Suc87] Relativistic many-electron Hamiltonians, Phys. Scr., Volume 36 (1987) no. 2, pp. 271-281 | DOI
[SW86] On the leading energy correction for the statistical model of the atom: Non-interacting case, Abh. Braunschw. Wiss. Ges., Volume 38 (1986), pp. 145-158 | Zbl
[SW87a] On the leading energy correction for the statistical model of the atom: Interacting case, Commun. Math. Phys., Volume 112 (1987) no. 3, pp. 471-490 | DOI | MR | Zbl
[SW87b] Upper bound on the ground state energy of atoms that proves Scott’s conjecture, Phys. Lett., Volume 120 (1987) no. 7, pp. 341-342 | DOI | MR
[SW88] On the leading energy correction of the statistical atom: Lower bound, Eur. Phys. Lett., Volume 6 (1988) no. 3, pp. 189-192 | DOI | Zbl
[SW89] On the leading correction of the Thomas–Fermi model: Lower bound, Invent. Math., Volume 97 (1989) no. 1, pp. 159-193 (with an appendix by A. M. K. Müller) | DOI | MR | Zbl
[Tha92] The Dirac Equation, Texts and Monographs in Physics, Springer, 1992 | DOI | MR
[Tho27] The calculation of atomic fields, Proc. Camb. Philos. Soc., Volume 23 (1927), pp. 542-548 | DOI | Zbl
[Wei35] Zur Theorie der Kernmassen, Z. Phys., Volume 96 (1935), pp. 431-458 | DOI | Zbl
[Wüs75] Distinguished self-adjoint extensions of Dirac operators constructed by means of cut-off potentials, Math. Z., Volume 141 (1975), pp. 93-98 | DOI | MR | Zbl
[YT65] On the Weizsäcker correction to the Thomas–Fermi theory of the atom, J. Phys. Soc. Japan, Volume 20 (1965) no. 6, pp. 1051-1057 | DOI