Metadata
Abstract
Nous étudions l’exposant diophantien d’un point d’une hypersurface quadratique. Nous montrons notamment un analogue du théorème de Thue–Siegel–Roth, c’est-à-dire une formule pour l’exposant diophantien d’un point algébrique, et un analogue du résultat de Kleinbock et Margulis sur l’extrémalité des sous-variétés non dégénérées de l’espace affine.
References
[BCR98] Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 36, Springer, 1998 (translated from the 1987 French original, Revised by the authors) | DOI | MR | Zbl
[BdS21] A subspace theorem for manifolds (2021) (à paraître dans JEMS, https://arxiv.org/abs/2101.04055)
[Dan85] Divergent trajectories of flows on homogeneous spaces and Diophantine approximation, J. Reine Angew. Math., Volume 359 (1985), pp. 55-89 | DOI | MR | Zbl
[Dru05] Diophantine approximation on rational quadrics, Math. Ann., Volume 333 (2005) no. 2, pp. 405-470 | DOI | MR | Zbl
[dS] Non divergence via the successive minima (à paraître dans Groups, Geometry and Dynamics)
[FKMS22] Intrinsic Diophantine approximation on quadric hypersurfaces, J. Eur. Math. Soc., Volume 24 (2022) no. 3, pp. 1045-1101 | DOI | MR | Zbl
[Kle08] An extension of quantitative nondivergence and applications to Diophantine exponents, Trans. Am. Math. Soc., Volume 360 (2008) no. 12, pp. 6497-6523 | DOI | MR | Zbl
[Kle10] An “almost all versus no” dichotomy in homogeneous dynamics and Diophantine approximation, Geom. Dedicata, Volume 149 (2010), pp. 205-218 | DOI | MR | Zbl
[KLW04] On fractal measures and Diophantine approximation, Sel. Math., New Ser., Volume 10 (2004) no. 4, pp. 479-523 | DOI | MR | Zbl
[KM98] Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. Math., Volume 148 (1998) no. 1, pp. 339-360 | DOI | MR | Zbl
[KM15] Rational approximation on spheres, Isr. J. Math., Volume 209 (2015) no. 1, pp. 293-322 | DOI | MR | Zbl
[Mar71] The action of unipotent groups in a lattice space, Mat. Sb., N. Ser., Volume 86(128) (1971), pp. 552-556 | MR
[Rot60] , Proc. Internat. Congress Math. 1958 (1960), pp. 203-210 | Zbl
[Sch80] Diophantine approximation, Lecture Notes in Mathematics, 785, Springer, 1980 | MR | Zbl