Metadata
Abstract
We give two explicit sets of generators of the group of invertible regular functions over on the modular curve .
The first set of generators is very surprising. It is essentially the set of defining equations of for when all these modular curves are simultaneously embedded into the affine plane, and this proves a conjecture of Derickx and Van Hoeij [DvH14]. This set of generators is an elliptic divisibility sequence in the sense that it satisfies the same recurrence relation as the elliptic division polynomials.
The second set of generators is explicit in terms of classical analytic functions known as Siegel functions. This is both a generalization and a converse of a result of Yang [Yan04, Yan09].
References
[dL10] Elliptic divisibility sequences, Masters thesis, Mathematical Sciences, Universiteit Utrecht, Netherlands (2010) (written under the supervision of Gunther Cornelissen, https://studenttheses.uu.nl/handle/20.500.12932/7322)
[Dri73] Two theorems on modular curves, Funkts. Anal. Prilozh., Volume 7 (1973) no. 2, pp. 83-84 | MR | Zbl
[DvH14] Gonality of the modular curve , J. Algebra, Volume 417 (2014), pp. 52-71 | DOI | MR | Zbl
[Fri11] Die elliptischen Funktionen und ihre Anwendungen. Erster Teil. Die funktionentheoretischen und analytischen Grundlagen, Springer, 2011 (Reprint of the 1916 original) | MR | Zbl
[IMS + 12] Algebraic divisibility sequences over function fields, J. Aust. Math. Soc., Volume 92 (2012) no. 1, pp. 99-126 | DOI | MR | Zbl
[Jin13] Homogeneous division polynomials for Weierstrass elliptic curves (2013) (http://arxiv.org/abs/1303.4327v1)
[KL75] Units in the modular function field. II. A full set of units, Math. Ann., Volume 218 (1975) no. 2, pp. 175-189 | DOI | MR | Zbl
[KL77] Units in the modular function field. IV. The Siegel functions are generators, Math. Ann., Volume 227 (1977) no. 3, pp. 223-242 | DOI | MR | Zbl
[KL81] Modular units, Grundlehren der Mathematischen Wissenschaften, 244, Springer, 1981 | DOI | MR | Zbl
[Kub81] The square root of the Siegel group, Proc. Lond. Math. Soc., Volume 43 (1981) no. 2, pp. 193-226 | DOI | MR | Zbl
[KY17] Generators of the ring of weakly holomorphic modular functions for , Ramanujan J., Volume 42 (2017) no. 3, pp. 583-599 | DOI | MR | Zbl
[Lab18] Computing Jacobi’s theta in quasi-linear time, Math. Comput., Volume 87 (2018) no. 311, pp. 1479-1508 | DOI | MR | Zbl
[Man72] Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 36 (1972), pp. 19-66 | MR | Zbl
[Mar67] Theory of Functions of a Complex Variable. Vol. III, Selected Russian Publications in the Mathematical Sciences, Chelsea Publishing; Prentice Hall, 1967 (revised English edition translated and edited by Richard A. Silverman) | Zbl
[Nas16] Divisibility sequences of polynomials and heights estimates, New York J. Math., Volume 22 (2016), pp. 989-1020 | MR | Zbl
[SageMath14] SageMath, the Sage Mathematics Software System (Version 6.2), 2014 (https://www.sagemath.org)
[Sil86] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 1986 | DOI | MR | Zbl
[Yan04] Transformation Formulas for Generalized Dedekind Eta Functions, Bull. Lond. Math. Soc., Volume 36 (2004) no. 5, pp. 671-682 | DOI | MR | Zbl
[Yan09] Modular units and cuspidal divisor class groups of , J. Algebra, Volume 322 (2009) no. 2, pp. 514-553 | DOI | MR | Zbl