Statistics of finite degree covers of torus knot complements
Annales Henri Lebesgue, Volume 6 (2023), pp. 1213-1257.

Metadata

Keywords Subgroup growth, random covers, torus knots

Abstract

In the first part of this paper, we determine the asymptotic subgroup growth of the fundamental group of a torus knot complement. In the second part, we use this to study random finite degree covers of torus knot complements. We determine their Benjamini–Schramm limit and the linear growth rate of the Betti numbers of these covers. All these results generalise to a larger class of lattices in PLS(2,)×. As a by-product of our proofs, we obtain analogous limit theorems for high index random subgroups of non-uniform Fuchsian lattices with torsion.


References

[ABB + 17] Abert, Miklos; Bergeron, Nicolas; Biringer, Ian; Gelander, Tsachik; Nikolov, Nikolay; Raimbault, Jean; Samet, Iddo On the growth of L 2 -invariants for sequences of lattices in Lie groups, Ann. Math., Volume 185 (2017) no. 3, pp. 711-790 | DOI | MR | Zbl

[ABBG23] Abért, Miklós; Bergeron, Nicolas; Biringer, Ian; Gelander, Tsachik Convergence of normalized Betti numbers in nonpositive curvature, Duke Math. J., Volume 172 (2023) no. 4, pp. 633-700 | DOI | MR | Zbl

[AGG89] Arratia, Richard A.; Goldstein, Larry; Gordon, Louis Two moments suffice for Poisson approximations: the Chen–Stein method, Ann. Probab., Volume 17 (1989) no. 1, pp. 9-25 | MR | Zbl

[Ago13] Agol, Ian The virtual Haken conjecture, Doc. Math., Volume 18 (2013), pp. 1045-1087 (with an appendix by Agol, Daniel Groves, and Jason Manning) | MR | Zbl

[AGV14] Abért, Miklós; Glasner, Yair; Virág, Bálint Kesten’s theorem for invariant random subgroups, Duke Math. J., Volume 163 (2014) no. 3, pp. 465-488 | DOI | MR | Zbl

[AL02] Amit, Alon; Linial, Nathan Random graph coverings. I. General theory and graph connectivity, Combinatorica, Volume 22 (2002) no. 1, pp. 1-18 | DOI | MR | Zbl

[BBG + 18] Baik, Hyungryul; Bauer, David; Gekhtman, Ilya; Hamenstädt, Ursula; Hensel, Sebastian; Kastenholz, Thorben; Petri, Bram; Valenzuela, Daniel Exponential torsion growth for random 3-manifolds, Int. Math. Res. Not., Volume 21 (2018), pp. 6497-6534 | DOI | MR | Zbl

[BCP19] Budzinski, Thomas; Curien, Nicolas; Petri, Bram Universality for random surfaces in unconstrained genus, Electron. J. Comb., Volume 26 (2019) no. 4, 4.2 | DOI | MR | Zbl

[BG04] Bergeron, Nicolas; Gaboriau, Damien Asymptotique des nombres de Betti, invariants l 2 et laminations, Comment. Math. Helv., Volume 79 (2004) no. 2, pp. 362-395 | DOI | MR | Zbl

[BG07] Benaych-Georges, Florent Cycles of random permutations with restricted cycle lengths (2007) (https://arxiv.org/abs/0712.1903v1)

[BG10] Benaych-Georges, Florent Cycles of free words in several independent random permutations with restricted cycle lengths, Indiana Univ. Math. J., Volume 59 (2010) no. 5, pp. 1547-1586 | DOI | MR | Zbl

[BHJ92] Barbour, Andrew D.; Holst, Lars; Janson, Svante Poisson approximation, Oxford Studies in Probability, 2, Clarendon Press, 1992 (Oxford Science Publications) | DOI | MR | Zbl

[BKL + 20] Baader, Sebastian; Kjuchukova, Alexandra; Lewark, Lukas; Misev, Filip; Ray, Arunima Average four-genus of two-bridge knots (2020) (https://arxiv.org/abs/1902.05721, to appear in Proceedings of the American Mathematical Society)

[BM04] Brooks, Robert; Makover, Eran Random construction of Riemann surfaces, J. Differ. Geom., Volume 68 (2004) no. 1, pp. 121-157 | MR | Zbl

[Bol80] Bollobás, Béla A probabilistic proof of an asymptotic formula for the number of labelled regular graphs, Eur. J. Comb., Volume 1 (1980) no. 4, pp. 311-316 | DOI | MR | Zbl

[Bol85] Bollobás, Béla Random graphs, Academic Press Inc., 1985 | MR | Zbl

[Bow14] Bowen, Lewis Random walks on random coset spaces with applications to Furstenberg entropy, Invent. Math., Volume 196 (2014) no. 2, pp. 485-510 | DOI | MR | Zbl

[BPR20] Baik, Hyungryul; Petri, Bram; Raimbault, Jean Subgroup growth of right-angled Artin and Coxeter groups, J. Lond. Math. Soc., II. Ser., Volume 101 (2020) no. 2, pp. 556-588 | DOI | MR | Zbl

[BS01] Benjamini, Itai; Schramm, Oded Recurrence of distributional limits of finite planar graphs, Electron. J. Probab., Volume 6 (2001), no. 23 | DOI | MR | Zbl

[CGS11] Chen, Louis H. Y.; Goldstein, Larry; Shao, Qi-Man Normal approximation by Stein’s method, Probability and Its Applications, Springer, 2011 | DOI | MR | Zbl

[CHM51] Chowla, Sarvadaman; Herstein, Israel N.; Moore, W. K. On recursions connected with symmetric groups. I, Can. J. Math., Volume 3 (1951), pp. 328-334 | DOI | MR | Zbl

[CMZ18] Chen, Dawei; Möller, Martin; Zagier, Don Quasimodularity and large genus limits of Siegel–Veech constants, J. Am. Math. Soc., Volume 31 (2018) no. 4, pp. 1059-1163 | DOI | MR | Zbl

[Dix69] Dixon, John D. The probability of generating the symmetric group, Math. Z., Volume 110 (1969), pp. 199-205 | DOI | MR | Zbl

[DJPP13] Dumitriu, Ioana; Johnson, Tobias; Pal, Soumik; Paquette, Elliot Functional limit theorems for random regular graphs, Probab. Theory Relat. Fields, Volume 156 (2013) no. 3-4, pp. 921-975 | DOI | MR | Zbl

[DT06] Dunfield, Nathan M.; Thurston, William P. Finite covers of random 3-manifolds, Invent. Math., Volume 166 (2006) no. 3, pp. 457-521 | DOI | MR | Zbl

[Eck04] Eckmann, Beno Lattices, l 2 -Betti numbers, deficiency, and knot groups, Enseign. Math., Volume 50 (2004) no. 1-2, pp. 123-137 | MR | Zbl

[Ele10] Elek, Gábor Betti numbers are testable, Fete of combinatorics and computer science (Bolyai Society Mathematical Studies), Volume 20, János Bolyai Mathematical Society, 2010, pp. 139-149 | DOI | MR | Zbl

[EZ17] Even-Zohar, Chaim Models of random knots, J. Appl. Comput. Topol., Volume 1 (2017) no. 2, pp. 263-296 | DOI | MR | Zbl

[FPP + 21] Friedl, S.; Park, J.; Petri, B.; Raimbault, Jean; Ray, A. On distinct finite covers of 3-manifolds, Indiana Univ. Math. J., Volume 70 (2021) no. 2, pp. 809-846 | DOI | MR | Zbl

[Fri08] Friedman, Joel A proof of Alon’s second eigenvalue conjecture and related problems, Memoirs of the American Mathematical Society, 910, American Mathematical Society, 2008 | DOI | MR | Zbl

[Gel18] Gelander, Tsachik A lecture on invariant random subgroups, New Directions in Locally Compact Groups, Cambridge University Press, 2018, pp. 186-204 | DOI | MR | Zbl

[GJKW02] Greenhill, Catherine; Janson, Svante; Kim, Jeong Han; Wormald, Nicholas C. Permutation pseudographs and contiguity, Comb. Probab. Comput., Volume 11 (2002) no. 3, pp. 273-298 | DOI | MR | Zbl

[GLMST21] Gilmore, Clifford; Le Masson, Etienne; Sahlsten, Tuomas; Thomas, Joe Short geodesic loops and L p norms of eigenfunctions on large genus random surfaces, Geom. Funct. Anal., Volume 31 (2021) no. 1, pp. 62-110 | DOI | MR | Zbl

[GPY11] Guth, Larry; Parlier, Hugo; Young, Robert Pants decompositions of random surfaces, Geom. Funct. Anal., Volume 21 (2011) no. 5, pp. 1069-1090 | DOI | MR | Zbl

[Hat07] Hatcher, Allen Notes on Basic 3-Manifold Topology (2007) (Lecture notes, available at: http://pi.math.cornell.edu/~hatcher/3M/3Mdownloads.html)

[Hay56] Hayman, Walter K. A generalisation of Stirling’s formula, J. Reine Angew. Math., Volume 196 (1956), pp. 67-95 | DOI | MR | Zbl

[Hem87] Hempel, John Residual finiteness for 3-manifolds, Combinatorial group theory and topology (Alta, Utah, 1984) (Annals of Mathematics Studies), Volume 111, Princeton University Press, 1987, pp. 379-396 | DOI | MR | Zbl

[HS68] Harris, Bernard; Schoenfeld, Lowell Asymptotic expansions for the coefficients of analytic functions, Ill. J. Math., Volume 12 (1968), pp. 264-277 | MR | Zbl

[HV22] Hamenstädt, Ursula; Viaggi, Gabriele Small eigenvalues of random 3-manifolds, Trans. Am. Math. Soc., Volume 375 (2022) no. 6, pp. 3795-3840 | DOI | MR | Zbl

[Kam19] Kammeyer, Holger Introduction to 2 -invariants, Lecture Notes in Mathematics, 2247, Springer, 2019 | DOI | MR | Zbl

[Kel20] Kelley, Andrew James Subgroup growth of all Baumslag–Solitar groups, New York J. Math., Volume 26 (2020), pp. 218-229 | MR | Zbl

[LM00] Liskovets, Valery; Mednykh, Alexander Enumeration of subgroups in the fundamental groups of orientable circle bundles over surfaces, Commun. Algebra, Volume 28 (2000) no. 4, pp. 1717-1738 | DOI | MR | Zbl

[LS03] Lubotzky, Alexander; Segal, Dan Subgroup growth, Progress in Mathematics, 212, Birkhäuser, 2003 | DOI | MR | Zbl

[LS04] Liebeck, Martin W.; Shalev, Aner Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks, J. Algebra, Volume 276 (2004) no. 2, pp. 552-601 | DOI | MR | Zbl

[Lüc94] Lück, Wolfgang Approximating L 2 -invariants by their finite-dimensional analogues, Geom. Funct. Anal., Volume 4 (1994) no. 4, pp. 455-481 | DOI | MR | Zbl

[Lüc02] Lück, Wolfgang L 2 -invariants: theory and applications to geometry and K-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 44, Springer, 2002 | DOI | MR | Zbl

[Mah10] Maher, Joseph Random Heegaard splittings, J. Topol., Volume 3 (2010) no. 4, pp. 997-1025 | DOI | MR | Zbl

[Mir13] Mirzakhani, Maryam Growth of Weil–Petersson volumes and random hyperbolic surfaces of large genus, J. Differ. Geom., Volume 94 (2013) no. 2, pp. 267-300 | MR | Zbl

[MNP22] Magee, Michael; Naud, Frédéric; Puder, Doron A random cover of a compact hyperbolic surface has relative spectral gap 3 16-ε, Geom. Funct. Anal., Volume 32 (2022) no. 3, pp. 595-661 | DOI | MR | Zbl

[MP19] Mirzakhani, Maryam; Petri, Bram Lengths of closed geodesics on random surfaces of large genus, Comment. Math. Helv., Volume 94 (2019) no. 4, pp. 869-889 | DOI | MR | Zbl

[MP23] Magee, Michael; Puder, Doron The Asymptotic Statistics of Random Covering Surfaces, Forum Math. Pi, Volume 11 (2023), e15 | DOI | MR | Zbl

[MRR22] Masur, Howard; Rafi, Kasra; Randecker, Anja Expected covering radius of a translation surface, Int. Math. Res. Not., Volume 2022 (2022) no. 10, pp. 7967-8002 | DOI | MR | Zbl

[MSP02] Müller, Thomas W.; Schlage-Puchta, Jan-Christoph Character theory of symmetric groups and subgroup growth of surface groups, J. Lond. Math. Soc., Volume 66 (2002) no. 3, pp. 623-640 | DOI | MR | Zbl

[MSP04] Müller, Thomas W.; Schlage-Puchta, Jan-Christoph Classification and statistics of finite index subgroups in free products, Adv. Math., Volume 188 (2004) no. 1, pp. 1-50 | DOI | MR | Zbl

[MSP10] Müller, Thomas W.; Schlage-Puchta, Jan-Christoph Statistics of isomorphism types in free products, Adv. Math., Volume 224 (2010) no. 2, pp. 707-730 | DOI | MR | Zbl

[MW55] Moser, Leo; Wyman, Max On solutions of x d =1 in symmetric groups, Can. J. Math., Volume 7 (1955), pp. 159-168 | DOI | MR | Zbl

[Mül96] Müller, Thomas W. Subgroup growth of free products, Invent. Math., Volume 126 (1996) no. 1, pp. 111-131 | DOI | MR | Zbl

[Mül97] Müller, Thomas W. Finite group actions and asymptotic expansion of e P(z) , Combinatorica, Volume 17 (1997) no. 4, pp. 523-554 | DOI | MR | Zbl

[Nic94] Nica, Alexandru On the number of cycles of given length of a free word in several random permutations, Random Struct. Algorithms, Volume 5 (1994) no. 5, pp. 703-730 | DOI | MR | Zbl

[Pav82] Pavlov, Aleksander I. On the limit distribution of the number of solutions of the equation x k =a in the symmetric group S n , Mat. Sb., N. Ser., Volume 117(159) (1982) no. 2, pp. 239-250 | MR | Zbl

[Pet17] Petri, Bram Random regular graphs and the systole of a random surface, J. Topol., Volume 10 (2017) no. 1, pp. 211-267 | DOI | MR | Zbl

[PT18] Petri, Bram; Thäle, Christoph Poisson approximation of the length spectrum of random surfaces, Indiana Univ. Math. J., Volume 67 (2018) no. 3, pp. 1115-1141 | DOI | MR | Zbl

[Pud15] Puder, Doron Expansion of random graphs: new proofs, new results, Invent. Math., Volume 201 (2015) no. 3, pp. 845-908 | DOI | MR | Zbl

[PZ22] Puder, Doron; Zimhoni, Tomer Local Statistics of Random Permutations from Free Products (2022) (https://arxiv.org/abs/2203.12250)

[SDS99] du Sautoy, Marcus P. F.; McDermott, John J.; Smith, Geoff C. Zeta functions of crystallographic groups and analytic continuation, Proc. Lond. Math. Soc., Volume 79 (1999) no. 3, pp. 511-534 | DOI | MR | Zbl

[Shr22] Shrestha, Sunrose The topology and geometry of random square-tiled surfaces, Geom. Dedicata, Volume 216 (2022) no. 4, 38 | DOI | MR | Zbl

[Sul16] Sulca, Diego Zeta functions of virtually nilpotent groups, Isr. J. Math., Volume 213 (2016) no. 1, pp. 371-398 | DOI | MR | Zbl

[Ver12] Vershik, Anatoliĭ M. Totally nonfree actions and the infinite symmetric group, Mosc. Math. J., Volume 12 (2012) no. 1, p. 193-212, 216 | DOI | MR | Zbl

[Vol86] Volynets, L. M. The number of solutions of the equation x s =e in a symmetric group, Mat. Zametki, Volume 40 (1986) no. 2, pp. 155-160 | MR | Zbl

[Wil86] Wilf, Herbert S. The asymptotics of e P(z) and the number of elements of each order in S n , Bull. Am. Math. Soc., Volume 15 (1986) no. 2, pp. 228-232 | DOI | MR | Zbl

[Wor99] Wormald, Nicholas C. Models of random regular graphs, Surveys in combinatorics, 1999 (Canterbury) (London Mathematical Society Lecture Note Series), Volume 267, Cambridge University Press, 1999, pp. 239-298 | DOI | MR | Zbl