Metadata
Abstract
We prove that any unimodular Pisot substitution subshift is measurably conjugate to a domain exchange in a Euclidean space which is a finite topological extension of a translation on a torus. This generalizes the pioneer works of Rauzy and Arnoux–Ito providing geometric realizations to any unimodular Pisot substitution without any additional combinatorial condition.
References
[ABB + 15] On the Pisot substitution conjecture, Mathematics of aperiodic order (Progress in Mathematics), Volume 309, Springer, 2015, pp. 33-72 | DOI | MR | Zbl
[Ada04] Symbolic discrepancy and self-similar dynamics, Ann. Inst. Fourier, Volume 54 (2004), pp. 2201-2234 | DOI | Numdam | MR | Zbl
[AI01] Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin, Volume 8 (2001), pp. 181-207 Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000) | MR | Zbl
[AR91] Représentation géométrique de suites de complexité , Bull. Soc. Math. Fr., Volume 119 (1991), pp. 199-215 | DOI | Numdam | Zbl
[Bar16] Pure discrete spectrum for a class of one-dimensional substitution tiling systems, Discrete Contin. Dyn. Syst., Volume 36 (2016), pp. 1159-1173 | DOI | MR | Zbl
[Bar18] The Pisot conjecture for -substitutions, Ergodic Theory Dyn. Syst., Volume 38 (2018), pp. 444-472 | DOI | MR | Zbl
[BBK06] Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to -shifts, Ann. Inst. Fourier, Volume 56 (2006), pp. 2213-2248 (Numération, pavages, substitutions) | DOI | MR | Zbl
[BD02] Coincidence for substitutions of Pisot type, Bull. Soc. Math. Fr., Volume 130 (2002), pp. 619-626 | DOI | Numdam | MR | Zbl
[BDM05] Necessary and sufficient conditions to be an eigenvalue for linearly recurrent dynamical Cantor systems, J. Lond. Math. Soc., II. Ser., Volume 72 (2005), pp. 799-816 | DOI | MR | Zbl
[BDM10] On the eigenvalues of finite rank Bratteli-Vershik dynamical systems, Ergodic Theory Dyn. Syst., Volume 30 (2010), pp. 639-664 | DOI | MR | Zbl
[BJS12] Substitutive Arnoux–Rauzy sequences have pure discrete spectrum, Unif. Distrib. Theory, Volume 7 (2012), pp. 173-197 | MR | Zbl
[BK06] Geometric theory of unimodular Pisot substitutions, Am. J. Math., Volume 128 (2006), pp. 1219-1282 | DOI | MR | Zbl
[CS01] Geometric representation of substitutions of Pisot type, Trans. Am. Math. Soc., Volume 353 (2001), pp. 5121-5144 | DOI | MR | Zbl
[Dek78] The spectrum of dynamical systems arising from substitutions of constant length, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 41 (1978), pp. 221-239 | DOI | Zbl
[DHS99] Substitutive dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dyn. Syst., Volume 19 (1999), pp. 953-993 | DOI | Zbl
[Dur96] Contributions à l’étude des suites et systèmes dynamiques substitutifs, Ph. D. Thesis, Université de la Méditerranée (Aix-Marseille II), France (1996)
[Dur98a] A characterization of substitutive sequences using return words, Discrete Math., Volume 179 (1998), pp. 89-101 | DOI | MR | Zbl
[Dur98b] A generalization of Cobham’s theorem, Theor. Comput. Sci., Volume 31 (1998), pp. 169-185 | MR | Zbl
[Dur98c] Sur les ensembles d’entiers reconnaissables, J. Théor. Nombres Bordeaux, Volume 10 (1998), pp. 65-84 | DOI | Numdam | MR | Zbl
[EI05] Tilings from some non-irreducible, Pisot substitutions, Discrete Math. Theor. Comput. Sci., Volume 7 (2005) no. 1, pp. 81-121 | MR | Zbl
[FBF + 02] Substitutions in dynamics, arithmetics and combinatorics (Fogg, N. Pytheas; Berthé, Valérie; Ferenczi, Sébastien; Mauduit, Christian; Siegel, Anne, eds.), Lecture Notes in Mathematics, 1794, Springer, 2002 | DOI | Zbl
[FMN96] Substitution dynamical systems: algebraic characterization of eigenvalues, Ann. Sci. Éc. Norm. Supér., Volume 29 (1996), pp. 519-533 | DOI | Numdam | MR | Zbl
[Had98] Sur la forme des lignes géodésiques à l’infini et sur les géodésiques des surfaces réglées du second ordre, Bull. Soc. Math. Fr., Volume 26 (1898), pp. 195-216 | DOI | Numdam | Zbl
[Hos86] Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable, Ergodic Theory Dyn. Syst., Volume 6 (1986), pp. 529-540 | DOI | Zbl
[Hos92] Représentation géométrique des substitutions sur 2 lettres (1992) (Unpublished manuscript)
[HS03] Two-symbol Pisot substitutions have pure discrete spectrum, Ergodic Theory Dyn. Syst., Volume 23 (2003), pp. 533-540 | MR | Zbl
[HZ98] Geometric realizations of substitutions, Bull. Soc. Math. Fr., Volume 126 (1998), pp. 149-179 | DOI | Numdam | MR | Zbl
[Kul95] Zero-dimensional covers of finite-dimensional dynamical systems, Ergodic Theory Dyn. Syst., Volume 15 (1995), pp. 939-950 | DOI | MR | Zbl
[Mor21] Recurrent geodesics on a surface of negative curvature, Trans. Am. Math. Soc., Volume 22 (1921), pp. 84-100 | DOI | MR | Zbl
[Mos92] Puissances de mots et reconnaissabilité des points fixes d’une substitution, Theor. Comput. Sci., Volume 99 (1992), pp. 327-334 | DOI | MR | Zbl
[Mos96] Reconnaissabilité des substitutions et complexité des suites automatiques, Bull. Soc. Math. Fr., Volume 124 (1996), pp. 329-346 | DOI | Numdam | MR | Zbl
[Que10] Substitution dynamical systems—spectral analysis, Lecture Notes in Mathematics, 1294, Springer, 2010 | DOI | MR | Zbl
[Rau82] Nombres algébriques et substitutions, Bull. Soc. Math. Fr., Volume 110 (1982), pp. 147-178 | DOI | Numdam | Zbl
[Sie03] Représentation des systèmes dynamiques substitutifs non unimodulaires, Ergodic Theory Dyn. Syst., Volume 23 (2003), pp. 1247-1273 | DOI | MR | Zbl
[Sie04] Pure discrete spectrum dynamical system and periodic tiling associated with a substitution, Ann. Inst. Fourier, Volume 54 (2004), pp. 341-381 | MR | Zbl
[Sin06] Pisot substitutions and beyond, Ph. D. Thesis, Bielefeld University, Germany (2006)
[Sol21]
(2021) (Personal communication)