Metadata
Abstract
We study the -forms of almost homogeneous varieties over perfect base fields . First, we discuss criteria for the existence of -forms in the homogeneous case. Then, we extend the Luna-Vust theory from algebraically closed fields to perfect fields to determine when a given -form of the open orbit of an almost homogeneous variety extends to a -form of the entire variety. Finally, in the last section, we apply these results to determine the real forms of complex almost homogeneous -threefolds.
References
[AH06] Polyhedral divisors and algebraic torus actions, Math. Ann., Volume 334 (2006) no. 3, pp. 557-607 | DOI | Zbl
[AHS08] Gluing affine torus actions via divisorial fans, Transform. Groups, Volume 13 (2008) no. 2, pp. 215-242 | DOI | Zbl
[Ben13] Quasi-projectivity of normal varieties, Int. Math. Res. Not., Volume 17 (2013), pp. 3878-3885 | DOI | Zbl
[Ber10] An introduction to Galois cohomology and its applications, London Mathematical Society Lecture Note Series, 377, Cambridge University Press, 2010 (with a foreword by Jean-Pierre Tignol) | DOI | Zbl
[BFT23] Automorphisms of -bundles over rational surfaces, Épijournal de Géom. Algébr., EPIGA, Volume 6 (2023), 23, 47 pages | Zbl
[BG21] Existence of equivariant models of spherical varieties and other G-varieties, Int. Math. Res. Not., Volume 2022 (2021) no. 20, pp. 15932-16034 | DOI | Zbl
[BMJ04] A local study of embeddings of complexity one, CRM Proceedings & Lecture Notes, 35, American Mathematical Society, 2004, pp. 1-10 | Zbl
[Bor93] Abelianization of the second nonabelian Galois cohomology, Duke Math. J., Volume 72 (1993) no. 1, pp. 217-239 | DOI | Zbl
[Bor20] Equivariant models of spherical varieties, Transform. Groups, Volume 25 (2020) no. 2, pp. 391-439 | DOI | Zbl
[Bou00] Plongements homogènes de modulo un sous-groupe fini, Ph. D. Thesis, University of Burgundy, France (2000) (available on https://tel.archives-ouvertes.fr/tel-02899185)
[Bri17] Algebraic group actions on normal varieties, Trans. Mosc. Math. Soc., Volume 2017 (2017), pp. 85-107 | DOI | Zbl
[BS64] Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv., Volume 39 (1964), pp. 111-164 | DOI | Zbl
[Dun16] Twisted forms of toric varieties, Transform. Groups, Volume 21 (2016) no. 3, pp. 763-802 | DOI | Zbl
[ELFST14] Arithmetic toric varieties, Math. Nachr., Volume 287 (2014) no. 2-3, pp. 216-241 | DOI | Zbl
[FSS98] Grothendieck’s theorem on non-abelian and local-global principles, J. Am. Math. Soc., Volume 11 (1998) no. 3, pp. 731-750 | DOI | Zbl
[Ful93] Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, 1993 | DOI | Zbl
[Gil22a] Real torus actions on real affine algebraic varieties, Math. Z., Volume 301 (2022) no. 2, pp. 1507-1536 | DOI | Zbl
[Gil22b] Torus actions on affine varieties over characteristic zero fields (2022) | arXiv
[Gro03] Séminaire de géométrie algébrique du Bois Marie 1960-61. Revêtements étales et groupe fondamental (SGA 1) (Grothendieck, A., ed.), Documents Mathématiques, 3, Société Mathématique de France, 2003 | Zbl
[Hur11] Toric varieties and spherical embeddings over an arbitrary field, J. Algebra, Volume 342 (2011) no. 1, pp. 212-234 | DOI | Zbl
[IP99] Fano varieties, Algebraic geometry V. Fano varieties (Encyclopaedia of Mathematical Sciences), Volume 47, Springer, 1999, pp. 1-247 | Zbl
[Kle93] Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Birkhäuser; Teubner, 1993 (reprint of the 1884 original, edited, with an introduction and commentary by Peter Slodowy) | DOI | Zbl
[Kna02] Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser, 2002 | Zbl
[Kno91] The Luna–Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, Madras (1991), pp. 225-249 | Zbl
[Lan15] Polyhedral divisors and torus actions of complexity one over arbitrary fields, J. Pure Appl. Algebra, Volume 219 (2015) no. 6, pp. 2015-2045 | DOI | Zbl
[LMJV88] Almost homogeneous Artin–Moišezon varieties under the action of , Topological methods in algebraic transformation groups (New Brunswick, NJ, 1989) (Progress in Mathematics), Volume 80, Birkhäuser, 1988, pp. 107-115 | DOI | Zbl
[LT16] On the geometry of normal horospherical -varieties of complexity one, J. Lie Theory, Volume 26 (2016) no. 1, pp. 49-78 | Zbl
[LV83] Plongements d’espaces homogènes, Comment. Math. Helv., Volume 58 (1983) no. 2, pp. 186-245 | DOI | Zbl
[Man20] Real Algebraic Varieties, Springer Monographs in Mathematics, Springer, 2020 | DOI | Zbl
[Mil17] Algebraic groups. The theory of group schemes of finite type over a field, Cambridge Studies in Advanced Mathematics, 170, Cambridge University Press, 2017 | DOI | Zbl
[MJ87] Normal embeddings of , Ph. D. Thesis, University of Geneva, Switzerland (1987)
[MJ90] Smooth embeddings of and , J. Algebra, Volume 132 (1990) no. 2, pp. 384-405 | DOI | Zbl
[MJT21] Real structures on symmetric spaces, Proc. Am. Math. Soc., Volume 149 (2021) no. 8, pp. 3159-3172 | DOI | Zbl
[MJT22] Real Structures on Horospherical Varieties, Mich. Math. J., Volume 71 (2022) no. 2, pp. 283-320 | DOI | Zbl
[Mou24] Real forms of minimal -threefolds (2024) | arXiv
[MU82] Minimal rational threefolds, Algebraic geometry (Tokyo/Kyoto, 1982) (Lecture Notes in Mathematics), Volume 1016, Springer, 1982, pp. 490-518 | DOI | Zbl
[Nak89] On equivariant completions of -dimensional homogeneous spaces of , Jpn. J. Math., New Ser., Volume 15 (1989) no. 2, pp. 221-273 | DOI | Zbl
[Sch61] Vector bundles on the projective plane, Proc. Lond. Math. Soc., Volume 11 (1961), pp. 623-640 | DOI | Zbl
[Spr65] Nonabelian in Galois cohomology, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) (Proceedings of Symposia in Pure Mathematics), Volume 9, American Mathematical Society, 1965, pp. 164-182 | DOI | Zbl
[The17] SageMath, the Sage Mathematics Software System (Version 8.1), 2017 (https://www.sagemath.org)
[Tim97] Classification of -manifolds of complexity , Izv. Ross. Akad. Nauk, Ser. Mat., Volume 61 (1997) no. 2, pp. 127-162 | Zbl
[Tim11] Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, 138, Springer, 2011 | DOI | Zbl
[Ume88] Minimal rational threefolds. II, Nagoya Math. J., Volume 110 (1988), pp. 15-80 | DOI | Zbl
[vdPS03] Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer, 2003 | DOI | Zbl
[Wed18] Spherical spaces, Ann. Inst. Fourier, Volume 68 (2018) no. 1, pp. 229-256 | DOI | Numdam | Zbl