Proper actions on p -spaces for relatively hyperbolic groups
Annales Henri Lebesgue, Volume 3 (2020), pp. 35-66.

Metadata

Abstract

We show that for any group G that is hyperbolic relative to subgroups that admit a proper affine isometric action on a uniformly convex Banach space, then G acts properly on a uniformly convex Banach space as well.


References

[AL17] Alvarez, Aurélien; Lafforgue, Vincent Actions affines isométriques propres des groupes hyperboliques sur des espaces p , Expo. Math., Volume 35 (2017) no. 1, pp. 103-118 | DOI | Zbl

[Arn15] Arnt, Sylvain Spaces with labelled partitions and isometric affine actions on Banach spaces (2015) (https://arxiv.org/abs/1401.0125)

[BdlHV08] Bekka, Bachir; de la Harpe, Pierre; Valette, Alain Kazhdan’s Property, New Mathematical Monographs, Volume 11, Cambridge University Press, 2008 | MR | Zbl

[BFGM07] Bader, Uri; Furman, Alex; Gelander, Tsachik; Monod, Nicolas Property (T) and rigidity for actions on Banach spaces, Acta Math., Volume 198 (2007) no. 1, pp. 57-105 | DOI | MR | Zbl

[Bou16] Bourdon, Marc Cohomologie et actions isométriques propres sur les espaces L p , Geometry, topology, and dynamics in negative curvature (London Mathematical Society Lecture Note Series) Volume 425, Cambridge University Press, 2016, pp. 84-106 | DOI | MR | Zbl

[Bow12] Bowditch, Brian H. Relatively hyperbolic groups, Int. J. Algebra Comput., Volume 22 (2012) no. 3, 1250016, 66 pages | MR | Zbl

[Cla36] Clarkson, James A. Uniformly convex spaces, Trans. Am. Math. Soc., Volume 40 (1936) no. 3, pp. 396-414 | DOI | MR | Zbl

[Dah03] Dahmani, François Les groupes relativement hyperboliques et leurs bords (2003) http://www.theses.fr/2003STR13033 (Ph. D. Thesis) | MR

[Dah06] Dahmani, François Accidental parabolics and relatively hyperbolic groups, Isr. J. Math., Volume 153 (2006), pp. 93-127 | DOI | MR | Zbl

[Day41] Day, Mahlon M. Some more uniformly convex spaces, Bull. Am. Math. Soc., Volume 47 (1941), pp. 504-507 | MR | Zbl

[DS05] Druţu, Cornelia; Sapir, Mark Tree graded spaces and asymptotic cones of groups, Topology, Volume 44 (2005) no. 5, pp. 959-1058 | DOI | MR | Zbl

[DY08] Dahmani, François; Yaman, Asli Symbolic dynamics and relatively hyperbolic groups, Groups Geom. Dyn., Volume 2 (2008) no. 2, pp. 165-184 | DOI | MR | Zbl

[Ger12] Gerasimov, Victor Floyd maps for relatively hyperbolic groups, Geom. Funct. Anal., Volume 22 (2012) no. 5, pp. 1361-1399 | DOI | MR | Zbl

[GRT] Guentner, Erik; Reckwerdt, Eric; Tessera, R. Proper actions and weak amenability for classical relatively hyperbolic groups (in preparation)

[GS18] Gruber, Dominik; Sisto, Alessandro Infinitely presented graphical small cancellation groups are acylindrically hyperbolic, Ann. Inst. Fourier, Volume 68 (2018) no. 6, pp. 2501-2552 | DOI | MR | Zbl

[Kaz67] Kazhdan, David A. On the connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl., Volume 1 (1967) no. 1, pp. 63-65 | DOI | Zbl

[Laf08] Lafforgue, Vincent Un renforcement de la propriété (T), Duke Math. J., Volume 143 (2008) no. 3, pp. 559-602 | DOI | MR | Zbl

[LS77] Lyndon, Roger C.; Schupp, Paul E. Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Volume 89, Springer, 1977 | MR | Zbl

[Min01] Mineyev, Igor Straightening and bounded cohomology of hyperbolic groups, Geom. Funct. Anal., Volume 11 (2001) no. 4, pp. 807-839 | DOI | MR | Zbl

[MS17] Martin, Alexandre; Steenbock, Markus A combination theorem for cubulation in small cancellation theory over free products, Ann. Inst. Fourier, Volume 67 (2017) no. 4, pp. 1613-1670 | DOI | Numdam | MR | Zbl

[Nic13] Nica, Bogdan Proper isometric actions of hyperbolic groups on L p -spaces, Compos. Math., Volume 149 (2013) no. 5, pp. 773-792 | DOI | MR | Zbl

[NR97] Niblo, Graham; Reeves, Lawrence Groups acting on CAT(0) cube complexes, Geom. Topol., Volume 1 (1997), pp. 1-7 | DOI | MR | Zbl

[Pan90] Pansu, Pierre Cohomologie L p des variétés à courbure négative, cas du degré 1, Conference on partial differential equations and geometry (Rendiconti del Seminario Matematico), Universitá e Politecnico Torino, 1990, pp. 95-120 | Zbl

[Pan99] Pankratʼev, Anton E. Hyperbolic products of groups, Vestn. Mosk. Univ., Volume 1999 (1999) no. 2, pp. 9-13 | MR | Zbl

[Pul07] Puls, Michael The first L p -cohomology of some groups with one end, Arch. Math., Volume 88 (2007) no. 6, pp. 500-506 | DOI | MR | Zbl

[RS95] Rips, Eliyahu; Sela, Zlil Canonical representatives and equations in hyperbolic groups, Invent. Math., Volume 120 (1995) no. 3, pp. 489-512 | DOI | MR | Zbl

[Wis04] Wise, Daniel Cubulating small cancellation groups, Geom. Funct. Anal., Volume 14 (2004) no. 1, pp. 150-214 | DOI | MR | Zbl

[Yu05] Yu, Guoliang Hyperbolic groups admit proper affine isometric actions on p -spaces, Geom. Funct. Anal., Volume 15 (2005) no. 5, pp. 1144-1151 | MR | Zbl