Metadata
Abstract
For any integer , the -fold cyclic branched cover of an alternating prime knot in the -sphere determines , meaning that if is a knot in the -sphere that is not equivalent to then its -fold cyclic branched cover cannot be homeomorphic to .
References
[Ban30] Über die Torsionszahlen der alternierenden Knoten, Math. Ann., Volume 103 (1930), pp. 145-161 | DOI | MR | Zbl
[BLP05] Geometrization of -dimensional orbifolds, Ann. Math., Volume 162 (2005) no. 1, pp. 195-290 | DOI | MR | Zbl
[BMP03] Three-dimensional orbifolds and their geometric structures, Panoramas et Synthèses, 15, Société Mathématique de France, 2003 | MR | Zbl
[Boy19] Odd order group actions on alternating knots (2019) (https://arxiv.org/abs/1906.04308)
[BP01] Geometrization of 3-orbifolds of cyclic type. With an appendix: Limit of hyperbolicity for spherical 3-orbifolds by Michael Heusener and Joan Porti, Astérisque, 272, Société Mathématique de France, 2001 | Numdam | Zbl
[BP08] On cyclic branched coverings of prime knots, J. Topol., Volume 1 (2008) no. 3, pp. 557-583 | DOI | MR | Zbl
[BZ03] Knots, De Gruyter Studies in Mathematics, 5, Walter de Gruyter, 2003 | Zbl
[CHK00] Three dimensional orbifolds and cone-manifolds, MSJ Memoirs, 5, Mathematical Society of Japan, 2000 | MR | Zbl
[Con67] An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), Pergamon Press (1967), pp. 329-358 | Zbl
[CQH19] Periodic projections of alternating knots (2019) (https://arxiv.org/abs/1905.13718)
[Cro04] Knots and links, Cambridge University Press, 2004 | MR | Zbl
[Dun88] Geometric orbifolds, Rev. Mat. Univ. Complutense Madr., Volume 1 (1988) no. 1-3, pp. 67-99 | MR | Zbl
[Gre13] Lattices, graphs, and Conway mutation, Invent. Math., Volume 192 (2013) no. 3, pp. 717-750 | DOI | MR | Zbl
[Gre17] Alternating links and definite surfaces, Duke Math. J., Volume 166 (2017) no. 11, pp. 2133-2151 | MR | Zbl
[How17] A characterisation of alternating knot exteriors, Geom. Topol., Volume 21 (2017) no. 4, pp. 2353-2371 | DOI | MR | Zbl
[HR85] Involutions and isotopies of lens spaces, Knot theory and manifolds (Vancouver, 1983) (Rolfsen, Dale, ed.) (Lecture Notes in Mathematics), Volume 1144, Springer, 1985, pp. 60-96 | DOI | MR | Zbl
[HTW98] The first 1,701,936 knots, Math. Intell., Volume 20 (1998) no. 4, pp. 33-48 | DOI | MR | Zbl
[Jac80] Lectures on three-manifold topology, Regional Conference Series in Mathematics, 43, American Mathematical Society, 1980 | MR | Zbl
[KL99] Twisted knot polynomials: inversion, mutation and concordance, Topology, Volume 38 (1999) no. 3, pp. 663-671 | DOI | MR | Zbl
[Koj86] Determining knots by branched covers, Low Dimensional Topology and Kleinian groups (London Mathematical Society Lecture Note Series), Volume 112, Cambridge University Press, 1986, pp. 193-207 | MR | Zbl
[KT57] On unions of knots, Osaka J. Math., Volume 9 (1957), pp. 131-153 | MR | Zbl
[MA73] Variedades de Seifert que son recubridores ciclicos ramificados de dos hojas, Bol. Soc. Mat. Mex., Volume 18 (1973), pp. 1-32 | Zbl
[MB84] The Smith conjecture, Pure and Applied Mathematics, 112, Academic Press Inc., 1984 | MR | Zbl
[Men84] Closed incompressible surfaces in alternating knot and link complements, Topology, Volume 23 (1984), pp. 37-44 | DOI | MR | Zbl
[Mil75] On the 3-dimensional Brieskorn manifolds , Knots, groups and 3-manifolds (Papers dedicated to the memory of R. H. Fox) (Annals of Mathematics Studies), Volume 84, Princeton University Press, 1975, pp. 175-225 | DOI | Zbl
[MT93] The classification of alternating links, Ann. Math., Volume 138 (1993) no. 1, pp. 113-171 | DOI | MR | Zbl
[Mur58] On the Alexander polynomial of the alternating knot, Osaka J. Math., Volume 10 (1958), pp. 181-189 | MR | Zbl
[Nak81] Primeness of links, Math. Semin. Notes, Kobe Univ., Volume 9 (1981), pp. 415-440 | MR | Zbl
[Neu70] -actions and the -invariant of their involutions, Ph. D. Thesis, Bonn University, Germany (1970) (http://www.math.columbia.edu/~neumann/preprints/neumann011.pdf)
[NRL03] The trefoil knot is as universal as it can be, Topology Appl., Volume 130 (2003) no. 1, pp. 1-17 | DOI | MR | Zbl
[Pao05a] Hyperbolic knots and cyclic branched covers, Publ. Mat., Barc., Volume 49 (2005) no. 2, pp. 257-284 | DOI | MR | Zbl
[Pao05b] Three cyclic branched covers suffice to determine hyperbolic knots, J. Knot Theory Ramifications, Volume 14 (2005) no. 5, pp. 641-655 | DOI | MR | Zbl
[Rol76] Knots and links, Mathematical Lecture Series, 7, Publish or Perish Inc., 1976 | MR | Zbl
[Sak81] Periods of composite links, Math. Semin. Notes, Kobe Univ., Volume 9 (1981), pp. 445-452 | MR | Zbl
[Vir72] Links, two-sheeted branching coverings and braids, Mat. Sb., N. Ser., Volume 87 (129) (1972), p. 216--228 | Zbl
[Vir76] Non-projecting isotopies and knots with homeomorphic coverings, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, Volume 66 (1976), pp. 133-147 (English transl. in J. Soviet Math.) | Zbl
[Zim98] On hyperbolic knots with homeomorphic cyclic branched coverings, Math. Ann., Volume 311 (1998) no. 4, pp. 665-673 | DOI | MR | Zbl