Metadata
Abstract
We determine the log-Sobolev constant of the multi-urn Bernoulli–Laplace diffusion model with arbitrary parameters, up to a small universal multiplicative constant. Our result extends a classical estimate of Lee and Yau (1998) and confirms a conjecture of Filmus, O’Donnell and Wu (2018). Among other applications, we completely quantify the small-set expansion phenomenon on the multislice, and obtain sharp mixing-time estimates for the colored exclusion process on various graphs.
References
[AK20] Comparing with octopi, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 56 (2020) no. 4, pp. 2672-2685 | DOI | MR | Zbl
[BD06] A phase transition in the random transposition random walk, Probab. Theory Relat. Fields, Volume 136 (2006) no. 2, pp. 203-233 | DOI | MR | Zbl
[BT03] Modified log-Sobolev inequalities, mixing and hypercontractivity, Proceedings of the thirty-fifth annual ACM symposium on theory of computing (STOC 2003), San Diego, CA, USA,. New York, ACM Press (2003), pp. 287-296 | DOI | MR | Zbl
[CDPP09] Convex entropy decay via the Bochner–Bakry–Emery approach, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 45 (2009) no. 3, pp. 734-753 | DOI | Numdam | MR | Zbl
[CLR10] Proof of Aldous’ spectral gap conjecture, J. Am. Math. Soc., Volume 23 (2010) no. 3, pp. 831-851 | DOI | MR | Zbl
[CP07] Entropy dissipation estimates in a zero-range dynamics, Probab. Theory Relat. Fields, Volume 139 (2007) no. 1-2, pp. 65-87 | DOI | MR | Zbl
[CP19] Mixing times for exclusion processes on hypergraphs, Electron. J. Probab., Volume 24 (2019), 73 | DOI | MR | Zbl
[Dia88] Group representations in probability and statistics, Institute of Mathematical Statistics Lecture Notes - Monograph Series, 11, Institute of Mathematical Statistics, 1988 | MR | Zbl
[DPPP02] Entropy inequalities for unbounded spin systems, Ann. Probab., Volume 30 (2002) no. 4, pp. 1959-1976 | DOI | MR | Zbl
[DS81] Generating a random permutation with random transpositions, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 57 (1981) no. 2, pp. 159-179 | DOI | MR | Zbl
[DS87] Time to reach stationarity in the Bernoulli–Laplace diffusion model, SIAM J. Math. Anal., Volume 18 (1987) no. 1, pp. 208-218 | DOI | MR | Zbl
[DSC93a] Comparison techniques for random walk on finite groups, Ann. Probab., Volume 21 (1993) no. 4, pp. 2131-2156 | MR | Zbl
[DSC93b] Comparison theorems for reversible Markov chains, Ann. Appl. Probab., Volume 3 (1993) no. 3, pp. 696-730 | MR | Zbl
[DSC96] Logarithmic Sobolev inequalities for finite Markov chains, Ann. Appl. Probab., Volume 6 (1996) no. 3, pp. 695-750 | DOI | MR | Zbl
[FI19] Boolean constant degree functions on the slice are juntas, Discrete Math., Volume 342 (2019) no. 12, 111614 | DOI | MR | Zbl
[Fil20] FKN theorem for the multislice, with applications, Comb. Probab. Comput., Volume 29 (2020) no. 2, pp. 200-212 | DOI | MR | Zbl
[FOW19] A log-Sobolev inequality for the multislice, with applications, 10th Innovations in Theoretical Computer Science (Leibniz International Proceedings in Informatics (LIPIcs)), Volume 124, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 34 | DOI | MR
[Goe04] Modified logarithmic Sobolev inequalities for some models of random walk, Stochastic Processes Appl., Volume 114 (2004) no. 1, pp. 51-79 | DOI | MR | Zbl
[GQ03] Exponential decay of entropy in the random transposition and Bernoulli–Laplace models, Ann. Appl. Probab., Volume 13 (2003) no. 4, pp. 1591-1600 | DOI | MR | Zbl
[HP18] A characterization of mixing and hypercontractivity via hitting times and maximal inequalities, Probab. Theory Relat. Fields, Volume 170 (2018) no. 3-4, pp. 769-800 | DOI | MR | Zbl
[HP20] The exclusion process mixes (almost) faster than independent particles, Ann. Probab., Volume 48 (2020) no. 6, pp. 3077-3123 | DOI | MR | Zbl
[HS19a] Entropy dissipation estimates for inhomogeneous zero-range processes (2019) (https://arxiv.org/abs/1903.01410)
[HS19b] Modified log-Sobolev inequalities for strong-Rayleigh measures (2019) (https://arxiv.org/abs/1902.02775)
[HS19c] A version of Aldous’ spectral-gap conjecture for the zero range process, Ann. Appl. Probab., Volume 29 (2019) no. 4, pp. 2217-2229 | DOI | MR | Zbl
[HS21] The interchange process on high-dimensional products, Ann. Appl. Probab., Volume 31 (2021) no. 1, pp. 84-98 | DOI | MR
[Jon12] Mixing times for the interchange process, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 9 (2012) no. 2, pp. 667-683 | MR | Zbl
[JS02] Spectral gap and log-Sobolev constant for balanced matroids, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., IEEE (2002), pp. 721-729 | DOI
[JSTV04] Elementary bounds on Poincaré and log-Sobolev constants for decomposable Markov chains, Ann. Appl. Probab., Volume 14 (2004) no. 4, pp. 1741-1765 | DOI | MR | Zbl
[KKL88] The influence of variables on Boolean functions, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science, IEEE (1988), pp. 68-80 | DOI
[LK99] Faster mixing via average conductance, Proceedings of the 31st annual ACM symposium on theory of computing, STOC 1999. Atlanta, GA, USA, May 1–4, 1999, ACM Press, 1999, pp. 282-287 | DOI | MR | Zbl
[LL11] Cutoff phenomenon for the simple exclusion process on the complete graph, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 8 (2011), pp. 285-301 | MR | Zbl
[LY93] Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Commun. Math. Phys., Volume 156 (1993) no. 2, pp. 399-433 | MR | Zbl
[LY98] Logarithmic Sobolev inequality for some models of random walks, Ann. Probab., Volume 26 (1998) no. 4, pp. 1855-1873 | DOI | MR | Zbl
[Mat88] A strong uniform time for random transpositions, J. Theor. Probab., Volume 1 (1988) no. 4, pp. 411-423 | DOI | MR | Zbl
[Mor06] The mixing time for simple exclusion, Ann. Appl. Probab., Volume 16 (2006) no. 2, pp. 615-635 | DOI | MR | Zbl
[MT06] Mathematical aspects of mixing times in Markov chains, Found. Trends Theor. Comput. Sci., Volume 1 (2006) no. 3, pp. 237-354 | DOI | MR | Zbl
[Oli13] Mixing of the symmetric exclusion processes in terms of the corresponding single-particle random walk, Ann. Probab., Volume 41 (2013) no. 2, pp. 871-913 | DOI | MR | Zbl
[O’D14] Analysis of Boolean functions, Cambridge University Press, 2014 | DOI | MR | Zbl
[Sca97] Time to reach stationarity in the Bernoulli–Laplace diffusion model with many urns, Adv. Appl. Math., Volume 18 (1997) no. 3, pp. 351-371 | DOI | MR | Zbl
[Sch05] Compositions of random transpositions, Isr. J. Math., Volume 147 (2005), pp. 221-243 | DOI | MR | Zbl
[Tey20] Limit profile for random transpositions, Ann. Probab., Volume 48 (2020) no. 5, pp. 2323-2343 | DOI | MR | Zbl
[Wil04] Mixing times of Lozenge tiling and card shuffling Markov chains, Ann. Appl. Probab., Volume 14 (2004) no. 1, pp. 274-325 | DOI | MR | Zbl
[Yau97] Logarithmic Sobolev inequality for generalized simple exclusion processes, Probab. Theory Relat. Fields, Volume 109 (1997) no. 4, pp. 507-538 | DOI | MR | Zbl