Tempered distributions and Fourier transform on the Heisenberg group
Annales Henri Lebesgue, Volume 1 (2018), pp. 1-46.

Metadata

Keywords Fourier transform, Heisenberg group, frequency space, tempered distributions, Schwartz space

Abstract

We aim at extending the Fourier transform on the Heisenberg group d , to tempered distributions. Our motivation is to provide the reader with a hands-on approach that allows for further investigating Fourier analysis and PDEs on d .

As in the Euclidean setting, the strategy is to show that the Fourier transform is an isomorphism on the Schwartz space, then to define the extension by duality. To achieve it, the Fourier transform of an integrable function is viewed as a uniformly continuous mapping on the set  ˜ d = d × d ×{0}, that may be completed to a larger set ˜ d for some suitable distance. This viewpoint provides a user friendly description of the range of the Schwartz space on d by the Fourier transform, which makes the extension to the whole set of tempered distributions straightforward.

To highlight the strength of our approach, we give examples of computations of Fourier transforms of tempered distributions that do not correspond to integrable or square integrable functions. The most striking one is a formula for the Fourier transform of functions on d that are independent of the vertical variable, an open question, to the best of our knowledge.


References

[ADBR13] Astengo, Francesca; Di Blasio, Bianca; Ricci, Fulvio Fourier transform of Schwartz functions on the Heisenberg group, Stud. Math., Volume 214 (2013), pp. 201-222 | DOI | MR | Zbl

[BCD] Bahouri, Hajer; Chemin, Jean-Yves; Danchin, Raphaël A frequency space for the Heisenberg group (to appear in Ann. Inst. Fourier) | Zbl

[BFKG12] Bahouri, Hajer; Fermanian-Kammerer, Clotilde; Gallagher, Isabelle Phase-space analysis and pseudodifferential calculus on the Heisenberg group, Astérisque, 342, Société Mathématique de France, 2012, vi+128 pages | Zbl

[CCX93] Cancelier, C. E.; Chemin, Jean-Yves; Xu, Chao-Jiang Calcul de Weyl-Hörmander et opérateurs sous-elliptiques, Ann. Inst. Fourier, Volume 43 (1993) no. 4, pp. 1157-1178 | DOI | Numdam | Zbl

[Far10] Faraut, Jacques Asymptotic spherical analysis on the Heisenberg group, Colloq. Math., Volume 118 (2010) no. 1, pp. 233-258 | DOI | MR | Zbl

[FH84] Faraut, Jacques; Harzallah, Khélif Deux cours d’analyse harmonique, Progress in Mathematics, 69, Birkhäuser, 1984, viii+293 pages | Zbl

[Fol89] Folland, Gerald B. Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122, Princeton University Press, 1989, ix+277 pages | MR | Zbl

[FR14] Fischer, Véronique; Ruzhansky, Michael A pseudo-differential calculus on graded nilpotent Lie groups, Fourier analysis. Pseudo-differential operators, time-frequency analysis and partial differential equation (Trends in Mathematics), Birkhäuser, 2014, pp. 107-132 | Zbl

[FS82] Folland, Gerald B.; Stein, Elias M. Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton University Press, 1982, xii+284 pages | MR | Zbl

[Gav77] Gaveau, Bernard Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math., Volume 139 (1977), pp. 95-153 | DOI | Zbl

[Gel77] Geller, Daryl Fourier analysis on the Heisenberg group, Proc. Natl. Acad. Sci. USA, Volume 74 (1977), pp. 1328-1331 | DOI | MR | Zbl

[Gel80] Geller, Daryl Fourier analysis on the Heisenberg group I. the Schwartz space, J. Funct. Anal., Volume 36 (1980), pp. 205-254 | DOI | MR | Zbl

[Hue76] Huet, Denise Décomposition spectrale et opérateurs, Le Mathématicien, 16, Presses Universitaires de France, 1976, 147 pages | Zbl

[Hul84] Hulanicki, Andrzej A functional calculus for Rockland operators on nilpotent Lie groups, Stud. Math., Volume 78 (1984), pp. 253-266 | DOI | MR | Zbl

[Hör85] Hörmander, Lars The analysis of linear partial differential operators. III: Pseudo-differential operators, Grundlehren der Mathematischen Wissenschaften, 274, Springer, 1985, viii+525 pages | Zbl

[LT14] Lavanya, R. Lakshmi; Thangavelu, Sundaram Revisiting the Fourier transform on the Heisenberg group, Publ. Mat., Barc., Volume 58 (2014), pp. 47-63 | DOI | MR | Zbl

[Olv74] Olver, Frank W. J. Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press Inc., 1974, xvi+572 pages | Zbl

[Rud62] Rudin, Walter Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, 12, Interscience Publishers, 1962, ix+285 pages | MR | Zbl

[Sch98] Schwartz, Laurent Théorie des distributions, Hermann, 1998, xii+420 pages | Zbl

[Ste93] Stein, Elias M. Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993, xiii+695 pages | MR | Zbl

[Tay86] Taylor, Michael E. Noncommutative Harmonic Analysis, Mathematical Surveys and Monographs, 22, American Mathematical Society, 1986, xvi+328 pages | MR | Zbl

[Tha98] Thangavelu, Sundaram Harmonic analysis on the Heisenberg group, Progress in Mathematics, 159, Birkhäuser, 1998, xii+191 pages | MR | Zbl