Metadata
Abstract
We investigate the long-time behavior of solutions to the isothermal Euler, Korteweg or quantum Navier–Stokes equations, as well as generalizations of these equations where the convex pressure law is asymptotically linear near vacuum. By writing the system with a suitable time-dependent scaling we prove that the densities of global solutions display universal dispersion rate and asymptotic profile. This result applies to weak solutions defined in an appropriate way. In the exactly isothermal case, we establish the compactness of bounded sets of such weak solutions, by introducing modified entropies adapted to the new unknown functions.
References
[ABC + 00] Sur les inégalités de Sobolev logarithmiques, Panoramas et Synthèses, 10, Société Mathématique de France, 2000, xvi+217 pages (With a preface by Dominique Bakry and Michel Ledoux) | MR | Zbl
[AH17] Global well-posedness of the Euler-Korteweg system for small irrotational data, Commun. Math. Phys., Volume 351 (2017) no. 1, pp. 201-247 | DOI | MR | Zbl
[AM09] On the finite energy weak solutions to a system in quantum fluid dynamics, Commun. Math. Phys., Volume 287 (2009) no. 2, pp. 657-686 | DOI | MR | Zbl
[AM12] The quantum hydrodynamics system in two space dimensions, Arch. Ration. Mech. Anal., Volume 203 (2012) no. 2, pp. 499-527 | DOI | MR | Zbl
[AMTU01] On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations, Commun. Partial Differ. Equations, Volume 26 (2001) no. 1-2, pp. 43-100 | DOI | MR | Zbl
[AS64] Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Department of Commerce, 1964, xiv+1046 pages | MR | Zbl
[AS18] On the compactness of finite energy weak solutions to the quantum Navier–Stokes equations, J. Hyperbolic Differ. Equ., Volume 15 (2018) no. 1, pp. 133-147 | DOI | Zbl
[BBM76] Nonlinear wave mechanics, Ann. Phys., Volume 100 (1976) no. 1-2, pp. 62-93 | DOI | MR
[BD04] Quelques modèles diffusifs capillaires de type Korteweg, C. R., Méc., Acad. Sci. Paris, Volume 332 (2004) no. 11, pp. 881-886 | Zbl
[BDL03] On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Partial Differ. Equations, Volume 28 (2003) no. 3-4, pp. 843-868 | DOI | MR | Zbl
[BGDD07] On the well-posedness for the Euler-Korteweg model in several space dimensions, Indiana Univ. Math. J., Volume 56 (2007) no. 4, pp. 1499-1579 | DOI | MR | Zbl
[BM10] Derivation of viscous correction terms for the isothermal quantum Euler model, ZAMM, Z. Angew. Math. Mech., Volume 90 (2010) no. 3, pp. 219-230 | DOI | MR | Zbl
[Caz03] Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, Courant Institute of Mathematical Sciences, 2003, xiv+323 pages | Zbl
[CDS12] Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, Volume 25 (2012) no. 10, pp. 2843-2873 | DOI | MR | Zbl
[CFY17] Explicitly self-similar solutions for the Euler/Navier–Stokes-Korteweg equations in , Appl. Math. Lett., Volume 67 (2017), pp. 46-52 | DOI | MR | Zbl
[CG18] Universal dynamics for the defocusing logarithmic Schrödinger equation, Duke Math. J., Volume 167 (2018) no. 9, pp. 1761-1801 | DOI | Zbl
[Che90] Dynamique des gaz à masse totale finie, Asymptotic Anal., Volume 3 (1990) no. 3, pp. 215-220 | DOI | MR | Zbl
[Fei04] Dynamics of viscous compressible fluids, Oxford Lecture Series in Mathematics and its Applications, 26, Oxford University Press, 2004, xii+212 pages | MR | Zbl
[GLV15] About the barotropic compressible quantum Navier–Stokes equations, Nonlinear Anal., Theory Methods Appl., Volume 128 (2015), pp. 106-121 | DOI | MR | Zbl
[Gra98] Global smooth solutions to Euler equations for a perfect gas, Indiana Univ. Math. J., Volume 47 (1998) no. 4, pp. 1397-1432 | DOI | MR | Zbl
[GS97] Existence de solutions globales et régulières aux équations d’Euler pour un gaz parfait isentropique, C. R. Math. Acad. Sci. Paris, Volume 325 (1997) no. 7, pp. 721-726 | DOI | MR | Zbl
[Jün10] Global weak solutions to compressible Navier–Stokes equations for quantum fluids, SIAM J. Math. Anal., Volume 42 (2010) no. 3, pp. 1025-1045 | DOI | MR | Zbl
[Lio98] Mathematical topics in fluid mechanics. Vol. 2, Oxford Lecture Series in Mathematics and its Applications, 10, Clarendon Press, 1998, xiv+348 pages (Compressible models, Oxford Science Publications) | MR | Zbl
[LW06] Blowup phenomena of solutions to the Euler equations for compressible fluid flow, J. Differ. Equations, Volume 221 (2006) no. 1, pp. 91-101 | DOI | MR | Zbl
[Maj84] Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences, 53, Springer, 1984, viii+159 pages | MR | Zbl
[MUK86] Sur la solution à support compact de l’équation d’Euler compressible, Japan J. Appl. Math., Volume 3 (1986) no. 2, pp. 249-257 | DOI | Zbl
[MV07] On the barotropic compressible Navier–Stokes equations, Commun. Partial Differ. Equations, Volume 32 (2007) no. 1-3, pp. 431-452 | DOI | MR | Zbl
[Ser97] Solutions classiques globales des équations d’Euler pour un fluide parfait compressible, Ann. Inst. Fourier, Volume 47 (1997), pp. 139-153 | DOI | Numdam | MR | Zbl
[Ser16] Long-time stability in systems of conservation laws, using relative entropy/energy, Arch. Ration. Mech. Anal., Volume 219 (2016) no. 2, pp. 679-699 | DOI | MR | Zbl
[Sim87] Compact sets in the space , Ann. Mat. Pura Appl., Volume 146 (1987), pp. 65-96 | DOI | Zbl
[Tay97] Partial differential equations. III Nonlinear equations, Applied Mathematical Sciences, 117, Springer, 1997, xxii+608 pages
[Vil03] Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, 2003, xvi+370 pages | DOI | MR | Zbl
[VY16a] Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations, Invent. Math., Volume 206 (2016) no. 3, pp. 935-974 | DOI | MR | Zbl
[VY16b] Global weak solutions to the compressible quantum Navier–Stokes equations with damping, SIAM J. Math. Anal., Volume 48 (2016) no. 2, pp. 1489-1511 | DOI | MR | Zbl
[Xin98] Blowup of smooth solutions of the compressible Navier–Stokes equation with compact density, Commun. Pure Appl. Math., Volume 51 (1998), pp. 229-240 | MR | Zbl
[Yue12] Self-similar solutions with elliptic symmetry for the compressible Euler and Navier–Stokes equations in , Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012) no. 12, pp. 4524-4528 | DOI | MR | Zbl