Metadata
Abstract
Nous nous proposons d’étudier l’entropie polynomiale de la composante errante de n’importe quel système dynamique topologique inversible. Pour illustrer cette étude, nous calculerons l’entropie polynomiale de divers homéomorphismes de Brouwer, qui sont les homéomorphismes du plan sans point fixe et préservant l’orientation. En particulier, nous verrons que l’entropie polynomiale de tels homéomorphismes peut prendre n’importe quelle valeur supérieure ou égale à 2.
References
[BL16] An entropic characterization of the flat metrics on the two torus, Geom. Dedicata, Volume 180 (2016), pp. 187-201 | DOI | MR | Zbl
[BLR03] Ensemble oscillant d’un homéomorphisme de Brouwer, homéomorphismes de Reeb, Bull. Soc. Math. Fr., Volume 131 (2003) no. 2, pp. 149-210 | DOI | MR | Zbl
[CK97] Toeplitz words, generalized periodicity and periodically iterated morphisms, Eur. J. Comb., Volume 18 (1997) no. 5, pp. 497-510 | DOI | MR | Zbl
[HLR17] Polynomial entropy of Brouwer homeomorphisms (2017) (https://arxiv.org/abs/1712.01502) | Zbl
[Kan18] Slow entropy for some smooth flows on surfaces, Isr. J. Math., Volume 226 (2018) no. 2, pp. 535-577 | DOI | MR | Zbl
[KT97] Slow entropy type invariants and smooth realization of commuting measure-preserving transformations, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 33 (1997) no. 3, pp. 323-338 | DOI | Numdam | MR | Zbl
[Kus67] Metric invariants of entropy type, Usp. Mat. Nauk, Volume 22 (1967) no. 5 (137), pp. 57-65 | MR | Zbl
[KVW18] Kakutani Equivalence of Unipotent Flows (2018) (https://arxiv.org/abs/1805.01501)
[Lab13] Polynomial entropy for the circle homeomorphisms and for nonvanishing vector fields on (2013) (https://arxiv.org/abs/1311.0213)
[LR99] Bounded recurrent sets for planar homeomorphisms, Ergodic Theory Dyn. Syst., Volume 19 (1999) no. 4, pp. 1085-1091 | DOI | MR | Zbl
[Mar13] Polynomial entropies and integrable Hamiltonian systems, Regul. Chaotic Dyn., Volume 18 (2013) no. 6, pp. 623-655 | DOI | MR | Zbl
[Nak95a] A non-flowable plane homeomorphism whose non-Hausdorff set consists of two disjoint lines, Houston J. Math., Volume 21 (1995) no. 3, pp. 569-572 | MR | Zbl
[Nak95b] On dimensions of non-Hausdorff sets for plane homeomorphisms, J. Math. Soc. Japan, Volume 47 (1995) no. 4, pp. 789-793 | DOI | MR | Zbl
[Wal82] An introduction to ergodic theory, Graduate Texts in Mathematics, 79, Springer, 1982, ix+250 pages | MR | Zbl