A Hörmander condition for delayed stochastic differential equations
Annales Henri Lebesgue, Volume 3 (2020) , pp. 1023-1048.


KeywordsHörmander-type criterion, Malliavin calculus, Delayed stochastic differential equation, Rough path integration


In this paper, we are interested in path-dependent stochastic differential equations (SDEs) which are controlled by Brownian motion and its delays. Within this non-Markovian context, we give a Hörmander-type criterion for the regularity of solutions. Indeed, our criterion is expressed as a spanning condition with brackets. A novelty in the case of delays is that noise can “flow from the past” and give additional smoothness thanks to semi-brackets.

The proof follows the general lines of Malliavin’s probabilistic proof, in the Markovian case. Nevertheless, in order to handle the non-Markovian aspects of this problem and to treat anticipative integrals in a path-wise fashion, we heavily invoke rough path integration.


[Bel04] Bell, Denis R. Stochastic differential equations and hypoelliptic operators, Real and stochastic analysis (Trends in Mathematics), Birkhäuser, 2004, pp. 9-42 | Article | MR 2090751 | Zbl 1085.60036

[BM91] Bell, Denis R.; Mohammed, Salah-Eldin A. The Malliavin calculus and stochastic delay equations, J. Funct. Anal., Volume 99 (1991) no. 1, pp. 75-99 | Article | MR 1120914 | Zbl 0738.60056

[BM95] Bell, Denis R.; Mohammed, Salah-Eldin A. Smooth densities for degenerate stochastic delay equations with hereditary drift, Ann. Probab., Volume 23 (1995) no. 4, pp. 1875-1894 | Article | MR 1379172 | Zbl 0852.60063

[CF10] Cass, Thomas; Friz, Peter K. Densities for rough differential equations under Hörmander’s condition, Ann. Math., Volume 171 (2010) no. 3, pp. 2115-2141 | Article | Zbl 1205.60105

[CHLT15] Cass, Thomas; Hairer, Martin; Litterer, Christian; Tindel, Samy Smoothness of the density for solutions to Gaussian rough differential equations, Ann. Probab., Volume 43 (2015) no. 1, pp. 188-239 | Article | MR 3298472 | Zbl 1309.60055

[Con16] Cont, Rama Pathwise calculus for non-anticipative functionals, Stochastic Integration by Parts and Functional Itô Calculus (Utzet, Frederic; Vives, Josep, eds.) (Advanced Courses in Mathematics – CRM Barcelona), Springer, 2016, pp. 125-152 | Article | Zbl 1371.60098

[FH14] Friz, Peter K.; Hairer, Martin A course on rough paths. With an introduction to regularity structures, Universitext, Springer, 2014 | Article | Zbl 1327.60013

[Hai11] Hairer, Martin On Malliavin’s proof of Hörmander’s theorem, Bull. Sci. Math., Volume 135 (2011) no. 6-7, pp. 650-666 | Article | MR 2838095 | Zbl 1242.60085

[HP13] Hairer, Martin; Pillai, Natesh S. Regularity of laws and ergodicity of hypoelliptic SDEs driven by rough paths, Ann. Probab., Volume 41 (2013) no. 4, pp. 2544-2598 | Article | MR 3112925 | Zbl 1288.60068

[Hsu02] Hsu, Elton P. Stochastic analysis on manifolds, Graduate Studies in Mathematics, Volume 38, American Mathematical Society, 2002 | Article | MR 1882015 | Zbl 0994.58019

[Hör67] Hörmander, Lars Hypoelliptic second order differential equations, Acta Math., Volume 119 (1967) no. 1, pp. 147-171 | Article | MR 222474 | Zbl 0156.10701

[KM97] Kriegl, Andreas; Michor, Peter W The convenient setting of global analysis, Mathematical Surveys and Monographs, Volume 53, American Mathematical Society, 1997 | MR 1471480 | Zbl 0889.58001

[KS84] Kusuoka, Shigeo; Stroock, Daniel W. Applications of the Malliavin calculus, Part I, Stochastic analysis (Katata/Kyoto, 1982) (North-Holland Mathematical Library) Volume 32, North-Holland, 1984, pp. 271-306 | Zbl 0546.60056

[Kun84] Kunita, Hiroshi Stochastic differential equations and stochastic flows of diffeomorphisms, École d’été de probabilités de Saint-Flour, XII—1982 (Hennequin, P. L., ed.) (Lecture Notes in Mathematics) Volume 1097, Springer, 1984, pp. 143-303 | Article | MR 876080

[Kun97] Kunita, Hiroshi Stochastic flows and stochastic differential equations, Cambridge Studies in Advanced Mathematics, Volume 24, Cambridge University Press, 1997 | MR 1472487 | Zbl 0865.60043

[Lej12] Lejay, Antoine Global solutions to rough differential equations with unbounded vector fields, Séminaire de probabilités XLIV, Springer, 2012, pp. 215-246 | Article | Zbl 1254.60059

[LS01] Liptser, Robert S.; Shiryaev, Albert N. Statistics of random processes. I. General theory, Applications of Mathematics, Volume 5, Springer, 2001 (translated from the 1974 Russian original by A. B. Aries, Stochastic Modelling and Applied Probability) | Zbl 1008.62072

[NNT08] Neuenkirch, Andreas; Nourdin, Ivan; Tindel, Samy Delay equations driven by rough paths, Electron. J. Probab., Volume 13 (2008) no. 67, pp. 2031-2068 | Article | MR 2453555 | Zbl 1190.60046

[NP88] Nualart, David; Pardoux, Étienne Stochastic calculus with anticipating integrands, Probab. Theory Relat. Fields, Volume 78 (1988) no. 4, pp. 535-581 | Article | MR 950346 | Zbl 0629.60061

[Nua95] Nualart, David The Malliavin calculus and related topics, Probability and Its Applications, Springer, 1995 | Zbl 0837.60050

[OP89] Ocone, Daniel; Pardoux, Étienne A generalized Itô–Ventzell formula. Application to a class of anticipating stochastic differential equations, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 25 (1989) no. 1, pp. 39-71 | Numdam | Zbl 0674.60057

[Sto98] Stoica, Gheorghe Regular delay Langevin equation with degenerate diffusion coefficient, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. (1998), pp. 289-294 | Zbl 1045.60505

[Str83] Stroock, Daniel W. Some applications of stochastic calculus to partial differential equations, École d’Été de Probabilités de Saint-Flour XI—1981 (Lecture Notes in Mathematics) Volume 976, Springer, 1983, pp. 267-382 | MR 722984 | Zbl 0494.60060

[Tak07] Takeuchi, Atsushi Malliavin calculus for degenerate stochastic functional differential equations, Acta Appl. Math., Volume 97 (2007) no. 1-3, pp. 281-295 | Article | MR 2329736 | Zbl 1122.34064