Algebraic K-theory of quasi-smooth blow-ups and cdh descent
Annales Henri Lebesgue, Volume 3 (2020) , pp. 1091-1116.

Metadata

Keywordsderived algebraic geometry, semi-orthogonal decompositions, algebraic K-theory, cdh descent

Abstract

We construct a semi-orthogonal decomposition on the category of perfect complexes on the blow-up of a derived Artin stack in a quasi-smooth centre. This gives a generalization of Thomason’s blow-up formula in algebraic K-theory to derived stacks. We also provide a new criterion for descent in Voevodsky’s cdh topology, which we use to give a direct proof of Cisinski’s theorem that Weibel’s homotopy invariant K-theory satisfies cdh descent.


References

[BGI71] Berthelot, Pierre; Grothendieck, Alexandre; Illusie, Luc Séminaire de Géométrie Algébrique du Bois Marie – 1966-67 – Théorie des intersections et théorème de Riemann–Roch – (SGA 6), Lecture Notes in Mathematics, Volume 225, Springer, 1971 | Zbl 0218.14001

[BGT13] Blumberg, Andrew J.; Gepner, David; Tabuada, Gonçalo A universal characterization of higher algebraic K-theory, Geom. Topol., Volume 17 (2013) no. 2, pp. 733-838 | Article | MR 3070515 | Zbl 1267.19001

[BK89] Bondal, Aleksei Igorevich; Kapranov, Mikhail Mikhailovich Representable functors, Serre functors, and mutations, Izv. Ross. Akad. Nauk SSSR, Ser. Mat., Volume 53 (1989) no. 6, pp. 1183-1205

[BM12] Blumberg, Andrew J.; Mandell, Michael A. Localization theorems in topological Hochschild homology and topological cyclic homology, Geom. Topol., Volume 16 (2012) no. 2, pp. 1053-1120 | Article | MR 2928988 | Zbl 1282.19004

[BS20] Bergh, Daniel; Schnürer, Olaf M Conservative descent for semi-orthogonal decompositions, Adv. Math., Volume 360 (2020), 106882, 39 pages | MR 4031114 | Zbl 07146109

[BVdB03] Bondal, Aleksei Igorevich; Van den Bergh, Michel Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J., Volume 3 (2003) no. 1, pp. 1-36 | Article | MR 1996800 | Zbl 1135.18302

[Cis13] Cisinski, Denis-Charles Descente par éclatements en K-théorie invariante par homotopie, Ann. Math., Volume 177 (2013) no. 2, pp. 425-448 | Article | Zbl 1264.19003

[GR17] Gaitsgory, Dennis; Rozenblyum, Nick A Study in Derived Algebraic Geometry: Volumes I and II, Mathematical Surveys and Monographs, Volume 221.1-221.2, American Mathematical Society, 2017 | Zbl 1409.14003

[Hae04] Haesemeyer, Christian Descent properties of homotopy K-theory, Duke Math. J., Volume 125 (2004) no. 3, pp. 589-619 | Article | MR 2166754 | Zbl 1079.19001

[HK19] Hoyois, Marc; Krishna, Amalendu Vanishing theorems for the negative K-theory of stacks, Ann. K-Theory, Volume 4 (2019) no. 3, pp. 439-472 | Article | MR 4043465 | Zbl 07146016

[HLP14] Halpern-Leistner, Daniel; Preygel, Anatoly Mapping stacks and categorical notions of properness (2014) (https://arxiv.org/abs/1402.3204)

[Hoy16] Hoyois, Marc Cdh descent in equivariant homotopy K-theory (2016) (https://arxiv.org/abs/1604.06410) | Zbl 07210588

[HR17] Hall, Jack; Rydh, David Perfect complexes on algebraic stacks, Compos. Math., Volume 153 (2017) no. 11, pp. 2318-2367 | Article | MR 3705292 | Zbl 1390.14057

[Kha16] Khan, Adeel A. Motivic homotopy theory in derived algebraic geometry (2016) (Available at https://www.preschema.com/thesis/) (Ph. D. Thesis)

[Kha19] Khan, Adeel A. The Morel–Voevodsky localization theorem in spectral algebraic geometry, Geom. Topol., Volume 23 (2019) no. 7, pp. 3647-3685 | Article | MR 4046969 | Zbl 07152166

[KR18a] Khan, Adeel A.; Rydh, David Virtual Cartier divisors and blow-ups (2018) (https://arxiv.org/abs/1802.05702)

[KR18b] Krishna, Amalendu; Ravi, Charanya Algebraic K-theory of quotient stacks, Ann. K-Theory, Volume 3 (2018) no. 2, pp. 207-233 | Article | MR 3781427 | Zbl 1423.19007

[KST18] Kerz, Moritz; Strunk, Florian; Tamme, Georg Algebraic K-theory and descent for blow-ups, Invent. Math., Volume 211 (2018) no. 2, pp. 523-577 | Article | MR 3748313 | Zbl 1391.19007

[LT18] Land, Markus; Tamme, Georg On the K-theory of pullbacks (2018) (https://arxiv.org/abs/1808.05559) | Zbl 1427.19002

[Lur09] Lurie, Jacob Higher topos theory, Annals of Mathematics Studies, Princeton University Press, 2009 no. 170 | MR 2522659 | Zbl 1175.18001

[Lur12] Lurie, Jacob Higher algebra, 2012 (Preprint, version of 2017-09-18 available at https://www.math.ias.edu/~lurie/papers/HA.pdf)

[Lur16] Lurie, Jacob Spectral algebraic geometry (2016) (Preprint, version of 2018-02-03, available at https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf)

[MV99] Morel, Fabien; Voevodsky, Vladimir A 1 -homotopy theory of schemes, Publ. Math., Inst. Hautes Étud. Sci., Volume 90 (1999) no. 1, pp. 45-143 | Article | Numdam | Zbl 0983.14007

[Orl92] Orlov, Dmitri Olegovich Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 56 (1992) no. 4, pp. 852-862 | Zbl 0798.14007

[RG71] Raynaud, Michel; Gruson, Laurent Critères de platitude et de projectivité: Techniques de « platification » d’un module, Invent. Math., Volume 13 (1971) no. 1-2, pp. 1-89 | Article | Zbl 0227.14010

[Tho87] Thomason, Robert Wayne Equivariant resolution, linearization, and Hilbert’s fourteenth problem over arbitrary base schemes, Adv. Math., Volume 65 (1987) no. 1, pp. 16-34 | Article | MR 893468 | Zbl 0624.14025

[Tho93a] Thomason, Robert Wayne Les K-groupes d’un fibré projectif, Algebraic K-theory and algebraic topology (Lake Louise. Proceedings of the NATO Advanced Study Institute, Lake Louise, Alberta, Canada, December 12–16, 1991 (NATO ASI Series. Series C. Mathematical and Physical Sciences) Volume 407, Kluwer Academic Publishers, 1993, pp. 243-248 | MR 1367302

[Tho93b] Thomason, Robert Wayne Les K-groupes d’un schéma éclaté et une formule d’intersection excédentaire, Invent. Math., Volume 112 (1993) no. 1, pp. 195-215 | Article | Zbl 0816.19004

[TT90] Thomason, Robert Wayne; Trobaugh, Thomas Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift. Vol. III (Progress in Mathematics) Volume 88, Springer, 1990, pp. 247-435 | Article | MR 1106918 | Zbl 0731.14001

[TV08] Toën, Bertrand; Vezzosi, Gabriele Homotopical algebraic geometry II: Geometric stacks and applications Volume 902, American Mathematical Society, 2008

[Voe10a] Voevodsky, Vladimir Homotopy theory of simplicial sheaves in completely decomposable topologies, J. Pure Appl. Algebra, Volume 214 (2010) no. 8, pp. 1384-1398 | Article | MR 2593670 | Zbl 1194.55020

[Voe10b] Voevodsky, Vladimir Unstable motivic homotopy categories in Nisnevich and cdh-topologies, J. Pure Appl. Algebra, Volume 214 (2010) no. 8, pp. 1399-1406 | Article | MR 2593671 | Zbl 1187.14025

[Wei89] Weibel, Charles A. Homotopy algebraic K-theory, Algebraic K-theory and algebraic number theory (Honolulu, HI, 1987) (Contemporary Mathematics) Volume 83, American Mathematical Society, 1989, pp. 461-488 | Article | MR 991991 | Zbl 0669.18007