Metadata
Abstract
We show that for any group that is hyperbolic relative to subgroups that admit a proper affine isometric action on a uniformly convex Banach space, then acts properly on a uniformly convex Banach space as well.
References
[AL17] Actions affines isométriques propres des groupes hyperboliques sur des espaces , Expo. Math., Volume 35 (2017) no. 1, pp. 103-118 | DOI | Zbl
[Arn15] Spaces with labelled partitions and isometric affine actions on Banach spaces (2015) (https://arxiv.org/abs/1401.0125)
[BdlHV08] Kazhdan’s Property, New Mathematical Monographs, Volume 11, Cambridge University Press, 2008 | MR | Zbl
[BFGM07] Property (T) and rigidity for actions on Banach spaces, Acta Math., Volume 198 (2007) no. 1, pp. 57-105 | DOI | MR | Zbl
[Bou16] Cohomologie et actions isométriques propres sur les espaces , Geometry, topology, and dynamics in negative curvature (London Mathematical Society Lecture Note Series) Volume 425, Cambridge University Press, 2016, pp. 84-106 | DOI | MR | Zbl
[Bow12] Relatively hyperbolic groups, Int. J. Algebra Comput., Volume 22 (2012) no. 3, 1250016, 66 pages | MR | Zbl
[Cla36] Uniformly convex spaces, Trans. Am. Math. Soc., Volume 40 (1936) no. 3, pp. 396-414 | DOI | MR | Zbl
[Dah03] Les groupes relativement hyperboliques et leurs bords (2003) http://www.theses.fr/2003STR13033 (Ph. D. Thesis) | MR
[Dah06] Accidental parabolics and relatively hyperbolic groups, Isr. J. Math., Volume 153 (2006), pp. 93-127 | DOI | MR | Zbl
[Day41] Some more uniformly convex spaces, Bull. Am. Math. Soc., Volume 47 (1941), pp. 504-507 | MR | Zbl
[DS05] Tree graded spaces and asymptotic cones of groups, Topology, Volume 44 (2005) no. 5, pp. 959-1058 | DOI | MR | Zbl
[DY08] Symbolic dynamics and relatively hyperbolic groups, Groups Geom. Dyn., Volume 2 (2008) no. 2, pp. 165-184 | DOI | MR | Zbl
[Ger12] Floyd maps for relatively hyperbolic groups, Geom. Funct. Anal., Volume 22 (2012) no. 5, pp. 1361-1399 | DOI | MR | Zbl
[GRT] Proper actions and weak amenability for classical relatively hyperbolic groups (in preparation)
[GS18] Infinitely presented graphical small cancellation groups are acylindrically hyperbolic, Ann. Inst. Fourier, Volume 68 (2018) no. 6, pp. 2501-2552 | DOI | MR | Zbl
[Kaz67] On the connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl., Volume 1 (1967) no. 1, pp. 63-65 | DOI | Zbl
[Laf08] Un renforcement de la propriété (T), Duke Math. J., Volume 143 (2008) no. 3, pp. 559-602 | DOI | MR | Zbl
[LS77] Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Volume 89, Springer, 1977 | MR | Zbl
[Min01] Straightening and bounded cohomology of hyperbolic groups, Geom. Funct. Anal., Volume 11 (2001) no. 4, pp. 807-839 | DOI | MR | Zbl
[MS17] A combination theorem for cubulation in small cancellation theory over free products, Ann. Inst. Fourier, Volume 67 (2017) no. 4, pp. 1613-1670 | DOI | Numdam | MR | Zbl
[Nic13] Proper isometric actions of hyperbolic groups on -spaces, Compos. Math., Volume 149 (2013) no. 5, pp. 773-792 | DOI | MR | Zbl
[NR97] Groups acting on CAT(0) cube complexes, Geom. Topol., Volume 1 (1997), pp. 1-7 | DOI | MR | Zbl
[Pan90] Cohomologie des variétés à courbure négative, cas du degré 1, Conference on partial differential equations and geometry (Rendiconti del Seminario Matematico), Universitá e Politecnico Torino, 1990, pp. 95-120 | Zbl
[Pan99] Hyperbolic products of groups, Vestn. Mosk. Univ., Volume 1999 (1999) no. 2, pp. 9-13 | MR | Zbl
[Pul07] The first -cohomology of some groups with one end, Arch. Math., Volume 88 (2007) no. 6, pp. 500-506 | DOI | MR | Zbl
[RS95] Canonical representatives and equations in hyperbolic groups, Invent. Math., Volume 120 (1995) no. 3, pp. 489-512 | DOI | MR | Zbl
[Wis04] Cubulating small cancellation groups, Geom. Funct. Anal., Volume 14 (2004) no. 1, pp. 150-214 | DOI | MR | Zbl
[Yu05] Hyperbolic groups admit proper affine isometric actions on -spaces, Geom. Funct. Anal., Volume 15 (2005) no. 5, pp. 1144-1151 | MR | Zbl