On the convergence of smooth solutions from Boltzmann to Navier–Stokes
Annales Henri Lebesgue, Volume 3 (2020) , pp. 561-614.

Metadata

Keywordséquation de Navier–Stokes, équation de Boltzmann

Abstract

In this work, we are interested in the link between strong solutions of the Boltzmann and the Navier–Stokes equations. To justify this connection, our main idea is to use information on the limit system (for instance the fact that the Navier–Stokes equations are globally wellposed in two space dimensions or when the initial data is small). In particular we prove that the life span of the solutions to the rescaled Boltzmann equation is bounded from below by that of the Navier–Stokes system. We deal with general initial data in the whole space in dimensions 2 and 3, and also with well-prepared data in the case of periodic boundary conditions.


References

[BCD11] Bahouri, Hajer; Chemin, Jean-Yves; Danchin, Raphaël Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Volume 343, Springer, 2011 | MR 2768550 | Zbl 1227.35004

[BGL91] Bardos, Claude; Golse, François; Levermore, David C. Fluid dynamic limits of the Boltzmann equation I. Formal derivations, J. Stat, Phys., Volume 63 (1991) no. 1-2, pp. 323-344 | Article

[BGL93] Bardos, Claude; Golse, François; Levermore, David C. Fluid dynamic limits of kinetic equations II: Convergence proofs for the Boltzmann equation, Commun. Pure Appl. Math., Volume 46 (1993) no. 5, pp. 667-753 | Article | MR 1213991 | Zbl 0817.76002

[BMAM19] Briant, Marc; Merino-Aceituno, Sara; Mouhot, Clément From Boltzmann to incompressible Navier–Stokes in Sobolev spaces with polynomial weight, Anal. Appl., Singap., Volume 17 (2019) no. 1, pp. 85-116 | Article | MR 3894734 | Zbl 1405.35134

[BMN97] Babin, A.; Mahalov, Alex; Nicolaenko, Basil Regularity and integrability of 3D Euler and Navier–Stokes equations for rotating fluids, Asymptotic Anal., Volume 15 (1997) no. 2, pp. 103-150 | Article | Zbl 0890.35109

[Bri15] Briant, Marc From the Boltzmann equation to the incompressible Navier–Stokes equations on the torus: a quantitative error estimate, J. Differ. Equations, Volume 259 (2015) no. 11, pp. 6072-6141 | Article | MR 3397318 | Zbl 1326.35220

[BU91] Bardos, Claude; Ukai, Seiji The classical incompressible Navier–Stokes limit of the Boltzmann equation, Math. Models Methods Appl. Sci., Volume 1 (1991) no. 2, pp. 235-257 | Article | MR 1115292 | Zbl 0758.35060

[Caf80] Caflisch, Russel E. The fluid dynamic limit of the nonlinear Boltzmann equation, Commun. Pure Appl. Math., Volume 33 (1980), pp. 651-666 | Article | MR 586416 | Zbl 0424.76060

[CC60] Chapman, Sydney; Cowling, T. G. The mathematical theory of non-uniform gases: An account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases, Cambridge University Press, 1960 | Zbl 0098.39702

[CDGG00] Chemin, Jean-Yves; Desjardins, Benoit; Gallagher, Isabelle; Grenier, Emmanuel Fluids with anisotropic viscosity, M2AN, Math. Model. Numer. Anal., Volume 34 (2000) no. 2, pp. 315-335 | Article | Numdam | MR 1765662 | Zbl 0954.76012

[CG06] Chemin, Jean-Yves; Gallagher, Isabelle On the global wellposedness of the 3-D Navier–Stokes equations with large initial data, Ann. Sci. Éc. Norm. Supér., Volume 39 (2006) no. 4, pp. 679-698 | Article | Numdam | MR 2290141 | Zbl 1124.35052

[CG10] Chemin, Jean-Yves; Gallagher, Isabelle Large, global solutions to the Navier–Stokes equations slowly varying in one direction, Trans. Am. Math. Soc., Volume 362 (2010) no. 6, pp. 2859-2873 | Article | MR 2592939 | Zbl 1189.35220

[Che92] Chemin, Jean-Yves Remarques sur l’existence globale pour le système de Navier–Stokes incompressible, SIAM J. Math. Anal., Volume 23 (1992) no. 1, pp. 20-28 | Article | Zbl 0762.35063

[CL95] Chemin, Jean-Yves; Lerner, Nicolas Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes, J. Differ. Equations, Volume 121 (1995) no. 2, pp. 314-328 | Article | Zbl 0878.35089

[DEL89] DeMasi, Anna; Esposito, Raffaele; Lebowitz, Joel-Louis Incompressible Navier–Stokes and Euler limits of the Boltzmann equation, Commun. Pure Appl. Math., Volume 42 (1989) no. 8, pp. 1189-1214 | Article | MR 1029125

[DPL89] Di Perna, Ronald J.; Lions, Pierre-Louis On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math., Volume 130 (1989) no. 2, pp. 321-366 | Article | MR 1014927

[EP75] Ellis, Richard S.; Pinsky, Mark A. The first and second fluid approximations to the linearized Boltzmann equation, J. Math. Pures Appl., Volume 54 (1975), pp. 125-156 | MR 609540 | Zbl 0286.35062

[FK64] Fujita, Hiroshi; Kato, Tosio On the Navier–Stokes initial value problem I, Arch. Ration. Mech. Anal., Volume 16 (1964), pp. 269-315 | Article | MR 166499 | Zbl 0126.42301

[GIP03] Gallagher, Isabelle; Iftimie, Dragos; Planchon, Fabrice Asymptotics and stability for global solutions to the Navier–Stokes equations, Ann. Inst. Fourier, Volume 53 (2003) no. 5, pp. 1387-1424 | Article | MR 2032938 | Zbl 1038.35054

[Gla96] Glassey, Robert T. The Cauchy problem in kinetic theory, Other Titles in Applied Mathematics, Society for Industrial and Applied Mathematics, 1996, xii+241 pages | Zbl 0858.76001

[GMM17] Gualdani, Maria Pia; Mischler, Stéphane; Mouhot, Clément Factorization of non-symmetric operators and exponential H-theorem, Mém. Soc. Math. Fr., Nouv. Sér., Volume 153 (2017), pp. 3-137 | Zbl 06889665

[Gra63] Grad, Harold Asymptotic theory of the Boltzmann equation II. Rarefied gas dynamics, Proc. of the 3rd Intern. Sympos. Palais de l’UNESCO, Paris, 1962, Volume 1 (1963), pp. 26-59

[Gra64] Grad, Harold Asymptotic equivalence of the Navier–Stokes and nonlinear Boltzmann equations, Proc. Sympos. Appl. Math., Volume 17 (1964), pp. 154-183 | Article | Zbl 0144.48203

[Gre97] Grenier, Emmanuel Oscillatory perturbations of the Navier–Stokes equations, J. Math. Pures Appl., Volume 76 (1997) no. 6, pp. 477-498 | Article | MR 1465607 | Zbl 0885.35090

[GSR04] Golse, François; Saint-Raymond, Laure The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., Volume 155 (2004) no. 1, pp. 81-161 | Article | MR 2025302 | Zbl 1060.76101

[GSR09] Golse, François; Saint-Raymond, Laure The incompressible Navier–Stokes limit of the Boltzmann equation for hard cutoff potentials, J. Math. Pures Appl., Volume 91 (2009) no. 5, pp. 508-552 | Article | MR 2517786 | Zbl 1178.35290

[Guo06] Guo, Yan Boltzmann diffusive limit beyond the Navier–Stokes approximation, Commun. Pure Appl. Math., Volume 59 (2006) no. 5, pp. 626-687 | MR 2172804 | Zbl 1089.76052

[Hil02] Hilbert, David Sur les problèmes futurs des mathématiques, Compte-Rendu du 2ème Congrès International de Mathématiques, tenu à Paris en 190 (1902), pp. 58-114 | Zbl 32.0084.06

[Lac87] Lachowicz, Miroslaw On the initial layer and the existence theorem for the nonlinear Boltzmann equation, Math. Methods Appl. Sci., Volume 9 (1987) no. 3, pp. 342-366 | Article | MR 908596 | Zbl 0632.45005

[Lem02] Lemarié, Pierre-Gilles Recent developments in the Navier–Stokes problem, Research Notes in Mathematics, Volume 431, Chapman & Hall/CRC, 2002 | MR 1938147 | Zbl 1034.35093

[Lem16] Lemarié, Pierre-Gilles The Navier–Stokes problem in the 21st century, CRC Press, 2016 | Zbl 1342.76029

[Ler33] Leray, Jean Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique, J. Math. Pures Appl., Volume 12 (1933), pp. 1-82 | Zbl 0006.16702

[Ler34] Leray, Jean Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., Volume 63 (1934), pp. 193-248 | Article | MR 1555394 | Zbl 60.0726.05

[LM01] Lions, Pierre-Louis; Masmoudi, Nader From Boltzmann equation to the Navier–Stokes and Euler equations II, Arch. Ration. Mech. Anal., Volume 158 (2001) no. 3, pp. 195-211 | Article

[LM10] Levermore, David C.; Masmoudi, Nader From the Boltzmann equation to an incompressible Navier–Stokes–Fourier system, Arch. Ration. Mech. Anal., Volume 196 (2010) no. 3, pp. 753-809 | Article | MR 2644440 | Zbl 1304.35476

[LZ01] Lu, Xuguang; Zhang, Yingkui On the nonnegativity of solutions of the Boltzmann equation, Transp. Theory Stat. Phys., Volume 30 (2001) no. 7, pp. 641-657 | MR 1865351 | Zbl 0989.35128

[MN06] Mouhot, Clément; Neumann, Lukas Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, Volume 19 (2006) no. 4, pp. 969-998 | Article | MR 2214953 | Zbl 1169.82306

[Nis78] Nishida, Takaaki Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation, Commun. Math. Phys., Volume 61 (1978) no. 2, pp. 119-148 | Article | MR 503305 | Zbl 0381.76060

[Sch85] Schonbek, Maria Elena L 2 decay for weak solutons of the Navier–Stokes equations, Arch. Ration. Mech. Anal., Volume 88 (1985) no. 3, pp. 209-222 | Article | MR 775190 | Zbl 0602.76031

[Sch94] Schochet, Steven H. Fast singular limits of hyperbolic PDEs, J. Differ. Equations, Volume 114 (1994) no. 2, pp. 476-512 | Article | MR 1303036 | Zbl 0838.35071

[Sch95] Schonbek, Maria Elena Large time behaviour of solutions to the Navier–Stokes equations in H m spaces, Commun. Partial Differ. Equations, Volume 20 (1995) no. 1-2, pp. 103-117 | Article | MR 1312701 | Zbl 0831.35132

[SR09] Saint-Raymond, Laure Hydrodynamic limits of the Boltzmann equation, Lecture Notes in Mathematics, Volume 1971, Springer, 2009 | MR 2683475 | Zbl 1171.82002

[Uka86] Ukai, Seiji Solutions of the Boltzmann equation, Patterns and waves. Qualitative analysis of nonlinear differential equations (Studies in Mathematics and its Applications) Volume 18, North-Holland, 1986, pp. 37-96 | Article | Zbl 0633.76078

[UY06] Ukai, Seiji; Yang, Tong Mathematical theory of the Boltzmann equation, Lecture Notes Series, Volume 8, Liu Bie Ju Center for Mathematical Sciences, City University of Hong-Kong, 2006

[Wie87] Wiegner, Michael Decay results for weak solutions of the Navier–Stokes equations on n , J. Lond. Math. Soc., Volume 35 (1987), pp. 303-313 | Article | MR 881519 | Zbl 0652.35095