Keplerian shear in ergodic theory
Annales Henri Lebesgue, Volume 3 (2020) , pp. 649-676.

Metadata

Keywordsintegrable system, mixing, speed of mixing

Abstract

Many integrable physical systems exhibit Keplerian shear. We look at this phenomenon from the point of view of ergodic theory, where it can be seen as mixing conditionally to an invariant σ-algebra. In this context, we give a sufficient criterion for Keplerian shear to appear in a system, investigate its genericity and, in a few cases, its speed. Some additional, non-Hamiltonian, examples are discussed.


References

[Bes78] Besse, Arthur L. Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, Volume 93, Springer, 1978 (with appendices by D.B.A. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J.L. Kazdan.) | MR 496885 | Zbl 0387.53010

[CH17] Chaika, Jonathan; Hubert, Pascal Circle averages and disjointness in typical flat surfaces on every Teichmüller disc (2017) (https://arxiv.org/abs/1510.05955, to appear in Bull. Lond. Math. Soc.) | Zbl 1378.37003

[Hor83] Hormander, Lars Valter The analysis of linear partial differential operators. I: Distribution theory and Fourier analysis, Grundlehren der Mathematischen Wissenschaften, Volume 256, Springer, 1983 | Zbl 0521.35001

[Hux03] Huxley, Martin N. Exponential sums and lattice points. III, Proc. Lond. Math. Soc., Volume 87 (2003) no. 3, pp. 591-609 | Article | MR 2005876 | Zbl 1065.11079

[Jac66] Jacobi, Carl Gustav Jacob Vorlesungen über Dynamik, G. Reimer, 1866 (in German and Latin.)

[KLMD16] Kacem, Manel; Loisel, Stéphane; Maume-Deschamps, Véronique Some mixing properties of conditionally independent processes, Commun. Stat., Theory Methods, Volume 45 (2016) no. 5, pp. 1241-1259 | Article | MR 3462145 | Zbl 1338.60070

[Kol54] Kolmogorov, Andreĭ N. On conservation of conditionally periodic motions for a small change in Hamilton’s function, Dokl. Akad. Nauk SSSR, n. Ser., Volume 98 (1954), pp. 527-530 (In Russian.) | MR 68687

[Lan46] Landau, Lev D. On the vibrations of the electronic plasma, Acad. Sci. USSR, J. Phys., Volume 10 (1946), pp. 25-34 | MR 23765 | Zbl 0063.03439

[LM88] Lochak, Pierre; Meunier, Claude Multiphase averaging for classical systems. With applications to adiabatic theorems, Applied Mathematical Sciences, Volume 72, Springer, 1988 | Zbl 0668.34044

[Mau17] Maucourant, François Unique ergodicity of asynchronous rotations, and application (2017) (https://arxiv.org/abs/1609.04581v2)

[Mon05] Monteil, Thierry Illumination dans les billards polygonaux et dynamique symbolique (2005) (in French.) (Ph. D. Thesis)

[Mos80] Moser, Jürgen Various aspects of integrable Hamiltonian systems, Dynamical systems (C.I.M.E. Summer School , Bressanone, 1978) (Progress in Math) (1980), pp. 233-289 | Zbl 0468.58011

[MV11] Mouhot, Clément; Villani, Cédric On Landau damping, Acta Math., Volume 207 (2011) no. 1, pp. 29-201 | Article | MR 2863910 | Zbl 1239.82017

[PR09] Prakasa Rao, Bhagavatula L. S. Conditional independence, conditional mixing and conditional association, Ann. Inst. Stat. Math., Volume 61 (2009) no. 2, pp. 441-460 | Article | MR 2505397 | Zbl 1314.60054

[Rod93] Rodino, Luigi Linear partial differential operators in Gevrey spaces, World Scientific Publishing, 1993 | Zbl 0869.35005

[Tab02] Tabachnikov, Serge L. Ellipsoids, complete integrability and hyperbolic geometry, Mosc. Math. J., Volume 2 (2002) no. 1, pp. 183-196 | Article | MR 1900590 | Zbl 1013.37029

[Tao08] Tao, Terence 254A, Lecture 14: Weakly mixing extensions, 2008 (Blog post. https://terrytao.wordpress.com/2008/03/02/254a-lecture-14-weakly-mixing-extensions/. Retrieved in January 2018)

[Tis12] Tiscareno, Matthew S. Planetary rings (2012) (https://arxiv.org/abs/1112.3305)

[Tri06] Triebel, Hans Theory of function spaces. III, Monographs in Mathematics, Volume 100, Birkhäuser, 2006 | MR 2250142 | Zbl 1104.46001

[Wad75] Wadsley, A. W. Geodesic foliations by circles, J. Differ. Geom., Volume 10 (1975) no. 4, pp. 541-549 | Article | MR 400257 | Zbl 0336.57019