Metadata
Abstract
In this paper, we study the nonlinear Schrödinger equation coupled with the Maxwell equation. Using energy methods, we obtain a local existence result for the Cauchy problem.
References
[ADM17] Nonlinear Maxwell-Schrödinger system and quantum magneto-hydrodynamics in 3-D, Commun. Math. Sci., Volume 15 (2017), pp. 451-479 | DOI | Zbl
[AG91] Opérateurs pseudo-différentiels et théorème de Nash–Moser, Savoirs Actuels, Éditions du CNRS, 1991 | Zbl
[AP08] Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., Volume 345 (2008), pp. 90-108 | DOI | Zbl
[BdBS95] Blowing up time-dependent solutions of the planar Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, Volume 8 (1995) no. 2, pp. 235-253 | DOI | Zbl
[BF14] Solitons in Schrödinger-Maxwell equations, J. Fixed Point Theory Appl., Volume 15 (2014) no. 1, pp. 101-132 | DOI | Zbl
[BS11] Stable standing waves for a class of nonlinear Schrödinger-Poisson equations, Z. Angew. Math. Phys., Volume 62 (2011), pp. 267-280 | DOI | Zbl
[BT09] Global wellposedness in the energy space for the Maxwell-Schrödinger system, Commun. Math. Phys., Volume 288 (2009) no. 1, pp. 145-198 | DOI | Zbl
[CC04] On a quasilinear Zakharov system describing laser-plasma interactions, Differ. Integral Equ., Volume 17 (2004) no. 3-4, pp. 297-330 | MR | Zbl
[CDSS13] Existence of steady states for the Maxwell-Schrödinger-Poisson system: exploring the applicability of the concentration-compactness principle, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 10, pp. 1915-1938 | DOI | Zbl
[CE88] On the stability of stationary states for nonlinear Schrödinger equations with an external magnetic field, Mat. Apl. Comput., Volume 7 (1988) no. 3, pp. 155-168 | Zbl
[CG01] An initial-boundary value problem for the Korteweg-de-Vries equation posed on a finite interval, Adv. Differ. Equ., Volume 6 (2001) no. 12, pp. 1463-1492 | MR | Zbl
[Col02] On the local well-posedness of quasilinear Schrödinger equation in arbitrary space dimension, Commun. Partial Differ. Equations, Volume 27 (2002) no. 1-2, pp. 325-354 | DOI | Zbl
[CW16] Cauchy problem for the nonlinear Klein-Gordon equation coupled with the Maxwell equation, J. Math. Anal. Appl., Volume 443 (2016) no. 2, pp. 778-796 | DOI | MR | Zbl
[CW17] Standing waves for the nonlinear Schrödinger equation coupled with the Maxwell equation, Nonlinearity, Volume 30 (2017) no. 5, pp. 1920-1947 | DOI | Zbl
[DFVV10] Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Anal., Volume 258 (2010) no. 10, pp. 3227-3240 | DOI | Zbl
[Fel98] Geometry, particles and fields, Graduate Texts in Contemporary Physics, Springer, 1998 | MR | Zbl
[GR91] Instability of symmetric stationary states for some nonlinear Schrödinger equations with an external magnetic field, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 54 (1991) no. 4, pp. 403-433 | Numdam | MR | Zbl
[Kik07] Existence and stability of standing waves for Schrödinger–Poisson–Salter equation, Adv. Nonlinear Stud., Volume 7 (2007) no. 3, pp. 403-437 | Zbl
[Mic08] Remarks on non-linear Schrödinger equation with magnetic fields, Commun. Partial Differ. Equations, Volume 33 (2008) no. 7, pp. 1198-1215 | DOI | MR | Zbl
[NT86] The Cauchy problem for the coupled Maxwell–Schrödinger equations, J. Math. Phys., Volume 27 (1986), pp. 211-216 | DOI | Zbl
[NW07] Global existence and uniqueness of solutions to the Maxwell–Schrödinger equations, Commun. Math. Phys., Volume 276 (2007) no. 2, pp. 315-339 | DOI | Zbl
[OT92] Existence and smoothing effect of solution for the Zakharov equations, Publ. Res. Inst. Math. Sci., Volume 28 (1992) no. 3, pp. 329-361 | DOI | MR | Zbl
[RV08] Stationary ring solitons in field theory - Knots and vortons, Phys. Rep., Volume 468 (2008) no. 4, pp. 101-151 | DOI | MR