Cauchy problem for the nonlinear Schrödinger equation coupled with the Maxwell equation
Annales Henri Lebesgue, Volume 3 (2020) , pp. 67-85.

Metadata

KeywordsSchrödinger–Maxwell system, Cauchy problem, symmetric hyperbolic system, energy method

Abstract

In this paper, we study the nonlinear Schrödinger equation coupled with the Maxwell equation. Using energy methods, we obtain a local existence result for the Cauchy problem.


References

[ADM17] Antonelli, Paolo; D’Amico, Michele; Marcati, Pierangelo Nonlinear Maxwell-Schrödinger system and quantum magneto-hydrodynamics in 3-D, Commun. Math. Sci., Volume 15 (2017), pp. 451-479 | Article | Zbl 1372.35280

[AG91] Alinhac, Serge; Gérard, Patrick Opérateurs pseudo-différentiels et théorème de Nash–Moser, Savoirs Actuels, Éditions du CNRS, 1991 | Zbl 0791.47044

[AP08] Azzollini, Antonio; Pomponio, Alessio Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., Volume 345 (2008), pp. 90-108 | Article | Zbl 1147.35091

[BdBS95] Bergé, L.; de Bouard, Anne; Saut, Jean-Claude Blowing up time-dependent solutions of the planar Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, Volume 8 (1995) no. 2, pp. 235-253 | Article | Zbl 0822.35125

[BF14] Benci, Vieri; Fortunato, Donato Solitons in Schrödinger-Maxwell equations, J. Fixed Point Theory Appl., Volume 15 (2014) no. 1, pp. 101-132 | Article | Zbl 1307.35292

[BS11] Bellazzini, Jacopo; Siciliano, Gaetano Stable standing waves for a class of nonlinear Schrödinger-Poisson equations, Z. Angew. Math. Phys., Volume 62 (2011), pp. 267-280 | Article | Zbl 1339.35280

[BT09] Bejenaru, Ioan; Tataru, Daniel Global wellposedness in the energy space for the Maxwell-Schrödinger system, Commun. Math. Phys., Volume 288 (2009) no. 1, pp. 145-198 | Article | Zbl 1171.81006

[CC04] Colin, Mathieu; Colin, Thierry On a quasilinear Zakharov system describing laser-plasma interactions, Differ. Integral Equ., Volume 17 (2004) no. 3-4, pp. 297-330 | MR 2037980 | Zbl 1174.35528

[CDSS13] Catto, Isabelle; Dolbeault, Jean; Sánchez, Oscar D.; Soler, Juan S. Existence of steady states for the Maxwell-Schrödinger-Poisson system: exploring the applicability of the concentration-compactness principle, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 10, pp. 1915-1938 | Article | Zbl 1283.35117

[CE88] Cazenave, Thierry; Esteban, Maria J. On the stability of stationary states for nonlinear Schrödinger equations with an external magnetic field, Mat. Apl. Comput., Volume 7 (1988) no. 3, pp. 155-168 | Zbl 0681.35011

[CG01] Colin, Thierry; Ghidaglia, Jean-Michel An initial-boundary value problem for the Korteweg-de-Vries equation posed on a finite interval, Adv. Differ. Equ., Volume 6 (2001) no. 12, pp. 1463-1492 | MR 1858429 | Zbl 1022.35055

[Col02] Colin, Mathieu On the local well-posedness of quasilinear Schrödinger equation in arbitrary space dimension, Commun. Partial Differ. Equations, Volume 27 (2002) no. 1-2, pp. 325-354 | Article | Zbl 1040.35109

[CW16] Colin, Mathieu; Watanabe, Tatsuya Cauchy problem for the nonlinear Klein-Gordon equation coupled with the Maxwell equation, J. Math. Anal. Appl., Volume 443 (2016) no. 2, pp. 778-796 | Article | MR 3514319 | Zbl 1343.35154

[CW17] Colin, Mathieu; Watanabe, Tatsuya Standing waves for the nonlinear Schrödinger equation coupled with the Maxwell equation, Nonlinearity, Volume 30 (2017) no. 5, pp. 1920-1947 | Article | Zbl 1379.35075

[DFVV10] D’Ancona, Piero; Fanelli, Luca; Vega, Luis; Visciglia, Nicola Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Anal., Volume 258 (2010) no. 10, pp. 3227-3240 | Article | Zbl 1188.81061

[Fel98] Felsager, Bjørn Geometry, particles and fields, Graduate Texts in Contemporary Physics, Springer, 1998 | MR 1490299 | Zbl 0897.53001

[GR91] Gonçalves Ribeiro, J. M. Instability of symmetric stationary states for some nonlinear Schrödinger equations with an external magnetic field, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 54 (1991) no. 4, pp. 403-433 | Numdam | MR 1128864 | Zbl 0741.35080

[Kik07] Kikuchi, Hiroaki Existence and stability of standing waves for Schrödinger–Poisson–Salter equation, Adv. Nonlinear Stud., Volume 7 (2007) no. 3, pp. 403-437 | Zbl 1133.35013

[Mic08] Michel, Laurent Remarks on non-linear Schrödinger equation with magnetic fields, Commun. Partial Differ. Equations, Volume 33 (2008) no. 7, pp. 1198-1215 | Article | MR 2450156 | Zbl 1159.35068

[NT86] Nakamitsu, Kuniaki; Tsutsumi, Masayoshi The Cauchy problem for the coupled Maxwell–Schrödinger equations, J. Math. Phys., Volume 27 (1986), pp. 211-216 | Article | Zbl 0606.35015

[NW07] Nakamura, Makoto; Wada, Takeshi Global existence and uniqueness of solutions to the Maxwell–Schrödinger equations, Commun. Math. Phys., Volume 276 (2007) no. 2, pp. 315-339 | Article | Zbl 1134.81020

[OT92] Ozawa, Tohru; Tsutsumi, Yoshio Existence and smoothing effect of solution for the Zakharov equations, Publ. Res. Inst. Math. Sci., Volume 28 (1992) no. 3, pp. 329-361 | Article | MR 1184829 | Zbl 0842.35116

[RV08] Radu, Eugen; Volkov, Mikhail S. Stationary ring solitons in field theory - Knots and vortons, Phys. Rep., Volume 468 (2008) no. 4, pp. 101-151 | Article | MR 2464089