Orbit growth of contact structures after surgery
Annales Henri Lebesgue, Volume 4 (2021) , pp. 1103-1141.

Metadata

KeywordsAnosov flow, 3-manifold, contact structure, contact flow, Reeb flow, surgery, contact homology

Abstract

This work is at the intersection of dynamical systems and contact geometry, and it focuses on the effects of a contact surgery adapted to the study of Reeb fields and on the effects of invariance of contact homology.

We show that this contact surgery produces an increased dynamical complexity for all Reeb flows compatible with the new contact structure. We study Reeb Anosov fields on closed 3-manifolds that are not topologically orbit-equivalent to any algebraic flow; this includes many examples on hyperbolic 3-manifolds. Our study also includes results of exponential growth in cases where neither the flow nor the manifold obtained by surgery is hyperbolic, as well as results when the original flow is periodic. This work fully demonstrates, in this context, the relevance of contact homology to the analysis of the dynamics of Reeb fields.


References

[ACH19] Alves, Marcelo R. R.; Colin, Vincent; Honda, Ko Topological entropy for Reeb vector fields in dimension three via open book decompositions, J. Éc. Polytech., Math., Volume 6 (2019), pp. 119-148 | Article | Numdam | MR 3915194 | Zbl 1415.57011

[Alv16a] Alves, Marcelo R. R. Cylindrical contact homology and topological entropy, Geom. Topol., Volume 20 (2016) no. 6, pp. 3519-3569 | Article | MR 3590356 | Zbl 1362.37041

[Alv16b] Alves, Marcelo R. R. Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds, J. Mod. Dyn., Volume 10 (2016), pp. 497-509 | Article | MR 3570995 | Zbl 1419.37027

[Alv17] Alves, Marcelo R. R. Legendrian contact homology and topological entropy (2017) (https://arxiv.org/abs/1410.3381) | Zbl 1427.53102

[Bar95] Barbot, Thierry Caractérisation des flots d’Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory Dyn. Syst., Volume 15 (1995) no. 2, pp. 247-270 | Article | MR 1332403 | Zbl 0826.58025

[Bar06] Barbot, Thierry De l’hyperbolique au globalement hyperbolique, 2006 (Habilitation à diriger des recherches, Université Claude Bernard de Lyon, https://tel.archives-ouvertes.fr/tel-00011278/document)

[Bar12] Barthelmé, Thomas A new Laplace operator in Finsler geometry and periodic orbits of Anosov flows (2012) (https://arxiv.org/abs/1204.0879)

[BC05] Bourgeois, Frédéric; Colin, Vincent Homologie de contact des variétés toroïdales, Geom. Topol., Volume 9 (2005), pp. 299-313 | Article | Zbl 1077.53070

[BEE12] Bourgeois, Frédéric; Ekholm, Tobias; Eliashberg, Yakov Effect of Legendrian Surgery, Geom. Topol., Volume 16 (2012) no. 1, pp. 301-389 | Article | MR 2916289 | Zbl 1322.53080

[Ben83] Bennequin, Daniel Entrelacement et équations de Pfaff, Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982) (Astérisque), Volume 107, Société Mathématique de France, 1983, pp. 87-161 | Numdam | MR 753131 | Zbl 0573.58022

[BF14] Barthelmé, Thomas; Fenley, Sérgio Knot theory of -covered Anosov flows: homotopy versus isotopy of closed orbits, J. Topol., Volume 7 (2014) no. 3, pp. 677-696 | Article | MR 3252960 | Zbl 1311.37016

[BF17] Barthelmé, Thomas; Fenley, Sérgio Counting periodic orbits of Anosov flows in free homotopy classes, Comment. Math. Helv., Volume 92 (2017) no. 4, pp. 641-714 | Article | MR 3718484 | Zbl 1386.37028

[BM19] Bowden, Jonathan; Mann, Kathryn C 0 stability of boundary actions and inequivalent Anosov flows (2019) (https://arxiv.org/abs/1909.02324v1)

[BO09] Bourgeois, Frédéric; Oancea, Alexandru Symplectic Homology, autonomous Hamiltonians, and Morse–Bott moduli spaces, Duke Math. J., Volume 146 (2009) no. 1, pp. 71-174 | MR 2475400 | Zbl 1158.53067

[Bou02] Bourgeois, Frédéric A Morse–Bott approach to Contact Homology (2002) (Ph. D. Thesis) | MR 2703292

[BP07] Barreira, Luis; Pesin, Yakov Nonuniform hyperbolicity. Dynamics of systems with nonzero Lyapunov exponents, Encyclopedia of Mathematics and Its Applications, 115, Cambridge University Press, 2007 | Zbl 1144.37002

[CDR20] Colin, Vincent; Dehornoy, Pierre; Rechtman, Ana On the existence of supporting broken book decompositions for contact forms in dimension 3 (2020) (https://arxiv.org/abs/2001.01448)

[CGH09] Colin, Vincent; Giroux, Emmanuel; Honda, Ko Finitude homotopique et isotopique des structures de contact tendues, Publ. Math., Inst. Hautes Étud. Sci., Volume 109 (2009), pp. 245-293 | Article | Numdam | MR 2511589 | Zbl 1268.57013

[CH96] Chernov, Nikolai; Haskell, Cymra Nonuniformly hyperbolic K-systems are Bernoulli, Ergodic Theory Dyn. Syst., Volume 16 (1996) no. 1, pp. 19-44 | Article | MR 1375125 | Zbl 0853.58081

[CH13] Colin, Vincent; Honda, Ko Reeb vector fields and open book decompositions, J. Eur. Math. Soc., Volume 15 (2013) no. 2, pp. 443-507 | Article | MR 3017043 | Zbl 1266.57013

[CP20] Clay, Adam; Pinsky, Tali Three manifolds that admit infinitely many Anosov flows (2020) (https://arxiv.org/abs/2006.09101v1)

[DG01] Ding, Fan; Geiges, Hansjörg Fillability of tight contact structures, Algebr. Geom. Topol., Volume 1 (2001), pp. 153-172 | Article | Zbl 0974.53061

[Dra04] Dragnev, Dragomir Fredholm theory and transversality for noncompact pseudoholomorphic curves in symplectisations, Commun. Pure Appl. Math., Volume 57 (2004) no. 6, pp. 726-763 | Article | MR 2038115 | Zbl 1063.53086

[EG99] Etnyre, John; Ghrist, Robert Tight contact structures via dynamics, Proc. Am. Math. Soc., Volume 127 (1999) no. 12, pp. 3697-3706 | Article | MR 1670438 | Zbl 0962.53048

[EG02] Etnyre, John; Ghrist, Robert Tight contact structures and Anosov flows, Topology Appl., Volume 124 (2002) no. 2, pp. 211-219 | Article | MR 1936208 | Zbl 1028.53080

[EGH00] Eliashberg, Yakov; Givental, Alexander; Hofer, Helmut Introduction to symplectic field theory, GAFA 2000. Visions in mathematics–Towards 2000. Proceedings of a meeting, Tel Aviv, Israel, August 25-September 3, 1999. Part II, Birkhäuser, 2000, pp. 560-673 | Zbl 0989.81114

[Eli89] Eliashberg, Yakov Classification of overtwisted contact structures on 3-manifolds, Invent. Math., Volume 98 (1989) no. 3, pp. 623-637 | Article | MR 1022310 | Zbl 0684.57012

[Eli90] Eliashberg, Yakov Topological characterization of Stein manifolds of dimension >2, Int. J. Math., Volume 1 (1990) no. 1, pp. 29-46 | Article | MR 1044658 | Zbl 0699.58002

[Fan09] Fang, Yong Thermodynamic invariants of Anosov flows and rigidity, Discrete Contin. Dyn. Syst., Volume 24 (2009) no. 4, pp. 1185-1204 | Article | MR 2505698 | Zbl 1167.37305

[Fen94] Fenley, Sérgio Anosov flows in 3-manifolds, Ann. Math., Volume 139 (1994) no. 1, pp. 79-115 | Article | MR 1259365 | Zbl 9796.58039

[FH03] Foulon, Patrick; Hasselblatt, Boris Zygmund Strong Foliations, Isr. J. Math., Volume 138 (2003), pp. 157-188 | Article | MR 2031955 | Zbl 1330.37030

[FH13] Foulon, Patrick; Hasselblatt, Boris Contact Anosov Flows on Hyperbolic 3–Manifolds, Geom. Topol., Volume 17 (2013) no. 2, pp. 1225-1252 | Article | MR 3070525 | Zbl 1277.37057

[FH19] Fisher, Todd; Hasselblatt, Boris Hyperbolic flows, Zürich Lectures in Advanced Mathematics, European Mathematical Society, 2019 | Zbl 1430.37002

[Fou01] Foulon, Patrick Entropy rigidity of Anosov flows in dimension three, Ergodic Theory Dyn. Syst., Volume 21 (2001) no. 4, pp. 1101-1112 | MR 1849603 | Zbl 1055.37031

[Gei08] Geiges, Hansjörg An Introduction to Contact Topology, Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, 2008 | MR 2397738 | Zbl 1153.53002

[Gir91] Giroux, Emmanuel Convexité en topologie de contact, Comment. Math. Helv., Volume 66 (1991) no. 4, pp. 637-677 | Article | MR 1129802 | Zbl 0766.53028

[Hof93] Hofer, Helmut Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math., Volume 114 (1993) no. 3, pp. 515-563 | Article | MR 1244912 | Zbl 0797.58023

[Hoz20] Hozoori, Surena Symplectic Geometry of Anosov Flows in Dimension 3 and Bi-Contact Topology (2020) (https://arxiv.org/abs/2009.02768)

[HT80] Handel, Michael; Thurston, William P. Anosov flows on new three manifolds, Invent. Math., Volume 59 (1980) no. 2, pp. 95-103 | Article | MR 577356 | Zbl 0435.58019

[Kat82] Katok, Anatole Entropy and closed geodesics, Ergodic Theory Dyn. Syst., Volume 2 (1982) no. 3–4, pp. 339-365 | Article | MR 721728 | Zbl 0525.58027

[Kat88] Katok, Anatole Four applications of conformal equivalence to geometry and dynamics, Ergodic Theory Dyn. Syst., Volume 8 (1988), pp. 139-152 (Charles Conley Mem. Vol.) | MR 967635 | Zbl 0668.58042

[KB94] Katok, Anatole; Burns, Keith Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems, Ergodic Theory Dyn. Syst., Volume 14 (1994) no. 4, pp. 757-785 | Article | MR 1304141 | Zbl 0816.58029

[KH95] Katok, Anatole; Hasselblatt, Boris Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, 1995 | MR 1326374 | Zbl 0878.58020

[Lib59] Libermann, Paulette Sur les automorphismes infinitésimaux des structures symplectiques et des structures de contact, Colloque Géométrie Différentielle Globale (Bruxelles, 1958) (1959), p. 37--59 | Zbl 0095.36803

[Liv04] Liverani, Carlangelo On contact Anosov flows, Ann. Math., Volume 159 (2004) no. 3, pp. 1275-1312 | Article | MR 2113022 | Zbl 1067.37031

[Mat13] Matsumoto, Shigenori The space of (contact) Anosov flows on 3-manifolds, J. Math. Sci., Tokyo, Volume 20 (2013) no. 3, pp. 445-460 | MR 3156989 | Zbl 1347.37055

[McL12] McLean, Mark The growth rate of symplectic homology and affine varieties, Geom. Funct. Anal., Volume 22 (2012) no. 2, pp. 369-442 | Article | MR 2929069 | Zbl 1270.53097

[Mit95] Mitsumatsu, Yoshihiko Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier, Volume 45 (1995) no. 5, pp. 1407-1421 | Article | Numdam | MR 1370752 | Zbl 0834.53031

[ML98] Makar-Limanov, Sergei Tight contact structures on solid tori, Trans. Am. Math. Soc., Volume 350 (1998) no. 3, pp. 1013-1044 | Article | MR 1401526 | Zbl 0894.53036

[MP12] Macarini, Leonardo; Paternain, Gabriel P. Equivariant symplectic homology of Anosov contact structures, Bull. Braz. Math. Soc., Volume 43 (2012) no. 4, pp. 513-527 | Article | MR 3024068 | Zbl 1262.53081

[MS11] Macarini, Leonardo; Schlenk, Felix Positive topological entropy of Reeb flows on spherizations, Math. Proc. Camb. Philos. Soc., Volume 151 (2011) no. 1, pp. 103-128 | Article | MR 2801317 | Zbl 1236.53063

[Orn74] Ornstein, Donald S. Ergodic theory, randomness and dynamical systems, Yale Mathematical Monographs, 5, Yale University Press, New Haven, 1974 | MR 447525 | Zbl 0296.28016

[OW98] Ornstein, Donald S.; Weiss, Benjamin On the Bernoulli nature of systems with some hyperbolic structure, Bernoulli, Volume 18 (1998) no. 2, pp. 441-456 | MR 1619567 | Zbl 0915.58076

[Par19] Pardon, John Contact homology and virtual fundamental cycles, J. Am. Math. Soc., Volume 32 (2019) no. 3, pp. 825-919 | Article | MR 3981989 | Zbl 1422.53071

[PP00] Petronio, Carlo; Porti, Joan Negatively oriented ideal triangulations and a proof of Thurston’s hyperbolic Dehn filling theorem, Expo. Math., Volume 18 (2000) no. 1, pp. 1-35 | MR 1751141 | Zbl 0977.57011

[PT72] Plante, Joseph; Thurston, William P. Anosov flows and the fundamental group, Topology, Volume 11 (1972), pp. 147-150 | Article | MR 295389 | Zbl 0246.58014

[RSS03] Roberts, Rachel; Shareshian, John; Stein, Melanie Infinitely many hyperbolic 3-manifolds which contain no Reebless foliation, J. Am. Math. Soc., Volume 16 (2003) no. 3, pp. 639-679 | Article | MR 1969207 | Zbl 1012.57022

[Sha93] Sharp, Richard Closed orbits in homology classes for Anosov flows, Ergodic Theory Dyn. Syst., Volume 13 (1993) no. 2, pp. 387-408 | Article | MR 1235480 | Zbl 0783.58059

[Thu80] Thurston, William P. The geometry and topology of 3-manifolds, Mathematical Sciences Research Institute, 1980 (Lectures notes distributed by Princeton University, http://www.msri.org/publications/books/gt3m)

[Thu82] Thurston, William P. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Am. Math. Soc., Volume 6 (1982) no. 3, pp. 357-381 | Article | MR 648524 | Zbl 0496.57005

[Vau15] Vaugon, Anne On growth rate and contact homology, Algebr. Geom. Topol., Volume 15 (2015) no. 2, pp. 623-666 | Article | MR 3342671 | Zbl 1315.57030

[Wei91] Weinstein, Alan Contact surgeries and symplectic handlebodies, Hokkaido Math. J., Volume 20 (1991) no. 2, pp. 241-251 | Zbl 9737.57012