Metadata
Abstract
We consider probability measure preserving discrete groupoids, group actions and equivalence relations in the context of general probability spaces. We study for these objects the notions of cost, -Betti numbers, -invariant and some higher-dimensional variants. We also propose various convergence results about -Betti numbers and rank gradient for sequences of actions, groupoids or equivalence relations under weak finiteness assumptions. In particular we connect the combinatorial cost with the cost of the ultralimit equivalence relations. Finally a relative version of Stuck–Zimmer property is also considered.
References
[ABB + 17] On the growth of -invariants for sequences of lattices in Lie groups, Ann. Math., Volume 185 (2017) no. 3, pp. 711-790 | DOI | MR | Zbl
[ADR00] Amenable groupoids, Monographies de l’Enseignement Mathématique, 36, L’Enseignement Mathématique, Université de Genève, 2000 | MR | Zbl
[AFS19] Sofic boundaries of groups and coarse geometry of sofic approximations, Groups Geom. Dyn., Volume 13 (2019) no. 1, pp. 191-234 | DOI | MR | Zbl
[AGN17] Rank, combinatorial cost, and homology torsion growth in higher rank lattices, Duke Math. J., Volume 166 (2017) no. 15, pp. 2925-2964 | MR | Zbl
[Alv08] Une théorie de Bass–Serre pour les relations d’équivalence et les groupoïdes boréliens, Ph. D. Thesis, ENS-Lyon, France (2008) (2008ENSL0458)
[AN12] Rank gradient, cost of groups and the rank versus Heegaard genus problem, J. Eur. Math. Soc., Volume 14 (2012) no. 5, pp. 1657-1677 | MR | Zbl
[AP18] Approximate equivalence of group actions, Ergodic Theory Dyn. Syst., Volume 38 (2018) no. 4, pp. 1201-1237 | DOI | MR | Zbl
[AT20] Uniform rank gradient, cost and local-global convergence, Trans. Am. Math. Soc., Volume 373 (2020) no. 4, pp. 2311-2329 | DOI | MR | Zbl
[AW13] Bernoulli actions are weakly contained in any free action, Ergodic Theory Dyn. Syst., Volume 33 (2013) no. 2, pp. 323-333 | DOI | MR | Zbl
[BG04] Asymptotique des nombres de Betti, invariants et laminations, Comment. Math. Helv., Volume 79 (2004) no. 2, pp. 362-395 | DOI | MR | Zbl
[Bil86] Probability and measure, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, 1986 | Zbl
[Car11] Cost for measured groupoids, Ph. D. Thesis, Ecole normale supérieure de lyon - ENS LYON, France (2011)
[Car15] Ultraproducts, weak equivalence and sofic entropy (2015) (https://arxiv.org/abs/1509.03189)
[CKTD13] Ultraproducts of measure preserving actions and graph combinatorics, Ergodic Theory Dyn. Syst., Volume 33 (2013) no. 2, pp. 334-374 | DOI | MR | Zbl
[Cor17] An elementary approach to sofic groupoids (2017) (https://arxiv.org/abs//1708.08023)
[CP17] Stabilizers of ergodic actions of lattices and commensurators, Trans. Am. Math. Soc., Volume 369 (2017) no. 6, pp. 4119-4166 | DOI | MR | Zbl
[EL10] Sofic equivalence relations, J. Funct. Anal., Volume 258 (2010) no. 5, pp. 1692-1708 | DOI | MR | Zbl
[Ele07] The combinatorial cost, Enseign. Math., Volume 53 (2007) no. 3-4, pp. 225-235 | MR | Zbl
[Ele10a] Betti numbers are testable, Fete of combinatorics and computer science (Katona, Gyula O. H. et al., eds.) (Bolyai Society Mathematical Studies), Volume 20, Springer; János Bolyai Mathematical Society, Budapest, 2010, pp. 139-149 (Selected papers of the conference held in Keszthely, Hungary, August 11–15, 2008 dedicated to László Lovász on the occasion of his 60th birthday) | DOI | MR | Zbl
[Ele10b] Parameter testing in bounded degree graphs of subexponential growth, Random Struct. Algorithms, Volume 37 (2010) no. 2, pp. 248-270 | DOI | MR | Zbl
[ES05] Hyperlinearity, essentially free actions and -invariants. The sofic property, Math. Ann., Volume 332 (2005) no. 2, pp. 421-441 | DOI | MR | Zbl
[Far98] Geometry of growth: approximation theorems for invariants, Math. Ann., Volume 311 (1998) no. 2, pp. 335-375 | DOI | MR | Zbl
[FM77] Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Am. Math. Soc., Volume 234 (1977) no. 2, pp. 289-324 | DOI | MR | Zbl
[Fre04] Measure Theory: Measure algebras. Volume 3, Colchester, Torres Fremlin, 2004 (corrected second printing of the 2002 original) | Zbl
[Gab98] Mercuriale de groupes et de relations, C. R. Acad. Sci. Paris Sér. I Math., Volume 326 (1998) no. 2, pp. 219-222 | DOI | MR | Zbl
[Gab00] Coût des relations d’équivalence et des groupes, Invent. Math., Volume 139 (2000) no. 1, pp. 41-98 | DOI | MR | Zbl
[Gab02] Invariants de relations d’équivalence et de groupes, Publ. Math., Inst. Hautes Étud. Sci., Volume 95 (2002), pp. 93-150 | DOI | MR | Zbl
[Gab05a] Examples of groups that are measure equivalent to the free group, Ergodic Theory Dyn. Syst., Volume 25 (2005) no. 6, pp. 1809-1827 | DOI | MR | Zbl
[Gab05b] Invariant percolation and harmonic Dirichlet functions, Geom. Funct. Anal., Volume 15 (2005) no. 5, pp. 1004-1051 | DOI | MR | Zbl
[HLS14] Limits of locally-globally convergent graph sequences, Geom. Funct. Anal., Volume 24 (2014) no. 1, pp. 269-296 | DOI | MR | Zbl
[Kai19] Combinatorial cost: a coarse setting, Trans. Am. Math. Soc., Volume 372 (2019) no. 4, pp. 2855-2874 | DOI | MR | Zbl
[Kec95] Classical descriptive set theory, Graduate Texts in Mathematics, 156, Springer, 1995 | MR | Zbl
[Kec10] Global aspects of ergodic group actions, Mathematical Surveys and Monographs, 160, American Mathematical Society, 2010 | MR | Zbl
[KM04] Topics in orbit equivalence, Lecture Notes in Mathematics, 1852, Springer, 2004 | MR | Zbl
[Lev95] On the cost of generating an equivalence relation, Ergodic Theory Dyn. Syst., Volume 15 (1995) no. 6, pp. 1173-1181 | DOI | MR | Zbl
[LN35] Choix effectif d’un point dans un complementaire analytique arbitraire, donné par un crible, Fundam. Math., Volume 25 (1935), pp. 559-560 | DOI | Zbl
[LO11] Approximating the first -Betti number of residually finite groups, J. Topol. Anal., Volume 3 (2011) no. 2, pp. 153-160 | DOI | MR | Zbl
[Lüc94] Approximating -invariants by their finite-dimensional analogues, Geom. Funct. Anal., Volume 4 (1994) no. 4, pp. 455-481 | DOI | MR | Zbl
[Neu32] Einige Sätze über messbare Abbildungen, Ann. Math., Volume 33 (1932) no. 3, pp. 574-586 | DOI | Zbl
[Oza09] Hyperlinearity, sofic groups and applications to group theory, 2009 (Unpublished notes, https://www.kurims.kyoto-u.ac.jp/~narutaka/notes/NoteSofic.pdf)
[PSV20] Classification of regular subalgebras of the hyperfinite II factor, J. Math. Pures Appl., Volume 140 (2020), pp. 280-308 | DOI | Zbl
[Roe03] Lectures on coarse geometry, University Lecture Series, 31, American Mathematical Society, 2003 | MR | Zbl
[Sau05] -Betti numbers of discrete measured groupoids, Int. J. Algebra Comput., Volume 15 (2005) no. 5-6, pp. 1169-1188 | DOI | MR | Zbl
[Sch20] -Betti numbers of random rooted simplicial complexes, Manuscr. Math., Volume 162 (2020) no. 3-4, pp. 284-304 | MR | Zbl
[SZ94] Stabilizers for ergodic actions of higher rank semisimple groups, Ann. Math., Volume 139 (1994) no. 3, pp. 723-747 | DOI | MR | Zbl
[Tak02] Theory of operator algebras. I, Encyclopaedia of Mathematical Sciences, 124, Springer, 2002 reprint of the first (1979) edition, also present in the Operator Algebras and Non-commutative Geometry series, Vol. 5 | Zbl
[Tak15] -Betti numbers and costs in the framework of discrete groupoids (2015) (https://arxiv.org/abs/1502.01555)
[Tho08] Sofic groups and Diophantine approximation, Commun. Pure Appl. Math., Volume 61 (2008) no. 8, pp. 1155-1171 | DOI | MR | Zbl
[Ued06] Notes on treeability and costs for discrete groupoids in operator algebra framework, Operator Algebras: The Abel Symposium 2004. Proceedings of the first Abel symposium, Oslo, Norway, September 3–5, 2004 (Bratelli, Ola et al., eds.) (Abel Symposia), Volume 1, Springer, 2006, pp. 259-279 | DOI | MR | Zbl