Hamilton–Jacobi equations for mean-field disordered systems
Annales Henri Lebesgue, Volume 4 (2021) , pp. 453-484.

Metadata

Keywordsspin glass, statistical inference, Hamilton–Jacobi equation

Abstract

We argue that Hamilton–Jacobi equations provide a convenient and intuitive approach for studying the large-scale behavior of mean-field disordered systems. This point of view is illustrated on the problem of inference of a rank-one matrix. We compute the large-scale limit of the free energy by showing that it satisfies an approximate Hamilton–Jacobi equation with asymptotically vanishing viscosity parameter and error term.


References

[BBCG08] Bakry, Dominique; Barthe, Franck; Cattiaux, Patrick; Guillin, Arnaud A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case, Electron. Commun. Probab., Volume 13 (2008), pp. 60-66 | Article | MR 2386063 | Zbl 1186.26011

[BDBG10] Barra, Adriano; Di Biasio, Aldo; Guerra, Francesco Replica symmetry breaking in mean-field spin glasses through the Hamilton–Jacobi technique, J. Stat. Mech. Theory Exp. (2010) no. 9, P09006 | MR 2727596 | Zbl 07230323

[BDFT13] Barra, Adriano; Del Ferraro, Gino; Tantari, Daniele Mean field spin glasses treated with PDE techniques, Eur. Phys. J. B, Volume 86 (2013) no. 7, 332 | Article | MR 3089483

[BDM + 16] Barbier, Jean; Dia, Mohamad; Macris, Nicolas; Krzakala, Florent; Lesieur, Thibault; Zdeborová, Lenka Mutual information for symmetric rank-one matrix estimation: a proof of the replica formula, Advances in Neural Information Processing Systems 29 (2016), pp. 424-432 (https://openreview.net/forum?id=By-3GtZdWH)

[BLM13] Boucheron, Stéphane; Lugosi, Gábor; Massart, Pascal Concentration inequalities, Oxford University Press, 2013 | Article | MR 3185193 | Zbl 1279.60005

[BM19] Barbier, Jean; Macris, Nicolas The adaptive interpolation method: a simple scheme to prove replica formulas in Bayesian inference, Probab. Theory Relat. Fields, Volume 174 (2019) no. 3-4, pp. 1133-1185 | Article | MR 3980313 | Zbl 07081465

[BMM17] Barbier, Jean; Macris, Nicolas; Miolane, Léo The layered structure of tensor estimation and its mutual information, 55th Annual Allerton Conference on Communication, Control, and Computing (2017), pp. 1056-1063 | Article

[BZ83] Brankov, Jordan G.; Zagrebnov, Valentin A. On the description of the phase transition in the Husimi–Temperley model, J. Phys. A, Math. Gen., Volume 16 (1983) no. 10, pp. 2217-2224 | Article | MR 713184

[Cha14] Chatterjee, Sourav Superconcentration and related topics, Springer Monographs in Mathematics, Springer, 2014 | Article | MR 3157205 | Zbl 1288.60001

[CIL92] Crandall, Michael G.; Ishii, Hitoshi; Lions, Pierre-Louis User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67 | Article | MR 1118699 | Zbl 0755.35015

[DM14] Deshpande, Yash; Montanari, Andrea Information-theoretically optimal sparse PCA, IEEE International Symposium on Information Theory (2014), pp. 2197-2201 | Article

[EAK18] El Alaoui, Ahmed; Krzakala, Florent Estimation in the spiked Wigner model: a short proof of the replica formula (2018) (https://arxiv.org/abs/1801.01593)

[Eva10] Evans, Lawrence Craig Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010 | Article | MR 2597943 | Zbl 1194.35001

[Gue01] Guerra, Francesco Sum rules for the free energy in the mean field spin glass model, Mathematical physics in mathematics and physics (Siena, 2000) (Fields Institute Communications), Volume 30 (2001), pp. 161-170 | MR 1867553 | Zbl 1009.82011

[Gue03] Guerra, Francesco Broken replica symmetry bounds in the mean field spin glass model, Commun. Math. Phys., Volume 233 (2003) no. 1, pp. 1-12 | Article | MR 1957729 | Zbl 1013.82023

[LKZ15] Lesieur, Thibault; Krzakala, Florent; Zdeborová, Lenka Phase transitions in sparse PCA, IEEE International Symposium on Information Theory (2015), pp. 1635-1639 | Article

[LM19] Lelarge, Marc; Miolane, Léo Fundamental limits of symmetric low-rank matrix estimation, Probab. Theory Relat. Fields, Volume 176 (2019) no. 3-4, pp. 859-929 | Article | MR 3936148 | Zbl 1411.60014

[LML + 17] Lesieur, Thibault; Miolane, Léo; Lelarge, Marc; Krzakala, Florent; Zdeborová, Lenka Statistical and computational phase transitions in spiked tensor estimation, 2017 IEEE International Symposium on Information Theory (ISIT) (2017), pp. 511-515 | Article

[MPV87] Mézard, Marc; Parisi, Giorgio; Virasoro, Miguel Spin glass theory and beyond: an introduction to the replica method and its applications, 9, World Scientific, 1987 | Article | Zbl 0992.82500

[New86] Newman, Charles Percolation theory: A selective survey of rigorous results, Advances in multiphase flow and related problems, Society for Industrial and Applied Mathematics, 1986 | Zbl 0675.76003

[Pan13] Panchenko, Dmitry The Sherrington–Kirkpatrick model, Springer Monographs in Mathematics, Springer, 2013 | Article | MR 3052333 | Zbl 1266.82005

[Tal06] Talagrand, Michel The Parisi formula, Ann. Math., Volume 163 (2006) no. 1, pp. 221-263 | Article | MR 2195134 | Zbl 1137.82010

[Tal07] Talagrand, Michel Mean field models for spin glasses: some obnoxious problems, Spin glasses (Lecture Notes in Mathematics), Volume 1900, Springer, 2007, pp. 63-80 | Article | MR 2309598 | Zbl 1116.82031

[Tal11] Talagrand, Michel Mean field models for spin glasses. Volume II: Advanced replica-symmetry and low temperature, Ergebnisse der Mathematik und ihrer Grenzgebiete, 55, Springer, 2011 | MR 3024566 | Zbl 1232.82005