Constructing local models for Lagrangian torus fibrations
Annales Henri Lebesgue, Volume 4 (2021), pp. 537-570.

Metadata

Keywords Lagrangian torus, SYZ fibration, dual complex, negative vertex

Abstract

We give a construction of Lagrangian torus fibrations with controlled discriminant locus on certain affine varieties. In particular, we apply our construction in the following ways:

  • We find a Lagrangian torus fibration on the 3-fold negative vertex whose discriminant locus has codimension 2; this provides a local model for finding torus fibrations on compact Calabi–Yau 3-folds with codimension 2 discriminant locus.
  • We find a Lagrangian torus fibration on a neighbourhood of the one-dimensional stratum of a simple normal crossing divisor (satisfying certain conditions) such that the base of the fibration is an open subset of the cone over the dual complex of the divisor. This can be used to construct an analogue of the non-archimedean SYZ fibration constructed by Nicaise, Xu and Yu.

References

[Ber90] Berkovich, Vladimir G. Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, 1990 | MR | Zbl

[BJ17] Boucksom, Sébastien; Jonsson, Mattias Tropical and non-Archimedean limits of degenerating families of volume forms, J. Éc. Polytech., Math., Volume 4 (2017), pp. 87-139 | DOI | Numdam | MR | Zbl

[CBM09] Castaño Bernard, R.; Matessi, Diego Lagrangian 3-torus fibrations, J. Differ. Geom., Volume 81 (2009) no. 3, pp. 483-573 | DOI | MR | Zbl

[CBM10] Castaño-Bernard, R.; Matessi, Diego Semi-global invariants of piecewise smooth Lagrangian fibrations, Q. J. Math, Volume 61 (2010) no. 3, pp. 291-318 | DOI | MR | Zbl

[CE12] Cieliebak, Kai; Eliashberg, Yakov From Stein to Weinstein and back, Colloquium Publications, 59, American Mathematical Society, 2012 | DOI | MR | Zbl

[Dan75] Danilov, Vladimir I. Polyhedra of schemes and algebraic varieties, Mat. Sb., N. Ser., Volume 97 (139) (1975) no. 1, pp. 146-158 | MR | Zbl

[Fri83] Friedman, Robert Global smoothings of varieties with normal crossings, Ann. Math., Volume 118 (1983) no. 1, pp. 75-114 | DOI | MR | Zbl

[FTMZ18a] Farajzadeh Tehrani, Mohammad; McLean, Mark; Zinger, Aleksei Normal crossings singularities for symplectic topology, Adv. Math., Volume 339 (2018), pp. 672-748 | DOI | MR | Zbl

[FTMZ18b] Farajzadeh Tehrani, Mohammad; McLean, Mark; Zinger, Aleksei Singularities and semistable degenerations for symplectic topology, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 4, pp. 420-432 | DOI | MR | Zbl

[GH94] Griffiths, Philip; Harris, Joseph Principles of Algebraic Geometry, Wiley Classics Library, John Wiley & Sons, 1994 (reprint of the 1978 original) | DOI | MR | Zbl

[GM17] Golla, Marco; Martelli, Bruno Pair of pants decomposition of 4-manifolds, Algebr. Geom. Topol., Volume 17 (2017) no. 3, pp. 1407-1444 | DOI | MR | Zbl

[Gro01a] Gross, Mark Special Lagrangian fibrations I: Topology, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999) (AMS/IP Studies in Advanced Mathematics), Volume 23, American Mathematical Society, 2001, pp. 65-93 | Zbl

[Gro01b] Gross, Mark Topological mirror symmetry, Invent. Math., Volume 144 (2001) no. 1, pp. 75-137 | DOI | MR | Zbl

[GW00] Gross, Mark; Wilson, Pelham Mark Hedley Large complex structure limits of K3 surfaces, J. Differ. Geom., Volume 55 (2000) no. 3, pp. 475-546 | MR | Zbl

[Hat02] Hatcher, Allen Algebraic topology, Cambridge University Press, 2002 | MR | Zbl

[Joy03] Joyce, Dominic Singularities of special Lagrangian fibrations and the SYZ conjecture, Commun. Anal. Geom., Volume 11 (2003) no. 5, pp. 859-907 | DOI | MR | Zbl

[KNPS15] Katzarkov, Ludmil; Noll, Alexander; Pandit, Pranav; Simpson, Carlos Harmonic maps to buildings and singular perturbation theory, Commun. Math. Phys., Volume 336 (2015) no. 2, pp. 853-903 | DOI | MR | Zbl

[Kol13] Kollár, Janos Singularities of the minimal model program, Cambridge Tracts in Mathematics, 200, Cambridge University Press, 2013 (with a collaboration of Sándor Kovács) | MR | Zbl

[KS01] Kontsevich, Maxim; Soibelman, Yan Homological mirror symmetry and torus fibrations, Symplectic geometry and mirror symmetry (Seoul, 2000), World Scientific, 2001, pp. 203-263 | DOI | MR | Zbl

[KS06] Kontsevich, Maxim; Soibelman, Yan Affine structures and non-Archimedean analytic spaces, The unity of mathematics. In honor of the ninetieth birthday of I. M. Gelfand. Papers from the conference held in Cambridge, MA, USA, August 31–September 4, 2003 (Progress in Mathematics), Volume 244, Birkhäuser, 2006, pp. 321-385 | DOI | MR | Zbl

[KX16] Kollár, Janos; Xu, Chenyang The dual complex of Calabi–Yau pairs, Invent. Math., Volume 205 (2016) no. 3, pp. 527-557 | DOI | MR | Zbl

[McL16] McLean, Mark Reeb orbits and the minimal discrepancy of an isolated singularity, Invent. Math., Volume 204 (2016) no. 2, pp. 505-594 | DOI | MR | Zbl

[Mik04] Mikhalkin, Grigory Decomposition into pairs-of-pants for complex algebraic hypersurfaces, Topology, Volume 43 (2004) no. 5, pp. 1035-1065 | DOI | MR | Zbl

[Nic16] Nicaise, Johannes Berkovich skeleta and birational geometry, Nonarchimedean and tropical geometry. Nonarchimedean and tropical geometry. Based on two Simons symposia, Island of St. John, March 31 – April 6, 2013 and Puerto Rico, February 1–7, 2015 (Simons Symposia), Springer, 2016, pp. 173-194 | MR | Zbl

[NXY19] Nicaise, Johannes; Xu, Chenyang; Yu, Tony Yue The non-archimedean SYZ fibration, Compos. Math., Volume 155 (2019) no. 5, pp. 953-972 | DOI | MR | Zbl

[Pay13] Payne, Sam Boundary complexes and weight filtrations, Mich. Math. J., Volume 62 (2013) no. 2, pp. 293-322 | MR | Zbl

[RSTZ14] Ruddat, Helge; Sibilla, Nicolò; Treumann, David; Zaslow, Eric Skeleta of affine hypersurfaces, Geom. Topol., Volume 18 (2014), pp. 1343-1395 | DOI | MR | Zbl

[Rua01] Ruan, Wei-Dong Lagrangian torus fibration of quintic hypersurfaces. I. Fermat quintic case, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999) (AMS/IP Studies in Advanced Mathematics), Volume 23, American Mathematical Society, 2001, pp. 297-332 | MR | Zbl

[Rua02] Ruan, Wei-Dong Lagrangian torus fibration of quintic Calabi–Yau hypersurfaces. II. Technical results on gradient flow construction, J. Symplectic Geom., Volume 1 (2002) no. 3, pp. 435-521 | DOI | MR | Zbl

[Rua03] Ruan, Wei-Dong Lagrangian torus fibration of quintic Calabi–Yau hypersurfaces. III. Symplectic topological SYZ mirror construction for general quintics, J. Differ. Geom., Volume 63 (2003) no. 2, pp. 171-229 | MR | Zbl

[Sal87] Salvetti, Mario Topology of the complement of real hyperplanes in n , Invent. Math., Volume 88 (1987) no. 3, pp. 603-618 | DOI | MR | Zbl

[Sei08] Seidel, Paul A biased view of symplectic cohomology, Current developments in mathematics, 2006, International Press, 2008, pp. 211-253 | MR | Zbl

[SYZ96] Strominger, Andrew E.; Yau, Shing-Tung; Zaslow, Eric Mirror symmetry is T-duality, Nucl. Phys., B, Volume 479 (1996) no. 1-2, pp. 243-259 | DOI | MR | Zbl

[Thu07] Thuillier, Amaury Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d’homotopie de certains schémas formels, Manuscr. Math., Volume 123 (2007) no. 4, pp. 381-451 | DOI | MR | Zbl

[Zho20] Zhou, Peng Lagrangian skeleta of hypersurfaces in ( * ) n , Sel. Math., New Ser., Volume 26 (2020) no. 2, 26 | DOI | MR | Zbl

[Zun03] Zung, Nguyen Tien Symplectic topology of integrable Hamiltonian systems. II. Topological classification, Compos. Math., Volume 138 (2003) no. 2, pp. 125-156 | DOI | MR | Zbl