Proper actions on finite products of quasi-trees
Annales Henri Lebesgue, Volume 4 (2021) , pp. 685-709.

Metadata

KeywordsQuasi-trees, Projection complexes, Hyperbolic groups, Mapping class groups

Abstract

We say that a finitely generated group G has property (QT) if it acts isometrically on a finite product of quasi-trees so that orbit maps are quasi-isometric embeddings. A quasi-tree is a connected graph with path metric quasi-isometric to a tree, and product spaces are equipped with the 1 -metric.

We prove that residually finite hyperbolic groups and mapping class groups have (QT).


References

[BBF15] Bestvina, Mladen; Bromberg, Ken; Fujiwara, Koji Constructing group actions on quasi-trees and applications to mapping class groups, Publ. Math., Inst. Hautes Étud. Sci., Volume 122 (2015), pp. 1-64 | Article | MR 3415065 | Zbl 1372.20029

[BBFS19] Bestvina, Mladen; Bromberg, Ken; Fujiwara, Koji; Sisto, Alessandro Acylindrical actions on projection complexes, Enseign. Math., Volume 65 (2019) no. 1-2, pp. 1-32 | Article | MR 4057354 | Zbl 07212889

[BdlHV08] Bekka, Bachir; de la Harpe, Pierre; Valette, Alain Kazhdan’s property (T), New Mathematical Monographs, 11, Cambridge University Press, 2008 | Article | MR 2415834 | Zbl 1146.22009

[BDS07] Buyalo, Sergei; Dranishnikov, Alexander; Schroeder, Viktor Embedding of hyperbolic groups into products of binary trees, Invent. Math., Volume 169 (2007) no. 1, pp. 153-192 | Article | MR 2308852 | Zbl 1157.57003

[BHS17] Behrstock, Jason; Hagen, Mark F.; Sisto, Alessandro Asymptotic dimension and small-cancellation for hierarchically hyperbolic spaces and groups, Proc. Lond. Math. Soc., Volume 114 (2017) no. 5, pp. 890-926 | Article | MR 3653249 | Zbl 1431.20028

[CR07] Choi, Young-Eun; Rafi, Kasra Comparison between Teichmüller and Lipschitz metrics, J. Lond. Math. Soc., Volume 76 (2007) no. 3, pp. 739-756 | Article | MR 2377122 | Zbl 1132.30024

[DGO17] Dahmani, François; Guirardel, Vincent; Osin, Denis V. Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Memoirs of the American Mathematical Society, 245, American Mathematical Society, 2017 no. 1156 | Article | MR 3589159 | Zbl 1396.20041

[DJ99] Dranishnikov, A.; Januszkiewicz, T. Every Coxeter group acts amenably on a compact space, Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT), Volume 24 (1999), pp. 135-141 | MR 1802681 | Zbl 0973.20029

[FL08] Foertsch, Thomas; Lytchak, Alexander The de Rham decomposition theorem for metric spaces, Geom. Funct. Anal., Volume 18 (2008) no. 1, pp. 120-143 | Article | MR 2399098 | Zbl 1159.53026

[Gro75] Grossman, Edna K. On the residual finiteness of certain mapping class groups, J. Lond. Math. Soc., Volume 9 (1974/75), pp. 160-164 | Article | MR 0405423 | Zbl 0292.20032

[Gro87] Gromov, Mikhael L. Hyperbolic groups, Essays in group theory (Mathematical Sciences Research Institute Publications), Volume 8, Springer, 1987, pp. 75-263 | Article | MR 919829 | Zbl 0634.20015

[Gro93] Gromov, M. Asymptotic invariants of infinite groups, London Mathematical Society Lecture Note Series, 182, Cambridge University Press, 1993 | MR 1253544 | Zbl 0841.20039

[Hae20] Haettel, Thomas Hyperbolic rigidity of higher rank lattices, Ann. Sci. Éc. Norm. Supér., Volume 53 (2020) no. 2, pp. 439-468 | Article | MR 4094562 | Zbl 07201744

[Hum17] Hume, David Embedding mapping class groups into a finite product of trees, Groups Geom. Dyn., Volume 11 (2017) no. 2, pp. 613-647 | Article | MR 3668054 | Zbl 1423.20048

[LM07] Leininger, Christopher J.; McReynolds, D. B. Separable subgroups of mapping class groups, Topology Appl., Volume 154 (2007) no. 1, pp. 1-10 | Article | MR 2271769 | Zbl 1115.57001

[MM99] Masur, Howard A.; Minsky, Yair N. Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., Volume 138 (1999) no. 1, pp. 103-149 | Article | MR 1714338 | Zbl 0941.32012

[MM00] Masur, Howard A.; Minsky, Yair N. Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal., Volume 10 (2000) no. 4, pp. 902-974 | Article | MR 1791145 | Zbl 0972.32011

[NR97] Niblo, Graham; Reeves, Lawrence Groups acting on CAT (0) cube complexes, Geom. Topol., Volume 1 (1997), pp. 1-7 | Article | MR 1432323 | Zbl 0887.20016

[RS11] Rafi, Kasra; Schleimer, Saul Curve complexes are rigid, Duke Math. J., Volume 158 (2011) no. 2, pp. 225-246 | Article | MR 2805069 | Zbl 1227.57024

[Wat16] Watanabe, Yohsuke Uniform local finiteness of the curve graph via subsurface projections, Groups Geom. Dyn., Volume 10 (2016) no. 4, pp. 1265-1286 | Article | MR 3605034 | Zbl 1369.57020