Concentration inequalities for suprema of unbounded empirical processes
Annales Henri Lebesgue, Volume 4 (2021), pp. 831-861.

Metadata

Keywords concentration inequalities, empirical processes, martingale method, generalized moments

Abstract

In this paper, we provide new concentration inequalities for suprema of (possibly) non-centered and unbounded empirical processes associated with independent and identically distributed random variables. In particular, we establish Fuk–Nagaev type inequalities with the optimal constant in the moderate deviation bandwidth. The proof builds on martingale methods and comparison inequalities, allowing to bound generalized quantiles as the so-called Conditional Value-at-Risk. Importantly, we also extent the left concentration inequalities of Klein (2002) to classes of unbounded functions.


References

[Ada08] Adamczak, Radoslaw A tail inequality for suprema of unbounded empirical processes with applications to Markov chains, Electron. J. Probab., Volume 13 (2008), pp. 1000-1034 | DOI | MR | Zbl

[BBLM05] Boucheron, Stéphane; Bousquet, Olivier; Lugosi, Gábor; Massart, Pascal Moment inequalities for functions of independent random variables, Ann. Probab., Volume 33 (2005) no. 2, pp. 514-560 | DOI | MR | Zbl

[BDR15] Bercu, Bernard; Delyon, Bernard; Rio, Emmanuel Concentration Inequalities for Sums and Martingales, SpringerBriefs in Mathematics, Springer, 2015 | DOI | Zbl

[Ben03] Bentkus, Vidmants-Kastytis An Inequality for Tail Probabilities of Martingales with Differences Bounded from One Side, J. Theor. Probab., Volume 16 (2003) no. 1, pp. 161-173 | DOI | MR | Zbl

[Ben04] Bentkus, Vidmants-Kastytis On Hoeffding’s inequalities, Ann. Probab., Volume 32 (2004) no. 2, pp. 1650-1673 | DOI | MR | Zbl

[Ben08] Bentkus, Vidmants-Kastytis An extension of the Hoeffding inequality to unbounded random variables, Lith. Math. J., Volume 48 (2008) no. 2, pp. 137-157 | DOI | MR | Zbl

[BLM13] Boucheron, Stéphane; Lugosi, Gábor; Massart, Pascal Concentration Inequalities: A Nonasymptotic Theory of Independence, Oxford University Press, 2013 | Zbl

[Bob03] Bobkov, Sergey G. Localization Proof of the Bakry–Ledoux Isoperimetric Inequality and Some Applications, Theory Probab. Appl., Volume 47 (2003) no. 2, pp. 308-314 | DOI | Zbl

[Bou03] Bousquet, Olivier Concentration inequalities for sub-additive functions using the entropy method, Stochastic inequalities and applications. Selected papers presented at the Euroconference on “Stochastic inequalities and their applications”, Barcelona, June 18–22, 2002 (Progress in Probability), Volume 56, Birkhäuser, 2003, pp. 213-247 | MR | Zbl

[BS88] Bennett, Colin; Sharpley, Robert Interpolation of operators, Pure and Applied Mathematics, 129, Academic Press Inc., 1988 | MR | Zbl

[CCK14] Chernozhukov, Victor; Chetverikov, Denis; Kato, Kengo Gaussian approximation of suprema of empirical processes, Ann. Stat., Volume 42 (2014) no. 4, pp. 1564-1597 | DOI | MR | Zbl

[CIS76] Cirel’son, Boris S.; Ibragimov, Il’dar A.; Sudakov, Vladimir N. Norms of Gaussian sample functions, Proceedings of the Third Japan. USSR Symposium on Probability Theory (Maruyama, Gisiro; Prokhorov, Jurii V., eds.) (Lecture Notes in Mathematics), Springer (1976), pp. 20-41 | DOI | Zbl

[CL13] Comte, Fabienne; Lacour, Claire Anisotropic adaptive kernel deconvolution, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 49 (2013) no. 2, pp. 569-609 | Numdam | MR | Zbl

[Dir15] Dirksen, Sjoerd Tail bounds via generic chaining, Electron. J. Probab., Volume 20 (2015), 53 | DOI | MR | Zbl

[GM88] Gilat, David; Meilijson, Isaac A simple proof of a theorem of Blackwell and Dubins on the maximum of a uniformly integrable martingale, Séminaire de probabilités XXII, Strasbourg/France (Lecture Notes in Mathematics), Volume 1321, Springer, 1988, pp. 214-216 | DOI | MR | Zbl

[GN16] Giné, Evarist; Nickl, Richard Mathematical foundations of infinite-dimensional statistical models, Cambridge Series in Statistical and Probabilistic Mathematics, 40, Cambridge University Press, 2016 | DOI | MR | Zbl

[Hoe63] Hoeffding, Wassily Probability inequalities for sums of bounded random variables, J. Am. Stat. Assoc., Volume 58 (1963), pp. 13-30 | DOI | MR | Zbl

[Kle02] Klein, Thierry Une inégalité de concentration à gauche pour les processus empiriques, C. R. Math. Acad. Sci. Paris, Volume 334 (2002) no. 6, pp. 501-504 | DOI | MR | Zbl

[KR05] Klein, Thierry; Rio, Emmanuel Concentration around the mean for maxima of empirical processes, Ann. Probab., Volume 33 (2005) no. 3, pp. 1060-1077 | DOI | MR | Zbl

[L13] van de Geer, Sara; Lederer, Johannes The Bernstein–Orlicz norm and deviation inequalities, Probab. Theory Relat. Fields, Volume 157 (2013) no. 1-2, pp. 225-250 | DOI | MR | Zbl

[Led97] Ledoux, Michel On Talagrand’s deviation inequalities for product measures, ESAIM, Probab. Stat., Volume 1 (1997), pp. 63-87 | DOI | Numdam | MR | Zbl

[LvdG14] Lederer, Johannes; van de Geer, Sara New concentration inequalities for suprema of empirical processes, Bernoulli, Volume 20 (2014) no. 4, pp. 2020-2038 | DOI | MR | Zbl

[Mar18] Marchina, Antoine Concentration inequalities for separately convex functions, Bernoulli, Volume 24 (2018) no. 4A, pp. 2906-2933 | DOI | MR | Zbl

[Mas00] Massart, Pascal About the constants in Talagrand’s concentration inequalities for empirical processes, Ann. Probab., Volume 28 (2000) no. 2, pp. 863-884 | DOI | MR | Zbl

[Pin06] Pinelis, Iosif On normal domination of (super)martingales, Electron. J. Probab., Volume 11 (2006), pp. 1049-1070 | DOI | MR | Zbl

[Pin14a] Pinelis, Iosif On the Bennett-–Hoeffding inequality, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 50 (2014) no. 1, pp. 15-27 | DOI | Numdam | MR | Zbl

[Pin14b] Pinelis, Iosif An optimal three-way stable and monotonic spectrum of bounds on quantiles: a spectrum of coherent measures of financial risk and economic inequality, Risks, Volume 2 (2014) no. 3, pp. 349-392 | DOI

[Pin15] Pinelis, Iosif Rosenthal-type inequalities for martingales in 2-smooth Banach spaces, Theory Probab. Appl., Volume 59 (2015) no. 4, pp. 699-706 | DOI | MR | Zbl

[Rio01] Rio, Emmanuel Inégalités de concentration pour les processus empiriques de classes de parties, Probab. Theory Relat. Fields, Volume 119 (2001) no. 2, pp. 163-175 | DOI | MR | Zbl

[Rio02] Rio, Emmanuel Une inégalité de Bennett pour les maxima de processus empiriques, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 38 (2002) no. 6, pp. 1053-1057 (En l’honneur de J. Bretagnolle, D. Dacunha-Castelle, I. Ibragimov) | DOI | Numdam | MR | Zbl

[Rio12] Rio, Emmanuel Sur la fonction de taux dans les inégalités de Talagrand pour les processus empiriques, C. R. Math. Acad. Sci. Paris, Volume 350 (2012) no. 5-6, pp. 303-305 | DOI | MR | Zbl

[Rio17a] Rio, Emmanuel About the constants in the Fuk–Nagaev inequalities, Electron. Commun. Probab., Volume 22 (2017), 28 | DOI | MR | Zbl

[Rio17b] Rio, Emmanuel Asymptotic theory of weakly dependent random processes, Probability Theory and Stochastic Modelling, 80, Springer, 2017 (Translated from the 2000 French edition [MR2117923]) | DOI | MR | Zbl

[RU00] Rockafellar, Ralph T.; Uryasev, S. Optimization of conditional value-at-risk, Risks, Volume 2 (2000), pp. 21-42 | DOI

[Sam07] Samson, Paul-Marie Infimum-convolution description of concentration properties of product probability measures, with applications, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 43 (2007) no. 3, pp. 321-338 | DOI | Numdam | MR | Zbl

[Sio58] Sion, Maurice On general minimax theorems, Pac. J. Math., Volume 8 (1958), pp. 171-176 | DOI | MR | Zbl

[Tal96] Talagrand, Michel New concentration inequalities in product spaces, Invent. Math., Volume 126 (1996) no. 3, pp. 505-563 | DOI | MR | Zbl

[W96] van der Vaart, Adrianus W.; Wellner, Jon A. Weak Convergence and Empirical Processes: With Applications to Statistics, Springer Series in Statistics, Springer, 1996 | Zbl

[W11] van der Vaart, Adrianus W.; Wellner, Jon A. A local maximal inequality under uniform entropy, Electron. J. Stat., Volume 5 (2011), pp. 192-203 | DOI | MR | Zbl