Metadata
Abstract
Consider a complex Stein manifold and a subanalytic relatively compact Stein open subset of . We prove the vanishing on of the holomorphic temperate cohomology.
References
[BM88] Semi-analytic sets and subanalytic sets, Publ. Math., Inst. Hautes Étud. Sci., Volume 67 (1988), pp. 5-42 | DOI | Zbl
[BMF11] Grauert’s theorem for subanalytic open sets in real analytic manifolds, Stud. Math., Volume 204 (2011) no. 3, pp. 265-274 | DOI | MR | Zbl
[Dem09] Complex analytic and differential geometry, 2009 (Open Content Book, https://www.math.uh.edu/~shanyuji/Complex/agbook.pdf)
[Ele75] Pseudo-convexité locale dans les variétés kählériennes, Ann. Inst. Fourier, Volume 25 (1975) no. 2, pp. 295-314 | DOI | Numdam | MR | Zbl
[Fri67] Points de platitude d’un morphisme d’espaces analytiques complexes, Invent. Math., Volume 4 (1967), pp. 118-138 | DOI | MR | Zbl
[GR65] Analytic functions of several complex variables, Prentice Hall Series in Modern Analysis, Prentice Hall, 1965 | Zbl
[GS16] Construction of sheaves on the subanalytic site, Subanalytic sheaves and Sobolev spaces (Astérisque), Volume 383, Société Mathématique de France, 2016, pp. 1-60 | Zbl
[Hör65] -estimates and existence theorems for the operator, Acta Math., Volume 113 (1965), pp. 89-152 | DOI | MR | Zbl
[Hör83] The analysis of linear partial differential operators I, Grundlehren der Mathematischen Wissenschaften, 256, Springer, 1983 | MR | Zbl
[Kas84] The Riemann–Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci., Volume 20 (1984), pp. 319-365 | DOI | MR | Zbl
[KS90] Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990 | MR | Zbl
[KS96] Moderate and formal cohomology associated with constructible sheaves, Mém. Soc. Math. Fr., Nouv. Sér., Volume 64 (1996), pp. iii-76 | Numdam | Zbl
[KS01] Ind-Sheaves, Astérisque, 271, Société Mathématique de France, 2001 | Numdam | Zbl
[Pet17] Tempered subanalytic topology on algebraic varieties (2017) (https://arxiv.org/abs/1703.00870)
[Sch99] Quasi-abelian categories and sheaves, Mém. Soc. Math. Fr., Nouv. Sér., Volume 76 (1999), pp. 1-140 | Numdam | MR | Zbl
[Siu69] Noetherianness of rings of holomorphic functions on Stein compact subsets, Proc. Am. Math. Soc., Volume 21 (1969), pp. 483-489 | Zbl
[Siu76] Every Stein subvariety admits a Stein neighborhood, Invent. Math., Volume 38 (1976), pp. 89-100 | MR | Zbl
[Sko21] A Dolbeault lemma for temperate currents, Ann. Henri Lebesgue, Volume 4 (2021), pp. 879-896 | DOI
[Tay02] Several complex variables with connections to algebraic geometry and Lie groups, Graduate Studies in Mathematics, 46, American Mathematical Society, 2002 | MR | Zbl