On the algebraic dependence of holonomic functions
Annales Henri Lebesgue, Volume 5 (2022), pp. 141-177

Metadata

Keywords Linear Differential Equations ,  Differential Galois Theory ,  Algebraic Relations ,  Iterated Integrals ,  Hypergeometric Functions

Abstract

We study the form of possible algebraic relations between functions satisfying linear differential equations. In particular, if f and g satisfy linear differential equations and are algebraically dependent, we give conditions on the differential Galois group associated to f guaranteeing that g is a polynomial in f. We apply this to hypergeometric functions and iterated integrals.


References

[BBH88] Beukers, Frits; Brownawell, W. Dale; Heckman, Gert Siegel normality, Ann. Math., Volume 127 (1988) no. 2, pp. 279-308 | Zbl | MR | DOI

[BH89] Beukers, Frits; Heckman, Gert Monodromy for the hypergeometric function n F n-1 , Invent. Math., Volume 95 (1989) no. 2, pp. 325-354 | DOI | Zbl | MR

[Bor91] Borel, Armand Linear algebraic groups, Graduate Texts in Mathematics, 126, Springer, 1991 | Zbl | MR | DOI

[DM81] Deligne, Pierre; Milne, James S. Tannakian Categories, Hodge Cycles, Motives, and Shimura Varieties (Lecture Notes in Mathematics), Volume 900, Springer, 1981, pp. 101-228 | DOI | Zbl

[DM89] Duval, Anne; Mitschi, Claude Matrices de Stokes et groupe de Galois des équations hypergéométriques confluentes généralisées, Pac. J. Math., Volume 138 (1989) no. 1, pp. 25-56 | DOI | Zbl | MR

[Hoc81] Hochschild, Gerhard P. Basic theory of algebraic groups and Lie algebras, Graduate Texts in Mathematics, 75, Springer, 1981 | DOI | Zbl | MR

[HS85] Harris Jr., William A.; Sibuya, Yasataka The reciprocals of solutions of linear ordinary differential equations, Adv. Math., Volume 58 (1985) no. 2, pp. 119-132 | Zbl | MR | DOI

[HS86] Harris Jr., William A.; Sibuya, Yasataka The n th roots of solutions of linear ordinary differential equations, Proc. Am. Math. Soc., Volume 97 (1986) no. 2, pp. 207-211 | Zbl | MR | DOI

[Hum75] Humphreys, James E. Linear algebraic groups, Graduate Texts in Mathematics, 21, Springer, 1975 | Zbl | MR

[Kat72] Katz, Nicholas M. Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math., Volume 18 (1972), pp. 1-118 | DOI | Zbl | MR

[Kat87] Katz, Nicholas M. On the calculation of some differential Galois groups, Invent. Math., Volume 87 (1987) no. 1, pp. 13-61 | MR | DOI | Zbl

[Kat90] Katz, Nicholas M. Exponential sums and differential equations, Annals of Mathematics Studies, 124, Princeton University Press, 1990 | DOI | Zbl | MR

[Kol68] Kolchin, Ellis R. Algebraic groups and algebraic dependence, Am. J. Math., Volume 90 (1968), pp. 1151-1164 | Zbl | MR | DOI

[Mag94] Magid, Andy R. Lectures on differential Galois theory, University Lecture Series, 7, American Mathematical Society, 1994 | Zbl

[Mit96] Mitschi, Claude Differential Galois groups of confluent generalized hypergeometric equations: an approach using Stokes multipliers, Pac. J. Math., Volume 176 (1996) no. 2, pp. 365-405 | DOI | Zbl | MR

[NvdPT08] Nguyen, An Khuong; van der Put, Marius; Top, Jaap Algebraic subgroups of GL 2 (), Indag. Math., New Ser., Volume 19 (2008) no. 2, pp. 287-297 | Zbl | MR | DOI

[PS03] van der Put, Marius; Singer, Michael F. Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer, 2003 | MR | DOI | Zbl

[Roq14] Roques, Julien On generalized hypergeometric equations and mirror maps, Proc. Am. Math. Soc., Volume 142 (2014) no. 9, pp. 3153-3167 | Zbl | MR | DOI

[Sin86] Singer, Michael F. Algebraic relations among solutions of linear differential equations, Trans. Am. Math. Soc., Volume 295 (1986) no. 2, pp. 753-763 | Zbl | MR | DOI

[Spe86] Sperber, Steven On solutions of differential equations which satisfy certain algebraic relations, Pac. J. Math., Volume 124 (1986) no. 1, pp. 249-256 | DOI | Zbl | MR

[Sri10] Srinivasan, Varadharaj R. Iterated antiderivative extensions, J. Algebra, Volume 324 (2010) no. 8, pp. 2042-2051 | Zbl | MR | DOI