On the sharp regularity of solutions to hyperbolic boundary value problems
Annales Henri Lebesgue, Volume 6 (2023), pp. 1349-1369.

Metadata

Keywords Boundary value problems, hyperbolic problems, regularity of solutions, interpolation

Abstract

We prove some sharp regularity results for solutions of classical first order hyperbolic initial boundary value problems. Our two main improvements on the existing literature are weaker regularity assumptions for the boundary data and regularity in fractional Sobolev spaces. This last point is specially interesting when the regularity index belongs to 1/2+, as it involves nonlocal compatibility conditions.


References

[Ama19] Amann, Herbert Linear and quasilinear parabolic problems. Vol. II: Function spaces, Monographs in Mathematics, 106, Birkhäuser; Springer, 2019 | DOI | MR | Zbl

[Aud11] Audiard, Corentin On mixed initial-boundary value problems for systems that are not strictly hyperbolic, Appl. Math. Lett., Volume 24 (2011) no. 5, pp. 757-761 | DOI | MR | Zbl

[Aud19] Audiard, Corentin Global Strichartz estimates for the Schrödinger equation with non zero boundary conditions and applications, Ann. Inst. Fourier, Volume 69 (2019) no. 1, pp. 31-80 | DOI | Numdam | MR | Zbl

[BGS07] Benzoni-Gavage, Sylvie; Serre, Denis Multidimensional hyperbolic partial differential equations. First-order systems and applications, Oxford Mathematical Monographs, The Clarendon Press; Oxford University Press, 2007 | MR | Zbl

[CP81] Chazarain, Jacques; Piriou, Alain Introduction à la théorie des équations aux dérivées partielles linéaires, Gauthier-Villars, 1981 | MR | Zbl

[Fri58] Friedrichs, Kurt O. Symmetric positive linear differential equations, Commun. Pure Appl. Math., Volume 11 (1958), pp. 333-418 | DOI | MR | Zbl

[Gri67] Grisvard, Pierre Caractérisation de quelques espaces d’interpolation, Arch. Ration. Mech. Anal., Volume 25 (1967), pp. 40-63 | DOI | MR | Zbl

[Hör66] Hörmander, Lars Pseudo-differential operators and non-elliptic boundary problems, Ann. Math., Volume 83 (1966), pp. 129-209 | DOI | MR | Zbl

[IL21] Iguchi, Tatsuo; Lannes, David Hyperbolic free boundary problems and applications to wave-structure interactions, Indiana Univ. Math. J., Volume 70 (2021) no. 1, pp. 353-464 | DOI | MR | Zbl

[Kre70] Kreiss, Heinz-Otto Initial boundary value problems for hyperbolic systems, Commun. Pure Appl. Math., Volume 23 (1970), pp. 277-298 | DOI | MR | Zbl

[LM68a] Lions, Jacques-Louis; Magenes, Enrico Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, 17, Dunod, 1968 | MR | Zbl

[LM68b] Lions, Jacques-Louis; Magenes, Enrico Problèmes aux limites non homogènes et applications. Vol. 2, Travaux et Recherches Mathématiques, 18, Dunod, 1968 | MR | Zbl

[LP60] Lax, Peter D.; Phillips, Ralph S. Local boundary conditions for dissipative symmetric linear differential operators, Commun. Pure Appl. Math., Volume 13 (1960), pp. 427-455 | DOI | MR | Zbl

[Mét00] Métivier, Guy The block structure condition for symmetric hyperbolic systems, Bull. Lond. Math. Soc., Volume 32 (2000) no. 6, pp. 689-702 | DOI | MR | Zbl

[Mét01] Métivier, Guy Stability of multidimensional shocks, Advances in the theory of shock waves (Progress in Nonlinear Differential Equations and their Applications), Volume 47, Birkhäuser, 2001, pp. 25-103 | DOI | MR | Zbl

[Mét17] Métivier, Guy On the L 2 well posedness of hyperbolic initial boundary value problems, Ann. Inst. Fourier, Volume 67 (2017) no. 5, pp. 1809-1863 | DOI | Numdam | MR | Zbl

[Rau72] Rauch, Jeffrey B. 2 is a continuable initial condition for Kreiss’ mixed problems, Commun. Pure Appl. Math., Volume 25 (1972), pp. 265-285 | DOI | MR | Zbl

[RM74] Rauch, Jeffrey B.; Massey, Frank J. III Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Am. Math. Soc., Volume 189 (1974), pp. 303-318 | MR | Zbl

[Tar72] Tartakoff, David S. Regularity of solutions to boundary value problems for first order systems, Indiana Univ. Math. J., Volume 21 (1972), pp. 1113-1129 | DOI | MR | Zbl