Metadata
Abstract
We prove that every -regular unimodular random network carries an invariant random Schreier decoration. Equivalently, it is the Schreier coset graph of an invariant random subgroup of the free group . As a corollary we get that every -regular graphing is the local isomorphic image of a graphing coming from a p.m.p. action of .
The key ingredients of the analogous statement for finite graphs do not generalize verbatim to the measurable setting. We find a more subtle way of adapting these ingredients and prove measurable coloring theorems for graphings along the way.
References
[AGV14] Kesten’s theorem for invariant random subgroups, Duke Math. J., Volume 163 (2014) no. 3, pp. 465-488 | MR | Zbl
[AL07] Processes on unimodular random networks, Electron. J. Probab., Volume 12 (2007), pp. 1454-1508 | MR | Zbl
[Bow12] Invariant random subgroups of the free group (2012) (https://arxiv.org/abs/1204.5939v1)
[BS01] Recurrence of Distributional Limits of Finite Planar Graphs, Electron. J. Probab., Volume 6 (2001), 23, p. 13 pp. | DOI | MR | Zbl
[BT17] Unimodularity of invariant random subgroups, Trans. Am. Math. Soc., Volume 369 (2017) no. 6, pp. 4043-4061 | DOI | MR | Zbl
[Can13] On invariant Schreier structures (2013) (https://arxiv.org/abs/1309.5163v1)
[CK13] Measurable chromatic and independence numbers for ergodic graphs and group actions, Groups Geom. Dyn., Volume 7 (2013) no. 1, pp. 127-180 | DOI | MR | Zbl
[CL17] Invariant random perfect matchings in Cayley graphs, Groups Geom. Dyn., Volume 11 (2017) no. 1, pp. 211-244 | DOI | MR | Zbl
[CLP16] Kőnig’s line coloring and Vizing’s theorems for graphings, Forum Math. Sigma, Volume 4 (2016), e27 | Zbl
[Ele07] On limits of finite graphs, Combinatorica, Volume 27 (2007) no. 4, pp. 503-507 | DOI | MR | Zbl
[HLS14] Limits of locally–globally convergent graph sequences, Geom. Funct. Anal., Volume 24 (2014) no. 1, pp. 269-296 | DOI | MR | Zbl
[KM15] Descriptive graph combinatorics, 2015 (preprint available at http://www.math.caltech.edu/~kechris/papers/combinatorics20book.pdf)
[KST99] Borel chromatic numbers, Adv. Math., Volume 141 (1999) no. 1, pp. 1-44 | DOI | MR | Zbl
[Lac88] Closed sets without measurable matching, Proc. Am. Math. Soc., Volume 103 (1988) no. 3, pp. 894-896 | DOI | MR | Zbl
[Lov12] Large networks and graph limits, Colloquium Publications, 60, American Mathematical Society, 2012 | Zbl