Metadata
Abstract
The second author has shown that existence of extremal Kähler metrics on semisimple principal toric fibrations is equivalent to a notion of weighted uniform K-stability, read off from the moment polytope. The purpose of this article is to prove various sufficient conditions of weighted uniform K-stability which can be checked effectively and explore the low dimensional new examples of extremal Kähler metrics it provides.
References
[Abr01] Kähler metrics on toric orbifolds, J. Differ. Geom., Volume 58 (2001) no. 1, pp. 151-187 | MR | Zbl
[Abr03] Kähler geometry of toric manifolds in symplectic coordinates, Symplectic and contact topology: Interactions and perspectives (AMS Fields Institute Communications), Volume 35, American Mathematical Society, 2003, pp. 1-24 | Zbl
[ACC + 23] The Calabi problem for Fano threefolds, 2023 (available at https://www.maths.ed.ac.uk/cheltsov/research.html)
[ACG06] Hamiltonian 2-Forms in Kähler Geometry, I General Theory, J. Differ. Geom., Volume 73 (2006) no. 3, pp. 359-412 | Zbl
[ACGTF04] Hamiltonian 2-forms in Kähler geometry. II: Global classification, J. Differ. Geom., Volume 68 (2004) no. 2, pp. 277-345 | Zbl
[ACGTF08] Hamiltonian 2-forms in Kähler geometry. III: Extremal metrics and stability, Invent. Math., Volume 173 (2008) no. 3, pp. 547-601 | DOI | Zbl
[ACGTF11] Extremal Kähler metrics on projective bundles over a curve, Adv. Math., Volume 227 (2011) no. 6, pp. 2385-2424 | DOI | Zbl
[AJL22] Weighted K-stability and coercivity with applications to extremal Kahler and Sasaki metrics (2022) (https://arxiv.org/abs/2104.09709v2)
[Apo22] The Kähler geometry of toric manifolds (2022) (Lecture Notes of CIRM winter school 2019, https://arxiv.org/abs/2208.12493)
[BB13] Real Monge–Ampère equations and Kähler–Ricci solitons on toric log Fano varieties, Ann. Fac. Sci. Toulouse, Math., Volume 22 (2013) no. 4, pp. 649-711 | DOI | Numdam | Zbl
[Cal82] Extremal Kähler metrics, Seminar on Differential Geometry (Annals of Mathematics Studies), Volume 102, Princeton University Press, 1982, pp. 259-290 | Zbl
[Cal85] Extremal Kähler metrics, II, Differential Geometry and Complex Analysis (Chavel, I.; Farkas, H. M., eds.) (Differential geometry and complex analysis), Volume dedic. H. E. Rauch, Springer, 1985, pp. 95-114 | DOI | MR | Zbl
[CC18] On the constant scalar curvature Kähler metrics (III) – general automorphism group (2018) (https://arxiv.org/abs/1801.05907) | Numdam
[CC21a] On the constant scalar curvature Kähler metrics. I: A priori estimates, J. Am. Math. Soc., Volume 34 (2021) no. 4, pp. 909-936 | DOI | Zbl
[CC21b] On the constant scalar curvature Kähler metrics. II: Existence results, J. Am. Math. Soc., Volume 34 (2021) no. 4, pp. 937-1009 | DOI | Zbl
[Del88] Hamiltoniens périodiques et image convexe de l’application moment, Bull. Soc. Math. Fr., Volume 116 (1988) no. 3, pp. 315-339 | DOI | Zbl
[Del22] Uniform K-stability of polarized spherical varieties (2022) (https://arxiv.org/abs/2009.06463)
[DGSW18] Connecting toric manifolds by conical Kähler–Einstein metrics, Adv. Math., Volume 323 (2018), pp. 38-83 | DOI | Zbl
[Don02] Scalar curvature and stability of toric varieties, J. Differ. Geom., Volume 62 (2002) no. 2, pp. 289-349 | MR | Zbl
[Don08] Kähler geometry on toric manifolds, and some other manifolds with large symmetry, Handbook of geometric analysis. No. 1 (Advanced Lectures in Mathematics (ALM)), Volume 7, International Press, 2008, pp. 29-75 | MR | Zbl
[FM95] Bilinear forms and extremal Kähler vector fields associated with Kähler classes, Math. Ann., Volume 301 (1995) no. 2, pp. 199-210 | DOI | Zbl
[Gau10] Calabi’s extremal metrics: An elementary introduction, Volume 34, 2010 no. 37-40, p. 7 (Lecture Notes, Preprint)
[GS82] Convexity properties of the moment mapping, Invent. Math., Volume 67 (1982), pp. 491-513 | DOI | MR | Zbl
[Gua99] On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundle, Math. Res. Lett., Volume 6 (1999) no. 5-6, pp. 547-555 | DOI | Zbl
[Gui94] Kähler structures on toric varieties, J. Differ. Geom., Volume 40 (1994) no. 2, pp. 285-309 | Zbl
[He19] On Calabi’s extremal metrics and properness, Trans. Am. Math. Soc., Volume 372 (2019) no. 8, pp. 5595-5619 | MR | Zbl
[His20] Stability and coercivity for toric polarizations (2020) (https://arxiv.org/abs/1610.07998v3)
[HS02] A momentum construction for circle-invariant Kähler metrics, Trans. Am. Math. Soc., Volume 354 (2002) no. 6, pp. 2285-2325 | DOI | Zbl
[Jub21] A Yau–Tian–Donaldson correspondance on a class of toric fibration (2021) (https://arxiv.org/abs/2108.12297v3)
[Lah19] Kähler metrics with weighted constant scalar curvature and weighted K-stability, Proc. Lond. Math. Soc., Volume 119 (2019) no. 4, pp. 1065-1114 | DOI | MR | Zbl
[Leg16] Toric Kähler–Einstein metrics and convex compact polytopes, J. Geom. Anal., Volume 26 (2016) no. 1, pp. 399-427 | DOI | MR | Zbl
[Leg19] A note on extremal toric almost Kähler metrics, Moduli of -stable varieties (Springer INdAM Series), Volume 31, Springer, 2019, pp. 53-74 | DOI | MR | Zbl
[LH20] On the Yau–Tian–Donaldson conjecture for generalized Kähler-Ricci soliton equations (2020) (accepted by emphCommunications on Pure and Applied Mathematics, https://arxiv.org/abs/2006.00903)
[Li20] Geodesic rays and stability in the cscK problem (2020) (https://arxiv.org/abs/2001.01366)
[LLS16] Some Estimates for a Generalized Abreu’s Equation, Differ. Geom. Appl., Volume 48 (2016), pp. 87-103 | MR | Zbl
[LLS17] Interior regularity for a Generalized Abreu Equation, Int. J. Math., Volume 28 (2017) no. 7, 1750053 | MR | Zbl
[LLS21] Extremal metrics on toric manifolds and homogeneous toric bundles (2021) (https://arxiv.org/abs/2110.08491)
[LS93] On the Kähler classes of extremal metrics, Geometry and global analysis (Sendai, 1993), Tohoku University, Sendai, 1993, pp. 255-271 | Zbl
[Mab86] K-energy Maps Integrating Futaki Invariants, Tôhoku Math. J., Volume 38 (1986) no. 1-2, pp. 575-593 | MR | Zbl
[Mat57] Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne, Nagoya Math. J., Volume 11 (1957), pp. 145-150 | DOI | MR | Zbl
[NS21] A uniform version of the Yau–Tian–Donaldson correspondence for extremal Kähler metrics on polarized toric manifolds (2021) (https://arxiv.org/abs/2110.10386v1)
[Szé07] Extremal metrics and K-stability, Bull. Lond. Math. Soc., Volume 39 (2007) no. 1, pp. 76-84 | DOI | MR | Zbl
[Szé14] An introduction to extremal Kähler metrics, Graduate Studies in Mathematics, 152, American Mathematical Society, 2014 | DOI | Zbl
[WZ04] Käwhler-Ricci solitons on toric manifolds with positive first Chern class, Adv. Math., Volume 188 (2004) no. 1, pp. 87-103 | DOI | Zbl
[ZZ08] Relative K-stability and modified K-energy on toric manifolds, Adv. Math., Volume 219 (2008) no. 4, pp. 1327-1362 | DOI | MR | Zbl