An exponential inequality for orthomartingale difference random fields and some applications
Annales Henri Lebesgue, Volume 6 (2023), pp. 575-594.

Metadata

Keywords Random fields, orthomartingales, functional central limit theorem, Hölder spaces

Abstract

In this paper, we establish an exponential inequality for random fields, which is applied in the context of convergence rates in the law of large numbers and weak invariance principle in some Hölder spaces.


References

[BGT89] Bingham, Nicholas; Goldie, Charles; Teugels, Jan Regular variation, Encyclopedia of Mathematics and Its Applications, 27, Cambridge University Press, 1989 | Zbl

[Bil61] Billingsley, Patrick The Lindeberg–Lévy theorem for martingales, Proc. Am. Math. Soc., Volume 12 (1961), pp. 788-792 | Zbl

[Cai69] Cairoli, Renzo Un théorème de convergence pour martingales à indices multiples, C. R. Acad. Sci., Paris, Sér. A, Volume 269 (1969), p. A587-A589 | MR | Zbl

[CDV15] Cuny, Christophe; Dedecker, Jérôme; Volný, Dalibor A functional CLT for fields of commuting transformations via martingale approximation, Zap. Nauchn. Semin. (POMI), Volume 441 (2015) no. 22, pp. 239-262 | Zbl

[Ded01] Dedecker, Jérôme Exponential inequalities and functional central limit theorems for a random fields, ESAIM, Probab. Stat., Volume 5 (2001), pp. 77-104 | DOI | MR | Zbl

[dlPMS95] de la Peña, Victor H.; Montgomery-Smith, Stephen J. Decoupling inequalities for the tail probabilities of multivariate U-statistics, Ann. Probab., Volume 23 (1995) no. 2, pp. 806-816 | MR | Zbl

[Erd49] Erdös, Pál On a theorem of Hsu and Robbins, Ann. Math., Volume 20 (1949), pp. 286-291 | MR | Zbl

[FGL12] Fan, Xiequan; Grama, Ion; Liu, Quansheng Large deviation exponential inequalities for supermartingales, Electron. Commun. Probab., Volume 17 (2012) no. 59, p. 8 | MR | Zbl

[FGL15] Fan, Xiequan; Grama, Ion; Liu, Quansheng Exponential inequalities for martingales with applications, Electron. J. Probab., Volume 20 (2015) no. 1, 1, 22 pages | MR | Zbl

[Gir16] Giraudo, Davide Holderian weak invariance principle under a Hannan type condition, Stochastic Processes Appl., Volume 126 (2016) no. 1, pp. 290-311 | DOI | MR | Zbl

[Gir17] Giraudo, Davide Holderian weak invariance principle for stationary mixing sequences, J. Theor. Probab., Volume 30 (2017) no. 1, pp. 196-211 | DOI | MR | Zbl

[Gir18a] Giraudo, Davide Hölderian weak invariance principle under the Maxwell and Woodroofe condition, Braz. J. Probab. Stat., Volume 32 (2018) no. 1, pp. 172-187 | MR | Zbl

[Gir18b] Giraudo, Davide Invariance principle via orthomartingale approximation, Stoch. Dyn., Volume 18 (2018) no. 6, 1850043, 29 pages | MR | Zbl

[Gir19] Giraudo, Davide Deviation inequalities for Banach space valued martingales differences sequences and random fields, ESAIM, Probab. Stat., Volume 23 (2019), pp. 922-946 | DOI | MR | Zbl

[Gir21] Giraudo, Davide An exponential inequality for U-statistics of i.i.d. data, Theory Probab. Appl., Volume 66 (2021) no. 3, pp. 408-429 | DOI | MR | Zbl

[Ham00] Hamadouche, Djamel Invariance principles in Hölder spaces, Port. Math., Volume 57 (2000) no. 2, pp. 127-151 | MR | Zbl

[HR47] Hsu, Pao Lu; Robbins, Herbert Complete convergence and the law of large numbers, Proc. Natl. Acad. Sci. USA, Volume 33 (1947), pp. 25-31 | MR | Zbl

[Ibr63] Ibragimov, Il’dar A. A central limit theorem for a class of dependent random variables, Teor. Veroyatn. Primen., Volume 8 (1963), pp. 89-94 | MR | Zbl

[KL11] Kuczmaszewska, Anna; Lagodowski, Zbigniew A. Convergence rates in the SLLN for some classes of dependent random fields, J. Math. Anal. Appl., Volume 380 (2011) no. 2, pp. 571-584 | DOI | MR | Zbl

[Lag16] Lagodowski, Zbigniew A. An approach to complete convergence theorems for dependent random fields via application of Fuk-Nagaev inequality, J. Math. Anal. Appl., Volume 437 (2016) no. 1, pp. 380-395 | DOI | MR | Zbl

[LV01] Lesigne, Emmanuel; Volný, Dalibor Large deviations for martingales, Stochastic Processes Appl., Volume 96 (2001) no. 1, pp. 143-159 | DOI | MR | Zbl

[LW09] Liu, Quansheng; Watbled, Frédérique Exponential inequalities for martingales and asymptotic properties of the free energy of directed polymers in a random environment, Stochastic Processes Appl., Volume 119 (2009) no. 10, pp. 3101-3132 | MR | Zbl

[MPU06] Merlevède, Florence; Peligrad, Magda; Utev, Sergey Recent advances in invariance principles for stationary sequences, Probab. Surv., Volume 3 (2006), pp. 1-36 | MR | Zbl

[PZ18] Peligrad, Magda; Zhang, Na Martingale approximations for random fields, Electron. Commun. Probab., Volume 23 (2018), 28, 9 pages | MR | Zbl

[RS03] Račkauskas, Alfredas; Suquet, Charles Necessary and sufficient condition for the Lamperti invariance principle, Teor. Ĭmovirn. Mat. Stat., Volume 68 (2003), pp. 115-124 | Zbl

[RS04a] Račkauskas, Alfredas; Suquet, Charles Central limit theorems in Hölder topologies for Banach space valued random fields, Teor. Veroyatn. Primen., Volume 49 (2004) no. 1, pp. 109-125 | DOI | Zbl

[RS04b] Račkauskas, Alfredas; Suquet, Charles Necessary and sufficient condition for the functional central limit theorem in Hölder spaces, J. Theor. Probab., Volume 17 (2004) no. 1, pp. 221-243 | DOI | Zbl

[RS07] Račkauskas, Alfredas; Suquet, Charles Hölderian invariance principles and some applications for testing epidemic changes, Long memory in economics, Springer, 2007, pp. 109-128 | DOI | Zbl

[RSZ07] Račkauskas, Alfredas; Suquet, Charles; Zemlys, Vaidotas A Hölderian functional central limit theorem for a multi-indexed summation process, Stochastic Processes Appl., Volume 117 (2007) no. 8, pp. 1137-1164 | DOI | Zbl

[Rüs81] Rüschendorf, Ludger Ordering of distributions and rearrangement of functions, Ann. Probab., Volume 9 (1981) no. 2, pp. 276-283 | MR | Zbl

[Spi56] Spitzer, Frank A combinatorial lemma and its application to probability theory, Trans. Am. Math. Soc., Volume 82 (1956), pp. 323-339 | DOI | MR | Zbl

[Vol15] Volný, Dalibor A central limit theorem for fields of martingale differences, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 12, pp. 1159-1163 | DOI | Numdam | MR | Zbl

[Vol19] Volný, Dalibor On limit theorems for fields of martingale differences, Stochastic Processes Appl., Volume 129 (2019) no. 3, pp. 841-859 | DOI | MR | Zbl

[Wic69] Wichura, Michael J. Inequalities with applications to the weak convergence of random processes with multi-dimensional time parameters, Ann. Math. Stat., Volume 40 (1969), pp. 681-687 | DOI | MR | Zbl

[ZRP20] Zhang, Na; Reding, Lucas; Peligrad, Magda On the quenched central limit theorem for stationary random fields under projective criteria, J. Theor. Probab., Volume 33 (2020) no. 4, pp. 2351-2379 | DOI | MR | Zbl