Metadata
Abstract
This paper, which is the last of a series of three papers, studies dynamical properties of elements of , the outer automorphism group of a nonabelian free group . We prove that, for every subgroup of , there exists an element such that, for every element of , the conjugacy class has polynomial growth under iteration of if and only if has polynomial growth under iteration of every element of .
References
[BFH05] The Tits alternative for Out II: A Kolchin type theorem, Ann. Math., Volume 161 (2005) no. 1, pp. 1-59 | DOI | MR | Zbl
[BH92] Train tracks and automorphisms of free groups (2), Volume 135, 1992 no. 1, pp. 1-51 | DOI | MR | Zbl
[CU18] Simultaneous construction of hyperbolic isometries, Volume 294, 2018 no. 1, pp. 71-88 | DOI | MR | Zbl
[CU20] Atoroidal dynamics of subgroups of (2), Volume 102, 2020 no. 2, pp. 818-845 | DOI | MR | Zbl
[FH11] The recognition theorem for , Groups Geom. Dyn., Volume 5 (2011) no. 1, pp. 39-106 | DOI | MR | Zbl
[FLP79] Travaux de Thurston sur les surfaces (Fathi, Albert; Laudenbach, François; Poenaru, Valentin, eds.), Astérisque, 66-67, Société Mathématique de France, 1979 | Zbl
[FM11] A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, 2011 | DOI | Zbl
[Fuj02] On the outer automorphism group of a hyperbolic group, Isr. J. Math., Volume 131 (2002), pp. 277-284 | DOI | MR | Zbl
[GaL95] The rank of actions on -trees, Ann. Sci. Éc. Norm. Supér., Volume 28 (1995) no. 5, pp. 549-570 | DOI | MR | Zbl
[GH19] Algebraic laminations for free products and arational trees, Algebr. Geom. Topol., Volume 19 (2019) no. 5, pp. 2283-2400 | DOI | MR | Zbl
[GH22] Boundaries of relative factor graphs and subgroup classification for automorphisms of free products, Geom. Topol., Volume 26 (2022) no. 1, pp. 71-126 | DOI | MR | Zbl
[GL15] McCool groups of toral relatively hyperbolic groups, Algebr. Geom. Topol., Volume 15 (2015) no. 6, pp. 3485-3534 | DOI | MR | Zbl
[GL17] JSJ decompositions of groups, Astérisque, 395, Société Mathématique de France, 2017 | Zbl
[Gue21] Currents relative to a malnormal subgroup system (2021) (https://arxiv.org/abs/2112.01112)
[Gue22a] Géométrie, dynamique et rigidité de groupes d’automorphismes de produits libres, Ph. D. Thesis, Université Paris-Saclay, Paris, France (2022)
[Gue22b] North-South type dynamics of relative atoroidal automorphisms of free groups (2022) (https://arxiv.org/abs/2203.04112)
[Gup17] Relative currents, Conform. Geom. Dyn., Volume 21 (2017), pp. 319-352 | DOI | MR | Zbl
[Gup18] Loxodromic elements for the relative free factor complex, Geom. Dedicata, Volume 196 (2018), pp. 91-121 | DOI | MR | Zbl
[HM20] Subgroup Decomposition in , Memoirs of the American Mathematical Society, 1280, American Mathematical Society, 2020 | DOI | Zbl
[Hor16] Hyperbolic graphs for free products, and the Gromov boundary of the graph of cyclic splittings, J. Topol., Volume 9 (2016) no. 2, pp. 401-450 | DOI | MR | Zbl
[Iva92] Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs, 115, American Mathematical Society, 1992 | MR | Zbl
[Lev09] Counting growth types of automorphisms of free groups, Geom. Funct. Anal., Volume 19 (2009) no. 4, pp. 1119-1146 | DOI | MR | Zbl
[Man14a] Hyperbolicity of the cyclic splitting graph, Geom. Dedicata, Volume 173 (2014), pp. 271-280 | DOI | MR | Zbl
[Man14b] Some hyperbolic -graphs and nonunique ergodicity of very small -trees, Ph. D. Thesis, University of Utah, Salt Lake City, USA (2014)
[Mar95] Non-uniquely ergodic foliations of thin-type, measured currents and automorphisms of free groups, Ph. D. Thesis, University of California, Los Angeles, USA (1995) | MR
[McC85] A “Tits-alternative” for subgroups of surface mapping class groups, Trans. Am. Math. Soc., Volume 291 (1985), pp. 583-612 | DOI | MR | Zbl
[SW79] Topological methods in group theory, Homological group theory, Proc. Symp., Durham 1977 (Wall, C. T. C., ed.) (London Mathematical Society Lecture Note Series), Volume 36, Cambridge University Press, 1979, pp. 137-203 | MR | Zbl
[Tit72] Free subgroups in linear goups, J. Algebra, Volume 20 (1972), pp. 250-270 | DOI | Zbl
[ZVC80] Surfaces and planar discontinuous groups, Lecture Notes in Mathematics, 835, Springer, 1980 | DOI | Zbl