Symplectic cohomology of compound Du Val singularities
Annales Henri Lebesgue, Volume 6 (2023), pp. 727-765

Metadata

Keywords Symplectic cohomology ,  compound Du Val ,  terminal ,  singularities ,  contact geometry ,  links ,  homological mirror symmetry

Abstract

We compute symplectic cohomology for Milnor fibres of certain compound Du Val singularities that admit small resolution by using homological mirror symmetry. Our computations suggest a new conjecture that the existence of a small resolution has strong implications for the symplectic cohomology and conversely. We also use our computations to give a contact invariant of the link of the singularities and thereby distinguish many contact structures on connected sums of S 2 ×S 3 .


References

[Abo15] Abouzaid, Mohammed Symplectic cohomology and Viterbo’s theorem, Free loop spaces in geometry and topology (IRMA Lectures in Mathematics and Theoretical Physics), Volume 24, European Mathematical Society, 2015, pp. 271-485 | MR | Zbl

[AGV12] Arnol’d, Vladimir I.; Gusein-Zade, Sabir M.; Varchenko, Alexander N. Singularities of differentiable maps. Volume 1: Classification of critical points, caustics and wave fronts, Modern Birkhäuser Classics, Birkhäuser, 2012 (translated from the Russian by Ian Porteous, based on a previous translation by Mark Reynolds, reprint of the 1985 edition) | MR | Zbl

[BEE12] Bourgeois, Frédéric; Ekholm, Tobias; Eliashberg, Yakov Effect of Legendrian surgery, Geom. Topol., Volume 16 (2012) no. 1, pp. 301-389 (With an Appendix by Sheel Ganatra and Maksim Maydanskiy) | DOI | MR | Zbl

[BFK14] Ballard, Matthew; Favero, David; Katzarkov, Ludmil A category of kernels for equivariant factorizations and its implications for Hodge theory, Publ. Math., Inst. Hautes Étud. Sci., Volume 120 (2014), pp. 1-111 | MR | Zbl | Numdam | DOI

[BH92] Berglund, Per; Hübsch, Tristan A generalized construction of mirror manifolds, Essays on mirror manifolds, International Press, 1992, pp. 388-407 | MR | Zbl

[BO09] Bourgeois, Frédéric; Oancea, Alexandru An exact sequence for contact- and symplectic homology, Invent. Math., Volume 175 (2009) no. 3, pp. 611-680 | DOI | MR | Zbl

[Bou02] Bourgeois, Frédéric A Morse–Bott approach to contact homology, ProQuest LLC, 2002, 123 pages Thesis (Ph.D.)–Stanford University, USA | MR

[Bri66] Brieskorn, Egbert Beispiele zur Differentialtopologie von Singularitäten, Invent. Math., Volume 2 (1966), pp. 1-14 | DOI | MR | Zbl

[Bri68] Brieskorn, Egbert Die Auflösung der rationalen Singularitäten holomorpher Abbildungen, Math. Ann., Volume 178 (1968), pp. 255-270 | DOI | MR | Zbl

[CDGG17] Chantraine, Baptiste; Dimitroglou Rizell, Georgios; Ghiggini, Paolo; Golovko, Roman Geometric generation of the wrapped Fukaya category of Weinstein manifolds and sectors (2017) https://arxiv.org/abs/1712.09126 (to appear in Annales scientifiques de l’École normale supérieure)

[CFH95] Cieliebak, Kai; Floer, Andreas; Hofer, Helmut H. W. Symplectic homology. II. A general construction, Math. Z., Volume 218 (1995) no. 1, pp. 103-122 | DOI | MR | Zbl

[CO18] Cieliebak, Kai; Oancea, Alexandru Symplectic homology and the Eilenberg–Steenrod axioms, Algebr. Geom. Topol., Volume 18 (2018) no. 4, pp. 1953-2130 (Appendix written jointly with Peter Albers) | DOI | MR | Zbl

[EL17] Ekholm, Tobias; Lekili, Yankı Duality between Lagrangian and Legendrian invariants (2017) https://arxiv.org/abs/1701.01284 (to appear in Geometry & Topology)

[FH94] Floer, Andreas; Hofer, Helmut H. W. Symplectic homology. I. Open sets in n , Math. Z., Volume 215 (1994) no. 1, pp. 37-88 | Zbl | DOI | MR

[Fri86] Friedman, Robert Simultaneous resolution of threefold double points, Math. Ann., Volume 274 (1986) no. 4, pp. 671-689 | DOI | MR | Zbl

[FU09] Futaki, Masahiro; Ueda, Kazushi Homological mirror symmetry for Brieskorn–Pham singularities, Proceeding of the 66 th Japan Geometry Symposium, Saga University (2009), pp. 98-107

[FU11] Futaki, Masahiro; Ueda, Kazushi Homological mirror symmetry for Brieskorn–Pham singularities, Sel. Math., New Ser., Volume 17 (2011) no. 2, pp. 435-452 | DOI | MR | Zbl

[FU13] Futaki, Masahiro; Ueda, Kazushi Homological mirror symmetry for singularities of type D, Math. Z., Volume 273 (2013) no. 3-4, pp. 633-652 | MR | Zbl | DOI

[Gam20] Gammage, Benjamin Mirror symmetry for Berglund–Hübsch Milnor fibers (2020) (https://arxiv.org/abs/2010.15570)

[Gan13] Ganatra, Sheel Symplectic Cohomology and Duality for the Wrapped Fukaya Category (2013) (https://arxiv.org/abs/1304.7312)

[Hab21] Habermann, Matthew Homological mirror symmetry for nodal stacky curves (2021) (https://arxiv.org/abs/2101.12178)

[Hof90] Hofer, Helmut H. W. Symplectic capacities, Geometry of low-dimensional manifolds, 2 (Durham, 1989) (London Mathematical Society Lecture Note Series), Volume 151, Cambridge University Press, 1990, pp. 15-34 | Zbl | MR

[HS20] Habermann, Matthew; Smith, Jack Homological Berglund–Hübsch mirror symmetry for curve singularities, J. Symplectic Geom., Volume 18 (2020) no. 6, pp. 1515-1574 | Zbl | MR | DOI

[Kat91] Katz, Sheldon Small resolutions of Gorenstein threefold singularities, Algebraic geometry: Sundance 1988 (Contemporary Mathematics), Volume 116, American Mathematical Society, 1991, pp. 61-70 | DOI | MR | Zbl

[Kel03] Keller, Bernhard Derived invariance of higher structures on the Hochschild complex (2003) (preprint, https://webusers.imj-prg.fr/~bernhard.keller/publ/dih.pdf)

[Kel11] Keller, Bernhard Deformed Calabi–Yau completions, J. Reine Angew. Math., Volume 654 (2011), pp. 125-180 (With an appendix by Michel Van den Bergh) | DOI | MR | Zbl

[Koe08] van Koert, O. Contact homology of Brieskorn manifolds, Forum Math., Volume 20 (2008) no. 2, pp. 317-339 | DOI | MR | Zbl

[Lau81] Laufer, Henry B. On CP 1 as an exceptional set, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) (Annals of Mathematics Studies), Volume 100, Princeton University Press (1981), pp. 261-275 | MR | Zbl

[LP16] Lekili, Yankı; Pascaleff, James Floer cohomology of 𝔤-equivariant Lagrangian branes, Compos. Math., Volume 152 (2016) no. 5, pp. 1071-1110 | Zbl | DOI | MR

[LU18] Lekili, Yankı; Ueda, Kazushi Homological mirror symmetry for Milnor fibers via moduli of A -structures (2018) https://arxiv.org/abs/1806.04345 (to appear in Journal of Topology)

[LU21] Lekili, Yankı; Ueda, Kazushi Homological mirror symmetry for Milnor fibers of simple singularities, Algebr. Geom., Volume 8 (2021) no. 5, pp. 562-586 | DOI | MR | Zbl

[Mar96] Markushevich, Dmitri Minimal discrepancy for a terminal cDV singularity is 1, J. Math. Sci., Tokyo, Volume 3 (1996) no. 2, pp. 445-456 | MR | Zbl

[McL16] McLean, Mark Reeb orbits and the minimal discrepancy of an isolated singularity, Invent. Math., Volume 204 (2016) no. 2, pp. 505-594 | DOI | MR | Zbl

[Mil68] Milnor, John Singular points of complex hypersurfaces, Annals of Mathematics Studies, 61, Princeton University Press; University of Tokyo Press, 1968 | MR | Zbl

[Mor85] Mori, Shigefumi On 3-dimensional terminal singularities, Nagoya Math. J., Volume 98 (1985), pp. 43-66 | DOI | MR | Zbl

[Mum61] Mumford, David The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math., Inst. Hautes Étud. Sci. (1961) no. 9, pp. 5-22 | MR | Zbl | Numdam | DOI

[Orl11] Orlov, Dmitri Formal completions and idempotent completions of triangulated categories of singularities, Adv. Math., Volume 226 (2011) no. 1, pp. 206-217 | MR | DOI | Zbl

[Pin83] Pinkham, Henry C. Factorization of birational maps in dimension 3, Singularities, Part 2 (Arcata, Calif., 1981) (Proceedings of Symposia in Pure Mathematics), Volume 40, American Mathematical Society, 1983, pp. 343-371 | MR | Zbl

[PV21] Polishchuk, Alexander; Varolgunes, Umut On homological mirror symmetry for chain type polynomials (2021) (https://arxiv.org/abs/2105.03808)

[Rei83] Reid, Miles Minimal models of canonical 3-folds, Algebraic varieties and analytic varieties (Tokyo, 1981) (Advanced Studies in Pure Mathematics), Volume 1, North-Holland, 1983, pp. 131-180 | DOI | MR | Zbl

[Sch95] Schwarz, Matthias Cohomology operations from S 1 -cobordisms in Floer homology, Ph. D. Thesis, ETH Zürich, Switzerland (1995), 223 pages

[Sei08] Seidel, Paul A biased view of symplectic cohomology, Current developments in mathematics, 2006, International Press, 2008, pp. 211-253 | MR | Zbl

[Sei10] Seidel, Paul Suspending Lefschetz fibrations, with an application to local mirror symmetry, Commun. Math. Phys., Volume 297 (2010) no. 2, pp. 515-528 | DOI | MR | Zbl

[Sei14] Seidel, Paul Disjoinable Lagrangian spheres and dilations, Invent. Math., Volume 197 (2014) no. 2, pp. 299-359 | DOI | MR | Zbl

[Tju70] Tjurina, Galina N. Resolution of singularities of flat deformations of double rational points, Funkts. Anal. Prilozh., Volume 4 (1970) no. 1, pp. 77-83 | MR

[Ueb16] Uebele, Peter Symplectic homology of some Brieskorn manifolds, Math. Z., Volume 283 (2016) no. 1-2, pp. 243-274 | Zbl | MR | DOI

[Ueb19] Uebele, Peter Periodic Reeb flows and products in symplectic homology, J. Symplectic Geom., Volume 17 (2019) no. 4, pp. 1201-1250 | Zbl | MR | DOI

[Var80] Varčenko, Alexander N. Contact structures and isolated singularities, Vestn. Mosk. Univ., Ser. I (1980) no. 2, pp. 18-21 | Zbl | MR

[Vit99] Viterbo, Claude Functors and computations in Floer homology with applications. I, Geom. Funct. Anal., Volume 9 (1999) no. 5, pp. 985-1033 | Zbl | MR | DOI

[Wal67] Wall, Charles T. C. Classification problems in differential topology. VI. Classification of (s-1)-connected (2s+1)-manifolds, Topology, Volume 6 (1967), pp. 273-296 | Zbl | MR | DOI