Metadata
Abstract
Dolgopyat and Sarig showed that for any piecewise smooth function and almost every pair , fails to fulfill a temporal distributional limit theorem. In this article, we show that the doubly metric statement can be sharpened to a single metric one: For almost every and all , does not satisfy a temporal distributional limit theorem, regardless of centering and scaling. The obtained results additionally lead to progress in a question posed by Dolgopyat and Sarig.
References
[ADDS15] The visits to zero of a random walk driven by an irrational rotation, Isr. J. Math., Volume 207 (2015), pp. 653-717 | DOI | Zbl
[AK82] The visits to zero of some deterministic random walks, Proc. Lond. Math. Soc., Volume 44 (1982), pp. 535-553 | DOI | Zbl
[AS03] Automatic Sequences. Theory, Applications, Generalizations, Cambridge University Press, 2003 | DOI | Zbl
[Bec10] Randomness of the square root of 2 and the giant leap. I, Period. Math. Hung., Volume 60 (2010) no. 2, pp. 137-242 | DOI | Zbl
[Bec11] Randomness of the square root of 2 and the giant leap. II, Period. Math. Hung., Volume 62 (2011) no. 2, pp. 127-246 | DOI | Zbl
[Bec14] Probabilistic Diophantine approximation. Randomness in lattice point counting, Springer Monographs in Mathematics, Springer, 2014 | DOI | Zbl
[Bil95] Probability and measure, John Wiley & Sons, 1995 | Zbl
[Bor23] On the distribution of Sudler products and Birkhoff sums for the irrational rotation (2023) to appear in Annales de l’Institut Fourier (Grenoble) | arXiv
[BU18] A temporal central limit theorem for real-valued cocycles over rotations, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 54 (2018) no. 4, pp. 2304-2334 | DOI | Zbl
[Cas50] Some metrical theorems in Diophantine approximation I, Math. Proc. Camb. Philos. Soc., Volume 46 (1950), pp. 209-218 | Zbl
[DF15] Limit theorems for toral translations, Volume 89 (2015), pp. 227-277 | DOI | Zbl
[DS41] Khintchine’s problem in metric Diophantine approximation, Duke Math. J., Volume 8 (1941), pp. 243-255 | DOI | Zbl
[DS17] Temporal distributional limit theorems for dynamical systems, J. Stat. Phys., Volume 166 (2017), pp. 680-713 | DOI | Zbl
[DS18] No temporal distributional limit theorem for a.e. irrational translation, Ann. Henri Lebesgue, Volume 1 (2018), pp. 127-148 | DOI | Zbl
[DS20] Quenched and annealed temporal limit theorems for circle rotations, Some aspects of the theory of dynamical systems: a tribute to Jean-Christophe Yoccoz (Astérisque), Volume 415, Société Mathématique de France, 2020, pp. 59-85 | DOI | Zbl
[DV86] Estimates for partial sums of continued fraction partial quotients, Pac. J. Math., Volume 122 (1986), pp. 73-82 | DOI | Zbl
[FH23] On the metric upper density of Birkhoff sums for irrational rotations, Nonlinearity, Volume 36 (2023), pp. 7065-7104 | DOI
[Her79] Sur la Conjugaison Différentiable des Difféomorphismes du Cercle à des Rotations, Publ. Math., Inst. Hautes Étud. Sci., Volume 49 (1979), pp. 5-233 | DOI | Zbl
[Kes60] Uniform distribution mod 1, Ann. Math., Volume 71 (1960), pp. 445-471 | DOI | Zbl
[KN74] Uniform Distribution of Sequences, Pure and Applied Mathematics, John Wiley & Sons, 1974 | Zbl
[RS92] Continued fractions, World Scientific, 1992 | Zbl
[Sch78] A cylinder flow arising from irregularity of distribution, Compos. Math., Volume 36 (1978), pp. 225-232 | Zbl