An inverse problem: recovering the fragmentation kernel from the short-time behaviour of the fragmentation equation
Annales Henri Lebesgue, Volume 7 (2024), pp. 621-671.

Metadata

Keywords Measure-valued solutions, Size-structured partial differential equation, Fragmentation equation, Inverse problem

Abstract

Given a phenomenon described by a self-similar fragmentation equation, how to infer the fragmentation kernel from experimental measurements of the solution? To answer this question at the basis of our work, a formal asymptotic expansion suggested us that using short-time observations and initial data close to a Dirac measure should be a well-adapted strategy. As a necessary preliminary step, we study the direct problem, i.e. we prove existence, uniqueness and stability with respect to the initial data of non negative measure-valued solutions when the initial data is a compactly supported, bounded, non negative measure. A representation of the solution as a power series in the space of Radon measures is also shown. This representation is used to propose a reconstruction formula for the fragmentation kernel, using short-time experimental measurements when the initial data is close to a Dirac measure. We prove error estimates in Total Variation and Bounded Lipshitz norms; this gives a quantitative meaning to what a “short” time observation is. For general initial data in the space of compactly supported measures, we provide estimates on how the short-time measurements approximate the convolution of the fragmentation kernel with a suitably-scaled version of the initial data. The series representation also yields a reconstruction formula for the Mellin transform of the fragmentation kernel κ and an error estimate for such an approximation. Our analysis is complemented by a numerical investigation.


References

[AD02] Agoshkov, V. I.; Dubovski, P. B. Solution of the reconstruction problem of a source function in the coagulation-fragmentation equation, Russ. J. Numer. Anal. Math. Model., Volume 17 (2002) no. 4, pp. 319-330 | DOI | Zbl

[AD13] Alomari, O.; Dubovski, P. B. Recovery of the integral kernel in the kinetic fragmentation equation, Inverse Probl. Sci. Eng., Volume 21 (2013) no. 1, pp. 171-181 | DOI | Zbl

[BA06] Banasiak, J.; Arlotti, L. Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics, Springer, 2006 | Zbl

[BC90] Ball, J. M.; Carr, J. The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation, J. Stat. Phys., Volume 61 (1990) no. 1-2, pp. 203-234 | DOI | Zbl

[BCG13] Balagué, D.; Cañizo, J. A.; Gabriel, P. Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates, Kinet. Relat. Models, Volume 6 (2013) no. 2, pp. 219-243 | DOI | Zbl

[BCGM22] Bansaye, V.; Cloez, B.; Gabriel, P.; Marguet, A. A non-conservative Harris ergodic theorem, J. Lond. Math. Soc., Volume 106 (2022) no. 3, pp. 2459-2510 | DOI | Zbl

[Ber03] Bertoin, J. The asymptotic behavior of fragmentation processes, J. Eur. Math. Soc., Volume 5 (2003) no. 4, pp. 395-416 | DOI | Zbl

[Ber06] Bertoin, J. Random Fragmentation and Coagulation Processes, Cambridge Studies in Advanced Mathematics, 102, Cambridge University Press, 2006 | DOI | Zbl

[BL05] Baumeister, J.; Leitão, A. Topics in inverse problems, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2005 (25 o Colóquio Brasileiro de Matemática. [25th Brazilian Mathematics Colloquium]) | Zbl

[BLL19] Banasiak, J.; Lamb, W.; Laurencot, P. Analytic Methods for Coagulation-Fragmentation Models, I, Monographs and Research Notes in Mathematics, Chapman et Hall; CRC Press, 2019 | DOI | Zbl

[BTM + 20] Beal, D. M.; Tournus, M.; Marchante, R.; Purton, T.; Smith, D. P.; Tuite, M. F.; Doumic, M.; Xue, W.-F. The Division of Amyloid Fibrils: Systematic Comparison of Fibril Fragmentation Stability by Linking Theory with Experiments, iScience, Volume 23 (2020) no. 9, 101512 | DOI

[BW16] Bertoin, J.; Watson, A. R. Probabilistic aspects of critical growth-fragmentation equations, Adv. Appl. Probab., Volume 48 (2016) no. A, pp. 37–-61 | DOI | Zbl

[CCGU12] Carrillo, J. A.; Colombo, R. M.; Gwiazda, P.; Ulikowska, A. Structured populations, cell growth and measure valued balance laws, J. Differ. Equations, Volume 252 (2012) no. 4, pp. 3245-3277 | DOI | Zbl

[CCM11] Cáceres, M. J.; Cañizo, J. A.; Mischler, S. Rate of convergence to the remarkable state for the self-similar fragmentation and growth-fragmentation equations, J. Math. Pures Appl., Volume 96 (2011) no. 4, pp. 334-362 | DOI | Zbl

[CP06] Cao, H.; Pereverzev, S. V. Natural linearization for the identification of a diffusion coefficient in a quasi-linear parabolic system from short-time observations, Inverse Probl., Volume 22 (2006) no. 6, pp. 2311-2330 | DOI | Zbl

[DET18] Doumic, M.; Escobedo, M.; Tournus, M. Estimating the division rate and kernel in the fragmentation equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 7, pp. 1847-1884 | DOI | Numdam | MR | Zbl

[DETX21] Doumic, M.; Escobedo, M.; Tournus, M.; Xue, W.-F. Insights into the dynamic trajectories of protein filament division revealed by numerical investigation into the mathematical model of pure fragmentation, PLoS Comput. Biol., Volume 17 (2021) no. 9, p. 21 | DOI

[Die68] Dieudonné, J. Calcul infinitésimal, Collection méthodes, Hermann, 1968 | MR | Zbl

[DS96] Dubovski, P. B.; Stewart, I. W. Existence, uniqueness and mass conservation for the coagulation-fragmentation equation, Math. Methods Appl. Sci., Volume 19 (1996), pp. 571-591 | DOI | Zbl

[DvB18] Doumic, M.; van Brunt, B. Explicit solution and fine asymptotics for a critical growth-fragmentation equation, CIMPA School on Mathematical Models in Biology and Medicine (ESAIM: Proceedings and Surveys), Volume 62, EDP Sci., Les Ulis, 2018, pp. 30-42 | MR | Zbl

[EHN96] Engl, H. W.; Hanke, M.; Neubauer, A. Regularization of inverse problems, Mathematics and its Applications, 375, Springer, 1996 | DOI | Zbl

[EMR05] Escobedo, M.; Mischler, S.; Ricard, R. M. On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 1, pp. 99-125 | DOI | Numdam | Zbl

[Fil61] Filippov, A. F. On the Distribution of the Sizes of Particles which Undergo Splitting, Theory Probab. Appl., Volume 6 (1961) no. 3, pp. 275-294 | DOI | Zbl

[GN16] Giné, E.; Nickl, R. Mathematical foundations of infinite-dimensional statistical models, Cambridge Series in Statistical and Probabilistic Mathematics, 40, Cambridge University Press, 2016 | DOI | MR | Zbl

[Haa10] Haas, B. Asymptotic behavior of solutions of the fragmentation equation with shattering: An approach via self-similar Markov processes, Ann. Appl. Probab., Volume 20 (2010) no. 2, p. 382-–429 | DOI | Zbl

[Han99] Hanin, L. G An extension of the Kantorovich norm, Monge Ampère equation: applications to geometry and optimization (Deerfield Beach, FL, 1997) (Contemporary Mathematics), Volume 226, American Mathematical Society, 1999, pp. 113-130 | Zbl

[HHTW19] Honoré, S.; Hubert, F.; Tournus, M.; White, D. A growth-fragmentation approach for modeling microtubule dynamic instability, Bull. Math. Biol., Volume 81 (2019) no. 3, pp. 722-758 | DOI | MR | Zbl

[HKLT24] Hellmuth, K.; Klingenberg, C.; Li, Q.; Tang, M. Kinetic chemotaxis tumbling kernel determined from macroscopic quantities, SIAM J. Math. Anal., Volume 56 (2024) no. 1, pp. 568-587 | DOI

[HPNRT19] Hoang, V. H.; Pham Ngoc, T. M.; Rivoirard, V.; Tran, V. C. Nonparametric estimation of the fragmentation kernel based on a PDE stationary distribution approximation, Scand. J. Statist., Volume 49 (2019), pp. 4-43 | DOI | Zbl

[KK05] Kostoglou, M.; Karabelas, A. J. On the self-similar solution of fragmentation equation: Numerical evaluation with implications for the inverse problem, J. Colloid Interface Sci., Volume 284 (2005), pp. 571-581 | DOI

[Kol41] Kolmogorov, A. N. On the logarithmic normal distribution of particle sizes under grinding, Dokl. Akad. Nauk SSSR, Volume 31 (1941), pp. 99-101

[LCL19] Li, Z.; Cheng, X.; Li, G. An inverse problem in time-fractional diffusion equations with nonlinear boundary condition, J. Math. Phys., Volume 60 (2019) no. 9, 091502 | Zbl

[Mel57] Melzak, Z. A. A Scalar Transport Equation, Trans. Am. Math. Soc., Volume 85 (1957) no. 2, pp. 547-560 | DOI | Zbl

[ML86] Misra, O. P.; Lavoine, J. L. Transform analysis of generalized functions, North-Holland Mathematics Studies, 119, North-Holland, 1986 | Zbl

[MLM97] McLaughlin, D. J.; Lamb, W.; McBride, A. C. An Existence and Uniqueness Result for a Coagulation and Multiple-Fragmentation Equation, SIAM J. Math. Anal., Volume 28 (1997) no. 5, pp. 1173-1190 | DOI | Zbl

[MS40] Montroll, E. W.; Simha, R. Theory of Depolymerization of Long Chain Molecules, J. Chem. Phys., Volume 8 (1940), pp. 721-726 | DOI

[Nor99] Norris, J. R. Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent, Ann. Appl. Probab., Volume 9 (1999) no. 1, pp. 78-109 | DOI | Zbl

[NRG80] Narsimhan, G.; Ramkrishna, D.; Gupta, J. P. Analysis of drop size distributions in lean liquid-liquid dispersions, AIChE J., Volume 26 (1980) no. 6, pp. 991-1000 | DOI

[Per07] Perthame, B. Transport equations in biology, Frontiers in Mathematics, Birkhäuser, 2007 | DOI | MR | Zbl

[PR05] Perthame, B.; Ryzhik, L. Exponential decay for the fragmentation or cell-division equation, J. Differ. Equations, Volume 210 (2005) no. 1, pp. 155-177 | DOI | Zbl

[PR14] Piccoli, B.; Rossi, F. Generalized Wasserstein distance and its application to transport equations with source, Arch. Ration. Mech. Anal., Volume 211 (2014) no. 1, pp. 335-358 | DOI | MR | Zbl

[PRT23] Piccoli, B.; Rossi, F.; Tournus, M. A Wasserstein norm for signed measures, with application to non local transport equation with source term, Commun. Math. Sci., Volume 21 (2023) no. 5, pp. 1279-1301 | DOI | Zbl

[Ram74] Ramkrishna, D. Drop-breakage in agitated liquid-liquid dispersions, Chem. Eng. Sci., Volume 29 (1974), pp. 987-992 | DOI

[Ste90] Stewart, I. W. On the coagulation-fragmentation equation, Z. Angew. Math. Phys., Volume 41 (1990) no. 6, pp. 917-924 | DOI | Zbl

[VBA66] Valentas, K. J.; Bilous, O.; Amundson, N. R. Analysis of Breakage in Dispersed Phase Systems, Ind. Eng. Chem. Fundamen., Volume 5 (1966) no. 2, p. 271-–279 | DOI

[Vil03] Villani, C. Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, 2003 | DOI | MR | Zbl

[XHR09] Xue, W.-F.; Homans, S. W.; Radford, S. E. Amyloid fibril length distribution quantified by atomic force microscopy single-particle image analysis, Protein Eng. Des. Sel., Volume 22 (2009) no. 8, pp. 489-496 | DOI

[XR13] Xue, W.-F.; Radford, S. E. An Imaging and Systems Modeling Approach to Fibril Breakage Enables Prediction of Amyloid Behavior, Biophys. Journal, Volume 105 (2013), pp. 2811-2819 | DOI

[ZM85] Ziff, R. M.; McGrady, E. D. The kinetics of cluster fragmentation and depolymerisation, J. Phys. A. Math. Gen., Volume 18 (1985), pp. 3027-3037 | DOI | Zbl

[ZM86] Ziff, R. M.; McGrady, E. D. Kinetics of polymer degradation, Macromolecules, Volume 19 (1986) no. 10, pp. 2513-2519 | DOI