Integral models of reductive groups and integral Mumford–Tate groups
Annales Henri Lebesgue, Volume 7 (2024), pp. 749-786.

Metadata

Keywords Reductive groups, integral models, Mumford–Tate groups

Abstract

Let G be a reductive group over a number field or p-adic field, and let V be a faithful representation of G. A lattice Λ in V induces an integral model mdl G (Λ) of G. The first main result of this paper states that up to the action of the normalizer of G, there are only finitely many Λ yielding the same mdl G (Λ). We first prove this for split G via the theory of Lie algebra representations, then for nonsplit G via Bruhat–Tits theory. The second main result shows that in a moduli space of principally polarized abelian varieties, a special subvariety is determined, up to finite ambiguity, by its integral Mumford–Tate group. We obtain this result by applying the first main result to the symplectic representations underlying special subvarieties.


References

[Art06] Artin, M. Schémas en Groupes. Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3): I: Propriétés Générales des Schémas en Groupes, 151, Springer, 2006

[Bor63] Borel, Armand Some finiteness properties of adele groups over number fields, Publ. Math., Inst. Hautes Étud. Sci., Volume 16 (1963), pp. 5-30 | DOI | Numdam | Zbl

[Bou06] Bourbaki, Nicolas Éléments de mathématique. Groupes et algèbres de Lie: Chapitres 7 et 8, Springer, 2006 | DOI | Zbl

[Bro89] Brown, Kenneth S; Buildings, Springer, 1989 | DOI | Zbl

[BT72] Bruhat, François; Tits, Jacques Groupes réductifs sur un corps local: I. Données radicielles valuées, Publ. Math., Inst. Hautes Étud. Sci., Volume 41 (1972), pp. 5-251 | DOI | Numdam | Zbl

[CM20] Cadoret, Anna; Moonen, Ben Integral and adelic aspects of the Mumford–Tate conjecture, J. Inst. Math. Jussieu, Volume 19 (2020) no. 3, pp. 869-890 | DOI | Zbl

[Con11] Conrad, Brian Non-split reductive groups over , Autour des schémas en groupes. École d’Été “Schémas en groupes”. Volume II, Volume 2, Société Mathématique de France, 2011, pp. 193-253 | Zbl

[Del79] Deligne, Pierre Variétés de Shimura: interprétation modulaire, et techniques de construction de modeles canoniques, Automorphic forms, representations and L-functions. Part 1 (Proceedings of Symposia in Pure Mathematics), Volume 33 (1979), pp. 247-289 | DOI | Zbl

[EGH + 11] Etingof, Pavel I.; Golberg, Oleg; Hensel, Sebastian; Liu, Tiankai; Schwendner, Alex; Vaintrob, Dmitry; Yudovina, Elena Introduction to representation theory, Student Mathematical Library, 59, American Mathematical Society, 2011 | Zbl

[EY03] Edixhoven, Bas; Yafaev, Andrei Subvarieties of Shimura varieties, Ann. Math., Volume 157 (2003) no. 2, pp. 621-645 | DOI | Zbl

[Fom97] Fomina, Tat’yana V. Integral forms of linear algebraic groups, Math. Notes, Volume 61 (1997), pp. 346-351 | DOI | Zbl

[Gro96] Gross, Benedict H. Groups over , Invent. Math., Volume 124 (1996), pp. 263-279 | DOI | Zbl

[Hum72] Humphreys, James E. Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer, 1972 | DOI | Zbl

[Hum75] Humphreys, James E. Linear algebraic groups, Graduate Texts in Mathematics, 21, Springer, 1975 | Zbl

[Kno06] Knop, Friedrich Classification of multiplicity free symplectic representations, J. Algebra, Volume 301 (2006) no. 2, pp. 531-553 | DOI | Zbl

[Mil80] Milne, James S. Etale cohomology (PMS-33), Princeton University Press, 1980 | DOI

[Mil86] Milne, James S. Abelian varieties, Arithmetic geometry. (Papers presented at the Conference held from July 30 through August 10, 1984 at the University of Connecticut in Storrs), Springer (1986), pp. 103-150 | Zbl

[Mil05] Milne, James S. Introduction to Shimura varieties, Harmonic analysis, the trace formula, and Shimura varieties. Proceedings of the Clay Mathematics Institute 2003 summer school, Toronto, Canada, June 2–27, 2003 (Clay Mathematics Proceedings), Volume 4, American Mathematical Society (2005), pp. 265-378 | Zbl

[Mil13] Milne, James S. Lie algebras, algebraic groups, and Lie groups (2013) (available at www.jmilne.org/math/)

[Mil17] Milne, James S. Algebraic groups. The theory of group schemes of finite type over a field, Cambridge Studies in Advanced Mathematics, 170, Cambridge University Press, 2017 | DOI | Zbl

[Moo04] Moonen, Ben An introduction to Mumford–Tate groups (2004)

[PPRR23] Platonov, Vladimir Petrovich; Platonov, Vladimir; Rapinchuk, Andrei; Rapinchuk, Igor Algebraic groups and number theory, Cambridge Studies in Advanced Mathematics, 205, Cambridge University Press, 2023 | DOI | Zbl

[Rou77] Rousseau, Guy Immeubles des groupes réductifs sur les corps locaux, Publ. Math. D’Orsay, Volume 77 (1977) no. 68 | Zbl

[S + 99] Sloane, Neil J. A. et al. On-line encyclopedia of integer sequences, 1999 (https://oeis.org/)

[Sen69] Sen, Shankar On automorphisms of local fields, Ann. Math. (1969), pp. 33-46 | DOI | Zbl

[Spr94] Springer, Tonny A. Linear Algebraic Groups, Encyclopaedia of Mathematical Sciences, 55, Springer, 1994 | DOI

[SS79] Serre, Jean-Pierre; Serre, Jean-Pierre Galois cohomology, Graduate Texts in Mathematics, 67, Springer, 1979 | Zbl

[Tit79] Tits, Jacques Reductive groups over local fields, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1 (Proceedings of Symposia in Pure Mathematics), Volume 33, American Mathematical Society (1979), pp. 29-69 | Zbl

[use12] user27056 Is the normalizer of a reductive subgroup reductive?, 2012 (Available at https://mathoverflow.net/questions/114243/)