Metadata
Abstract
We show that the space of (reversible) Finsler metrics on the two-torus whose geodesic flow is conjugate to the geodesic flow of a flat Finsler metric strongly deformation retracts to the space of flat Finsler metrics with respect to the uniform convergence topology. Along the proof, we also show that two Finsler metrics on without conjugate points, whose Heber foliations are smooth and with the same marked length spectrum, have conjugate geodesic flows.
References
[AABZ15] Tonelli Hamiltonians without conjugate points and integrability, Math. Z., Volume 280 (2015) no. 1–2, pp. 165-194 | DOI | Zbl
[ABHS17] A systolic inequality for geodesic flows on the two-sphere, Math. Ann., Volume 367 (2017) no. 1-2, pp. 701-753 | DOI | Zbl
[Ang88] The zero set of a solution of a parabolic equation, J. Reine Angew. Math., Volume 390 (1988), pp. 79-96 | DOI | Zbl
[Ang90] Parabolic equations for curves on surfaces. I. Curves with -integrable curvature, Ann. Math., Volume 132 (1990) no. 3, pp. 451-483 | DOI | Zbl
[Ban88] Mather sets for twist maps and geodesics on tori, Dynamics reported. Vol. 1 (Dynamics Reported. A Series in Dynamical Systems and their Applications), Volume 1, John Wiley & Sons, 1988, pp. 1-56 | DOI | Zbl
[BC21] Finsler perturbation with nondense geodesics with irrational directions, Asian J. Math., Volume 25 (2021) no. 5, pp. 715-726 | DOI | Zbl
[BCS00] An Introduction to Riemann–Finsler Geometry, Graduate Texts in Mathematics, 200, Springer, 2000 | Zbl
[Ber03] A panoramic view of Riemannian geometry, Springer, 2003 | DOI | Zbl
[Bes78] Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, 93, Springer, 1978 | DOI | Zbl
[BI94] Riemannian tori without conjugate points are flat, Geom. Funct. Anal., Volume 4 (1994) no. 3, pp. 259-269 | DOI | Zbl
[BM08] Stable norms of non-orientable surfaces, Ann. Inst. Fourier, Volume 58 (2008) no. 4, pp. 1337-1369 | DOI | Numdam | Zbl
[BP86] Geodesic flows on the two-dimensional torus and phase transitions “commensurability-noncommensurability”, Funct. Anal. Appl., Volume 20 (1986), pp. 260-266 | DOI | Zbl
[Che19] On total flexibility of local structures of Finsler tori without conjugate points, J. Topol. Anal., Volume 11 (2019) no. 2, pp. 349-355 | DOI | Zbl
[CK94] Conjugacy and rigidity for manifolds with a parallel vector field, J. Differ. Geom., Volume 39 (1994), pp. 659-680 | DOI | Zbl
[CK95] On tori without conjugate points, Invent. Math., Volume 120 (1995) no. 2, pp. 241-257 | DOI | Zbl
[Cro90] Rigidity for surfaces of nonpositive curvature, Comment. Math. Helv., Volume 65 (1990) no. 1, pp. 150-169 | DOI | Zbl
[CS86] The fundamental group of compact manifolds without conjugate points, Comment. Math. Helv., Volume 61 (1986) no. 1, pp. 161-175 | DOI | Zbl
[CZ98] Shortening complete plane curves, J. Differ. Geom., Volume 50 (1998) no. 3, pp. 471-504 | DOI | Zbl
[EH89] Mean curvature evolution of entire graphs, Ann. Math., Volume 130 (1989) no. 3, pp. 453-471 | DOI | Zbl
[EH91] Interior estimates for hypersurfaces moving by mean curvature, Invent. Math., Volume 105 (1991) no. 3, pp. 547-569 | DOI | Zbl
[Ehr50] Les connexions infinitésimales dans un espace fibré différentiable, Colloque de Topologie (Espaces Fibrés) Bruxelles, 1950, Georges Thone; Masson & Cie (1950), pp. 29-55 | Zbl
[Esc77] Horospheres and the stable part of the geodesic flow, Math. Z., Volume 153 (1977) no. 3, pp. 237-251 | DOI | Zbl
[FHS82] Closed geodesics on surfaces, Bull. Lond. Math. Soc., Volume 14 (1982) no. 5, pp. 385-391 | DOI | Zbl
[Gag90] Curve shortening on surfaces, Ann. Sci. Éc. Norm. Supér., Volume 23 (1990) no. 2, pp. 229-256 | DOI | Numdam | Zbl
[Gro99] Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152, Birkhäuser, 1999 | Zbl
[Hal12] Self-similar solutions to the curve shortening flow, Trans. Am. Math. Soc., Volume 364 (2012) no. 10, pp. 5285-5309 | DOI | Zbl
[Heb94] On the geodesic flow of tori without conjugate points, Math. Z., Volume 216 (1994) no. 2, pp. 209-216 | DOI | Zbl
[Hed32] Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. Math., Volume 33 (1932) no. 4, pp. 719-739 | DOI | Zbl
[Hop48] Closed surfaces without conjugate points, Proc. Natl. Acad. Sci. USA, Volume 34 (1948), pp. 47-51 | DOI | Zbl
[Lee13] Introduction to smooth manifolds, Graduate Texts in Mathematics, 218, Springer, 2013 | DOI | Zbl
[Mat91] Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., Volume 207 (1991) no. 2, pp. 169-207 | DOI | Zbl
[MS11] Differentiability of Mather’s average action and integrability on closed surfaces, Nonlinearity, Volume 24 (2011) no. 6, pp. 1777-1793 | DOI | Zbl
[NT07] The condition on the stability of stationary lines in a curvature flow in the whole plane, J. Differ. Equations, Volume 237 (2007) no. 1, pp. 61-76 | DOI | Zbl
[RÈ66] Necessary and sufficient conditions for establishing a solution to the Cauchy problem, Sov. Math., Dokl., Volume 7 (1966), pp. 388-391 | Zbl
[RÈ67] A new proof of the theorem on the stabilization of the solution of the Cauchy problem for the heat equation, Math. USSR, Sb., Volume 2 (1967) no. 1, pp. 135-139 | DOI | Zbl
[Sab19] Strong deformation retraction of the space of Zoll Finsler projective planes, J. Symplectic Geom., Volume 17 (2019) no. 2, pp. 443-476 | DOI | Zbl
[Sch15] Global minimizers for Tonelli Lagrangians on the -torus, J. Topol. Anal., Volume 7 (2015) no. 2, pp. 261-291 | DOI | Zbl
[WW11] On the stability of stationary line and grim reaper in planar curvature flow, Bull. Aust. Math. Soc., Volume 83 (2011) no. 2, pp. 177-188 | DOI | Zbl
[ÁPB10] Finsler surfaces with prescribed geodesics (2010) | arXiv