Metadata
Abstract
A well-known theorem of Wolpert shows that the Weil–Petersson symplectic form on Teichmüller space, computed on two infinitesimal twists along simple closed geodesics on a fixed hyperbolic surface, equals the sum of the cosines of the intersection angles. We define an infinitesimal deformation starting from a more general object, namely a balanced geodesic graph, by which any tangent vector to Teichmüller space can be represented. We then prove a generalization of Wolpert’s formula for these deformations. In the case of simple closed curves, we recover the theorem of Wolpert.
References
[Bar05] Globally hyperbolic flat space-times, J. Geom. Phys., Volume 53 (2005) no. 2, pp. 123-165 | DOI | MR | Zbl
[Ber60] Simultaneous uniformization, Bull. Am. Math. Soc., Volume 66 (1960), pp. 94-97 | DOI | MR | Zbl
[Bon86] Bouts des variétés hyperboliques de dimension , Ann. of Math., Volume 124 (1986) no. 1, pp. 71-158 | DOI | MR | Zbl
[Bon92] Earthquakes on Riemann surfaces and on measured geodesic laminations, Trans. Am. Math. Soc., Volume 330 (1992) no. 1, pp. 69-95 | DOI | MR | Zbl
[Bon05] Flat spacetimes with compact hyperbolic Cauchy surfaces, J. Differ. Geom., Volume 69 (2005) no. 3, pp. 441-521 | DOI | MR | Zbl
[Bro03] The Weil–Petersson metric and volumes of 3-dimensional hyperbolic convex cores, J. Am. Math. Soc., Volume 16 (2003) no. 3, pp. 495-535 | DOI | MR | Zbl
[BS12] Fixed points of compositions of earthquakes, Duke Math. J., Volume 161 (2012) no. 6, pp. 1011-1054 | DOI | MR | Zbl
[BS16] On Codazzi tensors on a hyperbolic surface and flat Lorentzian geometry, Int. Math. Res. Not. IMRN (2016) no. 2, pp. 343-417 | DOI | MR | Zbl
[BS18] Area-preserving diffeomorphisms of the hyperbolic plane and -surfaces in anti-de Sitter space, J. Topol., Volume 11 (2018) no. 2, pp. 420-468 | DOI | MR | Zbl
[CdV91] Comment rendre géodésique une triangulation d’une surface ?, Enseign. Math., Volume 37 (1991) no. 3-4, pp. 201-212 | MR | Zbl
[FS12] Flippable tilings of constant curvature surfaces, Ill. J. Math., Volume 56 (2012) no. 4, pp. 1213-1256 | DOI | MR | Zbl
[FV16] Lorentzian area measures and the Christoffel problem, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 16 (2016) no. 2, pp. 383-467 | MR | Zbl
[Gol80] Discontinuous Groups and the Euler Class (1980) (Ph. D. Thesis) | MR
[Gol84] The symplectic nature of fundamental groups of surfaces, Adv. Math., Volume 54 (1984) no. 2, pp. 200-225 | DOI | MR | Zbl
[Koe09] Über die Uniformisierung der algebraischen Kurven. I, Math. Ann., Volume 67 (1909) no. 2, pp. 145-224 | DOI | MR | Zbl
[Lou15] The complex symplectic geometry of the deformation space of complex projective structures, Geom. Topol., Volume 19 (2015) no. 3, pp. 1737-1775 | DOI | MR | Zbl
[McM98] Complex earthquakes and Teichmüller theory, J. Am. Math. Soc., Volume 11 (1998) no. 2, pp. 283-320 | DOI | MR | Zbl
[Mes07] Lorentz spacetimes of constant curvature, Geom. Dedicata, Volume 126 (2007), pp. 3-45 | DOI | MR | Zbl
[Rat06] Foundations of hyperbolic manifolds, Graduate texts in mathematics, Volume 149, Springer, 2006 | MR | Zbl
[SB01] The Weil–Petersson and Thurston symplectic forms, Duke Math. J., Volume 108 (2001) no. 3, pp. 581-597 | DOI | MR | Zbl
[Sep16] Minimal discs in hyperbolic space bounded by a quasicircle at infinity, Comment. Math. Helv., Volume 91 (2016) no. 4, pp. 807-839 | DOI | MR | Zbl
[Tau04] Minimal surfaces in germs of hyperbolic 3-manifolds, Proceedings of the Casson Fest (Geometry and Topology Monographs) Volume 7 (2004), pp. 69-100 | DOI | MR | Zbl
[Thu86] Earthquakes in two-dimensional hyperbolic geometry, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984) (London Mathematical Society Lecture Note Series) Volume 112, Cambridge University Press, 1986, pp. 91-112 | MR | Zbl
[Uhl83] Closed minimal surfaces in hyperbolic -manifolds, Seminar on minimal submanifolds (Annals of Mathematics Studies) Volume 103, Princeton University Press, 1983, pp. 147-168 | MR | Zbl
[Wol81] An elementary formula for the Fenchel–Nielsen twist, Comment. Math. Helv., Volume 56 (1981) no. 1, pp. 132-135 | DOI | MR | Zbl
[Wol83] On the symplectic geometry of deformations of a hyperbolic surface, Ann. Math., Volume 117 (1983), pp. 207-234 | DOI | MR | Zbl