Metadata
Abstract
We define a partition and a -rotation (-action defined by rotations) on a 2-dimensional torus whose associated symbolic dynamical system is a minimal proper subshift of the Jeandel–Rao aperiodic Wang shift defined by 11 Wang tiles. We define another partition and a -rotation on whose associated symbolic dynamical system is equal to a minimal and aperiodic Wang shift defined by 19 Wang tiles. This proves that is a Markov partition for the -rotation on . We prove in both cases that the toral -rotation is the maximal equicontinuous factor of the minimal subshifts and that the set of fiber cardinalities of the factor map is . The two minimal subshifts are uniquely ergodic and are isomorphic as measure-preserving dynamical systems to the toral -rotations. It provides a construction of these Wang shifts as model sets of 4-to-2 cut and project schemes. A do-it-yourself puzzle is available in the appendix to illustrate the results.
References
[ABKL15] Equicontinuous factors, proximality and Ellis semigroup for Delone sets, Mathematics of Aperiodic Order (Progress in Mathematics), Volume 309, Springer, 2015, pp. 137-194 | DOI | MR | Zbl
[Adl98] Symbolic dynamics and Markov partitions, Bull. Am. Math. Soc., Volume 35 (1998) no. 1, pp. 1-56 | DOI | MR | Zbl
[AFHI11] Algebraic numbers, free group automorphisms and substitutions on the plane, Trans. Am. Math. Soc., Volume 363 (2011) no. 9, pp. 4651-4699 | DOI | MR | Zbl
[AKY19] A family of minimal and renormalizable rectangle exchange maps, Ergodic Theory Dyn. Syst. (2019), pp. 1-28 | DOI
[Aus88] Minimal flows and their extensions, North-Holland Mathematics Studies, 153, North-Holland, 1988 (Notas de Matemática [Mathematical Notes], 122) | MR | Zbl
[AW70] Similarity of Automorphisms of the Torus, Memoirs of the American Mathematical Society, 98, American Mathematical Society, 1970 | MR | Zbl
[Ber65] The undecidability of the domino problem, Ph. D. Thesis, Harvard University, USA (1965) | MR
[Ber66] The undecidability of the domino problem, Memoirs of the American Mathematical Society, 66, American Mathematical Society, 1966 | MR | Zbl
[Ber80] Mots de Fibonacci, 1980, pp. 57-78 (In Séminaire d’Informatique Théorique, L.I.T.P., Paris)
[BF13] The Ammann–Beenker Tilings Revisited, Aperiodic Crystals (Schmid, Siegbert; Withers, Ray L.; Lifshitz, Ron, eds.), Springer (2013), pp. 59-65 | DOI
[BF20] Canonical projection tilings defined by patterns, Geom. Dedicata, Volume 208 (2020), pp. 157-175 | DOI | MR | Zbl
[BG13] Aperiodic Order. Vol.1. A mathematical invitation, Encyclopedia of Mathematics and Its Applications, 149, Cambridge University Press, 2013 (with a foreword by Roger Penrose) | DOI | Zbl
[BHP97] The torus parametrization of quasiperiodic LI-classes, J. Phys. A, Math. Gen., Volume 30 (1997) no. 9, pp. 3029-3056 | DOI | MR | Zbl
[BMP05] Complete characterization of substitution invariant Sturmian sequences, Integers, Volume 5 (2005) no. 1, A14 | MR | Zbl
[Bru81] Algebraic theory of Penrose’s nonperiodic tilings of the plane. I, II, Indag. Math., Volume 43 (1981) no. 1, p. 39-52, 53–66 | DOI | MR | Zbl
[BST19] Geometry, dynamics, and arithmetic of -adic shifts, Ann. Inst. Fourier, Volume 69 (2019) no. 3, pp. 1347-1409 | DOI | MR | Zbl
[BV00] Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences, Discrete Math., Volume 223 (2000) no. 1-3, pp. 27-53 | DOI | MR | Zbl
[CH73] Sequences with minimal block growth, Math. Syst. Theory, Volume 7 (1973), pp. 138-153 | DOI | MR | Zbl
[CN10] Factor complexity, Combinatorics, Automata and Number Theory (Encyclopedia of Mathematics and its Applications), Volume 135, Cambridge University Press, 2010, pp. 163-247 | DOI | MR | Zbl
[Cul96] An aperiodic set of Wang tiles, Discrete Math., Volume 160 (1996) no. 1-3, pp. 245-251 | DOI | MR | Zbl
[DGS76] Strictly ergodic embedding (Theorem of Jewett and Krieger), Ergodic Theory on Compact Spaces (Lecture Notes in Mathematics), Springer, 1976, pp. 300-308 | DOI
[ES97] Markov partitions and homoclinic points of algebraic -actions, Tr. Mat. Inst. Steklova, Volume 216 (1997), pp. 265-284
[FGL18] The structure of mean equicontinuous group actions (2018) (http://arxiv.org/abs/1812.10219)
[Fie01] Factor maps, entropy and fiber cardinality for Markov shifts, Rocky Mt. J. Math., Volume 31 (2001) no. 3, pp. 955-986 | DOI | MR | Zbl
[Fog02] Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, 1794, Springer, 2002 (Collective author. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel) | DOI | MR | Zbl
[GS87] Tilings and patterns, W. H. Freeman and Company, New York, 1987 | Zbl
[HKW18] A characterization of linearly repetitive cut and project sets, Nonlinearity, Volume 31 (2018) no. 2, pp. 515-539 | DOI | MR | Zbl
[HM10] A characterization of the entropies of multidimensional shifts of finite type, Ann. Math., Volume 171 (2010) no. 3, pp. 2011-2038 | DOI | MR | Zbl
[JR15] An aperiodic set of 11 Wang tiles (2015) (http://arxiv.org/abs/1506.06492)
[Kar96] A small aperiodic set of Wang tiles, Discrete Math., Volume 160 (1996) no. 1-3, pp. 259-264 | DOI | MR | Zbl
[Kea75] Interval exchange transformations, Math. Z., Volume 141 (1975), pp. 25-31 | DOI | MR | Zbl
[Ken99] Sur la Combinatoire, la Dynamique et la Statistique des Pavages, 1999 (Habilitation à diriger des recherches)
[Knu68] The art of computer programming. Vol. 1: Fundamental algorithms, Series in Computer Science and Information Processing, Addison-Wesley Co., 1968 | Zbl
[Kur03] Topological and symbolic dynamics, Cours Spécialisés [Specialized Courses], 11, Société Mathématique de France, 2003 | MR | Zbl
[KV98] Arithmetic construction of sofic partitions of hyperbolic toral automorphisms, Ergodic Theory Dyn. Syst., Volume 18 (1998) no. 2, pp. 357-372 | DOI | MR | Zbl
[Lab19a] A self-similar aperiodic set of 19 Wang tiles, Geom. Dedicata, Volume 201 (2019), pp. 81-109 | DOI | MR | Zbl
[Lab19b] Substitutive structure of Jeandel–Rao aperiodic tilings, Discrete Comput. Geom. (2019) | DOI
[Lab20] Rauzy induction of polygon partitions and toral -rotations (2020) (https://arxiv.org/abs/1906.01104v2)
[LM95] An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995 | DOI | Zbl
[LM13] Taylor–Socolar hexagonal tilings as model sets, Symmetry, Volume 5 (2013) no. 1, pp. 1-46 | DOI | MR | Zbl
[Lot02] Algebraic Combinatorics on Words, Encyclopedia of Mathematics and Its Applications, 90, Cambridge University Press, 2002 (Collective author) | MR | Zbl
[LP03] Repetitive Delone sets and quasicrystals, Ergodic Theory Dyn. Syst., Volume 23 (2003) no. 3, pp. 831-867 | DOI | MR | Zbl
[MH38] Symbolic Dynamics, Am. J. Math., Volume 60 (1938) no. 4, pp. 815-866 | DOI | MR | Zbl
[MH40] Symbolic dynamics II. Sturmian trajectories, Am. J. Math., Volume 62 (1940), pp. 1-42 | DOI | MR | Zbl
[Pra99] Numeration systems and Markov partitions from self-similar tilings, Trans. Am. Math. Soc., Volume 351 (1999) no. 8, pp. 3315-3349 | DOI | MR | Zbl
[Que10] Substitution dynamical systems–spectral analysis, Lecture Notes in Mathematics, 1294, Springer, 2010 | DOI | MR | Zbl
[Rau82] Nombres algébriques et substitutions, Bull. Soc. Math. Fr., Volume 110 (1982) no. 2, pp. 147-178 | DOI | Numdam | Zbl
[Rob71] Undecidability and nonperiodicity for tilings of the plane, Invent. Math., Volume 12 (1971), pp. 177-209 | DOI | MR | Zbl
[Rob96] The dynamical properties of Penrose tilings, Trans. Am. Math. Soc., Volume 348 (1996) no. 11, pp. 4447-4464 | DOI | MR | Zbl
[Rob04] Symbolic dynamics and tilings of , Symbolic dynamics and its applications (Proceedings of Symposia in Applied Mathematics), Volume 60, American Mathematical Society, 2004, pp. 81-119 | DOI | MR
[Rob07] A Halmos–Von Neumann theorem for model sets, and almost automorphic dynamical systems, Dynamics, Ergodic Theory, and Geometry (Mathematical Sciences Research Institute Publications), Volume 54, Cambridge University Press, 2007, pp. 243-272 | DOI | MR | Zbl
[Ros87] Strictly ergodic models and topological mixing for -action, Isr. J. Math., Volume 60 (1987) no. 1, pp. 31-38 | DOI | MR | Zbl
[SBGC84] Metallic Phase with Long–Range Orientational Order and No Translational Symmetry, Phys. Rev. Lett., Volume 53 (1984), pp. 1951-1953 | DOI
[Sch01] Multi-dimensional symbolic dynamical systems, Codes, Systems, and Graphical Models (Minneapolis, MN, 1999) (The IMA Volumes in Mathematics and its Applications), Volume 123, Springer, 2001, pp. 67-82 | DOI | MR | Zbl
[Sch14] The Octogonal PETs, Mathematical Surveys and Monographs, 197, American Mathematical Society, 2014 | DOI | MR | Zbl
[Sie17] A minimal subsystem of the Kari–Culik tilings, Ergodic Theory Dyn. Syst., Volume 37 (2017) no. 5, pp. 1607-1634 | DOI | MR | Zbl
[SW03] Tiling spaces are Cantor set fiber bundles, Ergodic Theory Dyn. Syst., Volume 23 (2003) no. 1, pp. 307-316 | DOI | MR | Zbl
[Thu19] -adic sequences. A bridge between dynamics, arithmetic, and geometry (2019) (http://arxiv.org/abs/1908.05954) | Zbl
[Wal82] An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer, 1982 | MR | Zbl
[Wan61] Proving Theorems by Pattern Recognition – II, Bell Syst. Tech. J., Volume 40 (1961) no. 1, pp. 1-41 | DOI