Monopole Floer homology and SOLV geometry
Annales Henri Lebesgue, Volume 3 (2020) , pp. 1117-1131.

Metadata

KeywordsFloer homology, Seiberg–Witten equations, Solvmanifolds

Abstract

We study the monopole Floer homology of a Solv rational homology sphere Y from the point of view of spectral theory. Applying ideas of Fourier analysis on solvable groups, we show that for suitable Solv metrics on Y, small regular perturbations of the Seiberg–Witten equations do not admit irreducible solutions; in particular, this provides a geometric proof that Y is an L-space.


References

[ADS83] Atiyah, Michael F.; Donnelly, Harold; Singer, Isadore M. Eta invariants, signature defects of cusps, and values of L-functions, Ann. Math., Volume 118 (1983) no. 1, pp. 131-177 | Article | MR 707164 | Zbl 0531.58048

[APS75] Atiyah, Michael F.; Patodi, Vijay K.; Singer, Isadore M. Spectral asymmetry and Riemannian geometry. I, Math. Proc. Camb. Philos. Soc., Volume 77 (1975), pp. 43-69 | Article | MR 397797 | Zbl 0297.58008

[Bal08] Baldwin, John A. Heegaard Floer homology and genus one, one-boundary component open books, J. Topol., Volume 1 (2008) no. 4, pp. 963-992 | Article | MR 2461862 | Zbl 1160.57009

[BGV04] Berline, Nicole; Getzler, Ezra; Vergne, Michèle Heat kernels and Dirac operators, Grundlehren Text Editions, Springer, 2004 | Zbl 1037.58015

[BGW13] Boyer, Steven; Gordon, Cameron McA.; Watson, Liam On L-spaces and left-orderable fundamental groups, Math. Ann., Volume 356 (2013) no. 4, pp. 1213-1245 | Article | MR 3072799 | Zbl 1279.57008

[Bre77] Brezin, Jonathan Harmonic analysis on compact solvmanifolds, Lecture Notes in Mathematics, Volume 602, Springer, 1977, vii+179 pages | MR 447471 | Zbl 0403.43007

[CGH12] Colin, Vincent; Ghiggini, Paolo; Honda, Ko The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions I (2012) (https://arxiv.org/abs/1208.1074) | Zbl 1256.57020

[Hir73] Hirzebruch, Friedrich E. P. Hilbert modular surfaces, Enseign. Math., Volume 19 (1973), pp. 183-281 | MR 393045 | Zbl 0285.14007

[KLT11] Kutluhan, Cagatay; Lee, Yi-Jen; Taubes, Clifford HF=HM I : Heegaard Floer homology and Seiberg–Witten Floer homology (2011) (arXiv:math/https://arxiv.org/abs/1007.1979)

[KM07] Kronheimer, Peter; Mrowka, Tomasz S. Monopoles and three-manifolds, New Mathematical Monographs, Volume 10, Cambridge University Press, 2007 | Article | MR 2388043 | Zbl 1158.57002

[KMOS07] Kronheimer, P.; Mrowka, Tomasz; Ozsváth, Peter; Szabó, Zoltán Monopoles and lens space surgeries, Ann. Math., Volume 165 (2007) no. 2, pp. 457-546 | Article | MR 2299739 | Zbl 1204.57038

[Lin16] Lin, Francesco Lectures on monopole Floer homology, Proceedings of the Gökova Geometry-Topology Conference 2015 (2016), pp. 39-80 | MR 3526838 | Zbl 1357.57001

[Lin17] Lin, Francesco Monopole Floer homology and the spectral geometry of three-manifolds (2017) (https://arxiv.org/abs/1705.08817, to appear in Communications in Analysis and Geometry)

[LL18] Lin, Francesco; Lipnowski, Michael The Seiberg–Witten equations and the length spectrum of hyperbolic three-manifolds (2018) (arXiv:math/1810.06346)

[Mar16] Martelli, Bruno An introduction to Geometric Topology (2016) (arXiv:math/1610.02592)

[MOY97] Mrowka, Tomasz S.; Ozsváth, Peter; Yu, Baozhen Seiberg–Witten monopoles on Seifert fibered spaces, Commun. Anal. Geom., Volume 5 (1997) no. 4, pp. 685-791 | Article | MR 1611061 | Zbl 0933.57030

[RR17] Rasmussen, Jacob; Rasmussen, Sarah Dean Floer simple manifolds and L-space intervals, Adv. Math., Volume 322 (2017), pp. 738-805 | Article | MR 3720808 | Zbl 1379.57024

[Sak85] Sakuma, Makoto Involutions on torus bundles over S 1 , Osaka J. Math., Volume 22 (1985) no. 1, pp. 163-185 | MR 785529 | Zbl 0571.57028

[Sco83] Scott, Peter The geometries of 3-manifolds, Bull. Lond. Math. Soc., Volume 15 (1983) no. 5, pp. 401-487 | Article | MR 705527 | Zbl 0561.57001

[Tur97] Turaev, Vladimir G. Torsion invariants of Spin c -structures on 3-manifolds, Math. Res. Lett., Volume 4 (1997) no. 5, pp. 679-695 | Article | MR 1484699 | Zbl 0891.57019